

New findings on neutrinoless double beta decay matrix elements using IBM-2

Elina Kauppinen, University of Jyväskylä elina.k.kauppinen@jyu.fi Supervisors: Jenni Kotila and Jouni Suhonen

- Motivation
- Theory: Microscopic interacting boson model
- Short-range nuclear matrix elements
- Total nuclear matrix element
- Uncertainty of effective g_A
- Comparison with pnQRPA and NSM
- Effect on the predicted half-life
- Conclusions

Motivation

- Neutrinoless double beta decay (not yet observed)
 - Half-life
 - Effective neutrino mass
- Lepton number violation, the nature of the neutrino
- The short-range component in double beta decay nuclei has been studied with pnQRPA and NSM [Jokiniemi, Soriano, Menéndez, Physics Letters B 823 (2021) 136720]
 - Also: ab initio calculations [Wirth, Yao, Hergert, Phys. Rev. Lett. 127, 242502 (2021). & A. Belley et al., Phys. Rev. Lett. 132, 182502 (2024).]

$$T_{1/2}^{0\nu} = \left(g_A^4 |M_{0\nu}|^2 G_{0\nu} \left(\frac{m_{\beta\beta}}{m_e}\right)^2\right)^{-1}$$

Theory: Microscopic interacting boson model

- Microscopic interacting boson model (IBM-2)
 - Closure approximation
 - Isospin restoration formalism
- Hamiltonian parameters for calculations are from *Barea*, *Kotila*, *Iachello PRC* 87, 014315 (2013)

 $^{76}\text{Ge} \rightarrow ^{76}\text{Se}$ $^{82}Se \rightarrow ^{82}Kr$ $^{96}Zr \rightarrow ^{96}Mo$ $100 \text{Mo} \rightarrow 100 \text{Ru}$ $^{116}Cd \rightarrow ^{116}Sn$ $^{124}Sn \rightarrow ^{124}Te$ $^{128}\text{Te} \rightarrow ^{128}\text{Xe}$ $^{130}\text{Te} \rightarrow ^{130}\text{Xe}$ $^{136}Xe \rightarrow ^{136}Ba$

Short-range nuclear matrix element

PHYSICAL REVIEW LETTERS 120, 202001 (2018)

Editors' Suggestion

Featured in Physics

New Leading Contribution to Neutrinoless Double- β Decay

Vincenzo Cirigliano,¹ Wouter Dekens,¹ Jordy de Vries,² Michael L. Graesser,¹ Emanuele Mereghetti,¹ Saori Pastore,¹ and Ubirajara van Kolck^{3,4} ¹Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA ²Nikhef, Theory Group, Science Park 105, 1098 XG Amsterdam, The Netherlands ³Institut de Physique Nucléaire, CNRS/IN2P3, Université Paris-Sud, Université Paris-Saclay, 91406 Orsay, France ⁴Department of Physics, University of Arizona, Tucson, Arizona 85721, USA

(Received 1 March 2018; revised manuscript received 28 March 2018; published 16 May 2018)

Short-range nuclear matrix element

(Received 6 August 2019; published 25 November 2019)

Short-range nuclear matrix element

• Short range nuclear matrix element

$$M_{S} = \frac{2R}{\pi g_{A}^{2}} \langle 0_{f}^{+} | \sum_{m,n} \tau_{m}^{-} \tau_{n}^{-} \int j_{0}(qr) h_{s}(q^{2}) q^{2} dq | 0_{i}^{+} \rangle$$

• Neutrino potential h_S can be written as

$$h_S(q^2) = -2g_v^{NN}e^{-q^2/(2\Lambda^2)}$$

- The coupling g_{ν}^{NN} is not known
 - Values used are from:
 - Reinert, Krebs, Epelbaum, European Physical Journal A 54, 86(2018).
 - Piarulli et al. Phys. Rev. C 94, 054007 (2016).
 - Obtained with the methods explained in Cirigliano et al., Phys. Rev. C 100, 055504 (2019)

Short-range nuclear matrix element

Short range nuclear matrix element

$M_{ m S}$	$=\frac{2R}{2}\langle 0_{f}^{+} \sum_{\tau_{m}}\tau_{m}^{-}\int_{0}^{\tau_{m}}(qr)h_{s}(q^{2})q^{2}dq$	$(0_{i}^{+}\rangle$	
5	$\pi g_A^2 $ $\pi_{m,n}$	$g_{ u}^{NN}$ (fm ²)	$\Lambda ~({ m MeV})$
Neutrino potential $h_{\rm s}$ can be wr	tten as	-0.67	450
······································	(2) NN $(2/(2)^2)$	-1.01	550
	$h_S(q^2) = -2g_v^{NN}e^{-q^2/(2\Lambda^2)}$	-1.44	465
		-0.91	465
The coupling g_{v}^{NN} is not known		-1.44	349
- Values used are from:		-1.03	349

- Reinert, Krebs, Epelbaum, European Physical Journal A 54, 86(2018).
- Piarulli et al. Phys. Rev. C 94, 054007 (2016).
- Obtained with the methods explained in Cirigliano et al., Phys. Rev. C 100, 055504 (2019)

- une of the long range and chart range nuclear metric
- The total nuclear matrix element is calculated as the sum of the long-range and short-range nuclear matrix elements
 - In *ab initio* calculations, the short-range component has been seen to enhance the total nuclear matrix element [*Wirth, Yao, Hergert, Phys. Rev. Lett.* 127, 242502 (2021).]

 $M_{tot} = |M_L| + |M_S|$

$$M_L = \left(\frac{g_V}{g_A}\right)^2 M_F - M_{GT} + M_T$$

Uncertainty of effective g_A

- Since the true value of effective g_A is not known, we have used three values to estimate it
 - The bare value: $g_A = 1.269$
 - The renormalized value: $g_A = 1.00$
 - The maximally quenched value: $g_A = 1.269A^{-0.18}$ (IBM-2)

Fig: [Suhonen and Kostensalo, Front. Phys. 7:29 (2019)]

Decay	M_L
⁷⁶ Ge → ⁷⁶ Se	(6.10)6.49-6.71(8.49)
⁸² Se → ⁸² Kr	(5.02)5.35-5.53(7.12)
⁹⁶ Zr → ⁹⁶ Mo	(3.83)4.01-4.19(5.07)
¹⁰⁰ Mo → ¹⁰⁰ Ru	(4.90)5.15-5.45(6.69)
¹¹⁶ Cd → ¹¹⁶ Sn	(2.81)2.98-3.12(4.06)
¹²⁴ Sn → ¹²⁴ Te	(3.46)3.73-3.87(5.54)
¹²⁸ Te → ¹²⁸ Xe	(4.42)4.76-4.94(7.07)
¹³⁰ Te → ¹³⁰ Xe	(3.99)4.30-4.45(6.40)
¹³⁶ Xe → ¹³⁶ Ba	(3.25)3.50-3.62(5.20)

 $g_A = 1.00$ Argonne / CD-Bonn SRC

Decay	M_L
⁷⁶ Ge → ⁷⁶ Se	(6.10)6.49-6.71(8.49)
⁸² Se → ⁸² Kr	(5.02)5.35-5.53(7.12)
⁹⁶ Zr → ⁹⁶ Mo	(3.83)4.01-4.19(5.07)
¹⁰⁰ Mo → ¹⁰⁰ Ru	(4.90)5.15-5.45(6.69)
¹¹⁶ Cd → ¹¹⁶ Sn	(2.81)2.98-3.12(4.06)
¹²⁴ Sn → ¹²⁴ Te	(3.46)3.73-3.87(5.54)
¹²⁸ Te → ¹²⁸ Xe	(4.42)4.76-4.94(7.07)
¹³⁰ Te → ¹³⁰ Xe	(3.99)4.30-4.45(6.40)
¹³⁶ Xe → ¹³⁶ Ba	(3.25)3.50-3.62(5.20)

 $g_A = 1.00$ Argonne / CD-Bonn SRC

 $g_A = 1.269$ Argonne SRC

Decay	M_L
⁷⁶ Ge → ⁷⁶ Se	(6.10)6.49-6.71(8.49)
⁸² Se → ⁸² Kr	(5.02)5.35-5.53(7.12)
⁹⁶ Zr → ⁹⁶ Mo	(3.83)4.01-4.19(5.07)
¹⁰⁰ Mo → ¹⁰⁰ Ru	(4.90)5.15-5.45(6.69)
¹¹⁶ Cd → ¹¹⁶ Sn	(2.81)2.98-3.12(4.06)
124 Sn \rightarrow 124 Te	(3.46)3.73-3.87(5.54)
¹²⁸ Te → ¹²⁸ Xe	(4.42)4.76-4.94(7.07)
¹³⁰ Te → ¹³⁰ Xe	(3.99)4.30-4.45(6.40)
¹³⁶ Xe → ¹³⁶ Ba	(3.25)3.50-3.62(5.20)

 $g_A = 1.00$ Argonne / CD-Bonn SRC

 $g_A = 1.269$ Argonne SRC

 $g_A = 1.269 A^{-0.18}$ CD-Bonn SRC

Decay	M_L	M _S
⁷⁶ Ge → ⁷⁶ Se	(6.10) 6.49-6.71 (8.49)	0.78-2.20
⁸² Se → ⁸² Kr	(5.02) 5.35-5.53 (7.12)	0.66-1.84
⁹⁶ Zr → ⁹⁶ Mo	(3.83) 4.01-4.19 (5.07)	0.60-1.71
¹⁰⁰ Mo → ¹⁰⁰ Ru	(4.90) 5.15-5.45 (6.69)	0.88-2.51
¹¹⁶ Cd → ¹¹⁶ Sn	(2.81) 2.98-3.12 (4.06)	0.54-1.54
¹²⁴ Sn → ¹²⁴ Te	(3.46) 3.73-3.87 (5.54)	0.53-1.48
¹²⁸ Te → ¹²⁸ Xe	(4.42) 4.76-4.94 (7.07)	0.67-1.87
¹³⁰ Te → ¹³⁰ Xe	(3.99) 4.30-4.45 (6.40)	0.61-1.70
¹³⁶ Xe → ¹³⁶ Ba	(3.25) 3.50-3.62 (5.20)	0.47-1.32

Decay	\boldsymbol{M}_L	M _S	M _{tot}
⁷⁶ Ge → ⁷⁶ Se	(6.10) 6.49-6.71 (8.49)	0.78-2.20	(6.88) 7.27-8.91 (10.68)
⁸² Se → ⁸² Kr	(5.02) 5.35-5.53 (7.12)	0.66-1.84	(5.67) 6.00-7.37 (8.96)
⁹⁶ Zr → ⁹⁶ Mo	(3.83) 4.01-4.19 (5.07)	0.60-1.71	(4.43) 4.61-5.90 (6.78)
¹⁰⁰ Mo → ¹⁰⁰ Ru	(4.90) 5.15-5.45 (6.69)	0.88-2.51	(5.77) 6.03-7.96 (9.21)
¹¹⁶ Cd → ¹¹⁶ Sn	(2.81) 2.98-3.12 (4.06)	0.54-1.54	(3.35) 3.52-4.66 (5.61)
¹²⁴ Sn → ¹²⁴ Te	(3.46) 3.73-3.87 (5.54)	0.53-1.48	(3.99) 4.26-5.35 (7.01)
¹²⁸ Te → ¹²⁸ Xe	(4.42) 4.76-4.94 (7.07)	0.67-1.87	(5.09) 5.43-6.80 (8.93)
¹³⁰ Te → ¹³⁰ Xe	(3.99) 4.30-4.45 (6.40)	0.61-1.70	(4.59) 4.90-6.15 (8.10)
¹³⁶ Xe → ¹³⁶ Ba	(3.25) 3.50-3.62 (5.20)	0.47-1.32	(3.72) 3.97-4.94 (6.53)

Decay	M_L	M _S		M _{tot}
⁷⁶ Ge → ⁷⁶ Se	(6.10) 6.49-6.71 (8.49)	0.78-2.2	20	(6.88) 7.27-8.91 (10.68)
⁸² Se → ⁸² Kr	(5.02) 5.35-5.53 (7.12)	0.66-1.8	84	(5.67) 6.00-7.37 (8.96)
⁹⁶ Zr → ⁹⁶ Mo	(3.83) 4.01-4.19 (5.07)	0.60-1.7	71	(4.43) 4.61-5.90 (6.78)
$^{100}Mo \rightarrow ^{100}Ru$	(4 90) 5 15-5 45 (6 69)	0.88-2	51	(5.77) 6.03-7.96 (9.21)
¹¹⁶ Cd → ¹¹⁶ Sn	Ab initio ⁷⁶ Ge:		54	(3.35) 3.52-4.66 (5.61)
¹²⁴ Sn → ¹²⁴ Te	$M_{tot} = 2.60^{+1.28}_{-1.36}$	-	48	(3.99) 4.26-5.35 (7.01)
¹²⁸ Te \rightarrow ¹²⁸ Xe	Belley et al., Phys. Rev. Lett. 132,	182502	87	(5.09) 5.43-6.80 (8.93)
130 Te $\rightarrow ^{130}$ Xe	(2024).		70	(4.59) 4.90-6.15 (8.10)
¹³⁶ Xe → ¹³⁶ Ba	, , , , , , , , , , , , , , , , ,		32	(3.72) 3.97-4.94 (6.53)

Decay	M_L	M _S	M_{S}/M_{L} (%)
⁷⁶ Ge → ⁷⁶ Se	(6.10) 6.49-6.71 (8.49)	0.78-2.20	(9) 12-34 (36)
⁸² Se → ⁸² Kr	(5.02) 5.35-5.53 (7.12)	0.66-1.84	(9) 12-34 (37)
⁹⁶ Zr → ⁹⁶ Mo	(3.83) 4.01-4.19 (5.07)	0.60-1.71	(12) 14-43 (45)
¹⁰⁰ Mo → ¹⁰⁰ Ru	(4.90) 5.15-5.45 (6.69)	0.88-2.51	(13) 16-49 (51)
$^{116}Cd \rightarrow ^{116}Sn$	(2.81) 2.98-3.12 (4.06)	0.54-1.54	(13) 17-52 (55)
¹²⁴ Sn → ¹²⁴ Te	(3.46) 3.73-3.87 (5.54)	0.53-1.48	(10) 14-40 (43)
128 Te $\rightarrow ^{128}$ Xe	(4.42) 4.76-4.94 (7.07)	0.67-1.87	(9) 14-39 (42)
¹³⁰ Te → ¹³⁰ Xe	(3.99) 4.30-4.45 (6.40)	0.61-1.70	(10) 14-40 (43)
¹³⁶ Xe → ¹³⁶ Ba	(3.25) 3.50-3.62 (5.20)	0.47-1.32	(9) 13-38 (41)

Comparison with pnQRPA and NSM

Short-range NMEs

Decay	IBM-2	pnQRPA	NSM
⁷⁶ Ge → ⁷⁶ Se	0.78-2.20	1.49-3.80	0.52-1.49
⁸² Se → ⁸² Kr	0.66-1.84	1.27-3.24	0.48-1.38
⁹⁶ Zr → ⁹⁶ Mo	0.60-1.71	1.24-3.19	-
$^{100}Mo \rightarrow ^{100}Ru$	0.88-2.51	1.66-4.26	-
¹¹⁶ Cd → ¹¹⁶ Sn	0.54-1.54	1.10-2.80	-
¹²⁴ Sn → ¹²⁴ Te	0.53-1.48	1.69-4.28	0.54-1.58
¹²⁸ Te \rightarrow ¹²⁸ Xe	0.67-1.87	1.37-3.45	0.61-1.76
¹³⁰ Te → ¹³⁰ Xe	0.61-1.70	1.18-3.05	0.57-1.64
¹³⁶ Xe → ¹³⁶ Ba	0.47-1.32	0.76-1.95	0.45-1.31

pnQRPA and NSM: [Jokiniemi, Soriano, Menéndez, Physics Letters B 823 (2021) 136720]

Comparison with pnQRPA and NSM

Comparison with pnQRPA and NSM

 $g_A = 1.269$

22

$$T_{1/2}^{0\nu} = \left(g_A^4 |M_{0\nu}|^2 G_{0\nu} \left(\frac{m_{\beta\beta}}{m_e}\right)^2\right)^{-1}$$

- The phase-space factors for all decays considered are from Kotila, lachello Phys. Rev. C 85, 034316 (2012)
- The effective mass of the neutrino was set to be 0.1 eV

14	
T	

Decay	$T^L_{1/2}$ (× 10^{26} years)	$T_{1/2}^{L+S}$ (× 10^{26} years)
⁷⁶ Ge → ⁷⁶ Se	(1.08) 2.45-2.62 (15.6)	(0.59) 1.39-2.10 (12.9)
⁸² Se → ⁸² Kr	(0.37) 0.84-0.90 (5.54)	(0.20) 0.47-0.71 (4.57)
⁹⁶ Zr → ⁹⁶ Mo	(0.31) 0.72-0.79 (5.66)	(0.15) 0.36-0.60 (4.47)
¹⁰⁰ Mo → ¹⁰⁰ Ru	(0.24) 0.55-0.62 (4.36)	(0.11) 0.26-0.45 (3.36)
$^{116}Cd \rightarrow ^{116}Sn$	(0.70) 1.61-1.76 (13.1)	(0.30) 0.72-1.26 (9.99)
¹²⁴ Sn → ¹²⁴ Te	(0.87) 1.93-2.08 (15.4)	(0.44) 1.01-1.59 (12.5)
¹²⁸ Te → ¹²⁸ Xe	(8.20) 18.2-19.6 (149)	(4.13) 9.60-15.1 (121)
¹³⁰ Te → ¹³⁰ Xe	(0.42) 0.93-1.00 (7.62)	(0.21) 0.49-0.76 (6.20)
¹³⁶ Xe → ¹³⁶ Ba	(0.61) 1.37-1.47 (11.7)	(0.32) 0.73-1.14 (9.57)

14	
T	

Decay	$T^L_{1/2}$ ($ imes$ 10 26 years)	$T^{L+S}_{1/2}$ ($ imes$ 10 26 years)
⁷⁶ Ge → ⁷⁶ Se	(1.08) 2.45-2.62 (15.6)	(0.59) 1.39-2.10 (12.9)
⁸² Se → ⁸² Kr	(0.37) 0.84-0.90 (5.54)	(0.20) 0.47-0.71 (4.57)
⁹⁶ Zr → ⁹⁶ Mo	(0.31) 0.72-0.79 (5.66)	(0.15) 0.36-0.60 (4.47)
¹⁰⁰ Mo → ¹⁰⁰ Ru	(0.24) 0.55-0.62 (4.36)	(0.11) 0.26-0.45 (3.36)
¹¹⁶ Cd → ¹¹⁶ Sn	(0.70) 1.61-1.76 (13.1)	(0.30) 0.72-1.26 (9.99)
¹²⁴ Sn → ¹²⁴ Te	(0.87) 1.93-2.08 (15.4)	(0.44) 1.01-1.59 (12.5)
¹²⁸ Te → ¹²⁸ Xe	(8.20) 18.2-19.6 (149)	(4.13) 9.60-15.1 (121)
¹³⁰ Te → ¹³⁰ Xe	(0.42) 0.93-1.00 (7.62)	(0.21) 0.49-0.76 (6.20)
¹³⁶ Xe → ¹³⁶ Ba	(0.61) 1.37-1.47 (11.7)	(0.32) 0.73-1.14 (9.57)

Conclusions

- The short-range component of the matrix element enhances the total NME
 - The effect can be very notable
 - Possibly shorter half-life estimates
- IBM-2 and NSM behave similarly, pnQRPA differs from those

Thank you!