DISCRETE NON-ORTHOGONAL SHELL MODEL: FROM MID-MASS TO HEAVY DEFORMED NUCLEI

Duy-Duc Dao, F. Nowacki

(IPHC-Strasbourg)

14th International Spring Seminar on Nuclear Physics Ischia, May 19-23th, 2025

- 1. Generalities of the Shell Model framework
- 2. Discrete Non-Orthogonal Shell Model (DNO-SM)
 - Exact eigenstates of shell-model Hamiltonians with symmetry-projected Slater determinants
 - Illustrations from light- to mid-mass deformed nuclei
- 3. Applications to superheavy nuclei
- 4. Conclusions

SM-CI approaches through the nuclear chart

Fundamental interactions and collectives excitations

- Deformation, Superdeformation, Dipole/M1 resonances
- 0
- Superfluidity, Symmetries
- Isospin symmetry breaking

• $\mathcal{H}_{exact}\Psi_{exact} = E\Psi_{exact}$

•
$$\mathcal{H}_{eff} \Psi_{eff} = E \Psi_{eff}$$

Treat Many-Body problem Treat Effective Interaction

Weak processes

- β decay \iff fundamental interactions
- $\beta\beta$ decay \iff nature of neutrinos

 $[T^{0\nu}_{1/2}(0^+ \to 0^+)]^{-1} = G_{0\nu} |M^{0\nu}|^2 \langle m_\nu \rangle^2$

Nuclear structure far from stability

- New magic numbers
- Vanishing of shell closures

Astrophysics and nucleosynthesis

r process

Monopole-corrected effective interactions

\bigtriangleup V-low k derived from NN interactions

△ Valence-space MBPT renormalization

(H.-W. Hammer et al. Rev. Mod. Phys. 85, 197 (2013))

(M. Hjorth-Jensen et al. Phys. Rep. 261 (1995) 125-270)

\triangle Multipole decomposition

$$H = H_{monopole} + H_{multipole}$$

*H*_{monopole}: spherical mean-field

reresponsible for the global saturation properties and for the evolution of the spherical single particle levels.

H_{multipole}: correlator

🖙 pairing, quadrupole, octupole...

Monopole-corrected effective interactions

\bigtriangleup V-low k derived from NN interactions

riangle Multipole decomposition

$$H = H_{monopole} + H_{multipole}$$

li m'a

△ Valence-space MBPT renormalization

Hmonopole: spherical mean-field

reresponsible for the global saturation properties and for the evolution of the spherical single particle levels.

H_{multipole}: correlator

🖙 pairing, quadrupole, octupole...

(M. Hjorth-Jensen et al. Phys. Rep. 261 (1995) 125-270)

Diagonalization versus Variational Methods

Shell Model Exact Diagonalization

Exponential growth of basis dimensions :

 $D \sim \begin{pmatrix} d_{\pi} \\ p \end{pmatrix} \cdot \begin{pmatrix} d_{\nu} \\ n \end{pmatrix}$ In *pf* shell : ⁴⁸Cr 1,963,461 ⁵⁶Ni 1,087,455,228 In *pf-sdg* space : ⁷⁸Ni 210,046,691,518

ANTOINE CODE (1989)

- Actual limits in giant diagonalizations : $\sim 10^{12}, \sim 10^{15} \neq 0$ matrix elements
- Some of the largest diagonalizations ever are performed in Strasbourg with relatively modest computationnal ressources :

E. Caurier et al., Rev. Mod. Phys. 77 (2005) 427

• m-scheme

coupled scheme

ANTOINE code BIGSTICK KSHELL NATHAN code

Variational Approximation

Discrete Non-Orthogonal Shell Model (DNO-SM)

Broeckhove-Deumens Theorem: Z. Phys. A**292**, 243 (1979)
Given a separable Hilbert space
$$\mathscr{H}$$
 spanned by a conti-
nuous family of states $\Gamma = \{\psi(\alpha) | \alpha \in \mathbb{R}\}$, there exists a
countable subset $\Gamma_0 = \{\phi(\alpha_i) | i \in \mathbb{N}\} \subset \Gamma$ with the property
 $\mathscr{H} = \overline{\text{span}\Gamma_0}$, i.e. Γ_0 is a skew or non-orthogonal basis in
 \mathscr{H} .

$$\begin{array}{c|c} \hline \Pi & \hline \nu \\ f5/2 \\ p1/2 \\ p3/2 \\ f7/2 \\ \hline \end{array} \begin{array}{c} \hline \\ p3/2 \\ \hline \\ f7/2 \\ \hline \end{array} \begin{array}{c} \hline \\ p3/2 \\ \hline \\ f7/2 \\ \hline \end{array} \begin{array}{c} \hline \\ p3/2 \\ \hline \\ f7/2 \\ \hline \end{array} \begin{array}{c} \hline \\ p3/2 \\ \hline \\ f7/2 \\ \hline \end{array} \begin{array}{c} \hline \\ p3/2 \\ \hline \\ f7/2 \\ \hline \end{array} \begin{array}{c} \hline \\ p3/2 \\ \hline \\ f7/2 \\ \hline \end{array} \begin{array}{c} \hline \\ p3/2 \\ \hline \\ f7/2 \\ \hline \end{array} \begin{array}{c} \hline \\ p3/2 \\ \hline \\ f7/2 \\ \hline \end{array} \begin{array}{c} \hline \\ p3/2 \\ \hline \\ f7/2 \\ \hline \end{array} \begin{array}{c} \hline \\ p3/2 \\ \hline \\ f7/2 \\ \hline \end{array} \begin{array}{c} \hline \\ p3/2 \\ \hline \\ p3/2 \\ \hline \end{array} \begin{array}{c} \hline \\ p3/2 \\ \hline \\ p3/2 \\ \hline \end{array} \begin{array}{c} \hline \\ p3/2 \\ \hline \\ p3/2 \\ \hline \end{array} \begin{array}{c} \hline \\ p3/2 \\ \hline \\ p3/2 \\ \hline \end{array} \begin{array}{c} \hline \\ p3/2 \\ \hline \\ p3/2 \\ \hline \end{array} \begin{array}{c} \hline \\ p3/2 \\ \hline \end{array} \end{array}$$

$$\psi = \mathbf{C}_1\phi_1 + \mathbf{C}_2\phi_2 + \cdots + \mathbf{C}_3\phi_3 + \ldots$$

Finite Countable Set of Non-Orthogonal Slater Determinants spanning the full shell-model space.

0	Several questions	PFSDG-U effective interaction					
•	Ground state underbinding energy?	⁷⁸ Ni	$DNO\text{-}SM(\beta,\gamma)$	SM (10p-10h)			
•	Incorporation of correlations?	dimension	81	\sim 2 $ imes$ 10 ¹²			
•	Numerical proof of Broeckhove-Deumens-	$E(0^+_{gs})$ (MeV)	-370.630	-372.717			
Ī	Theorem?						

Discrete Non-Orthogonal Shell Model (DNO-SM)

Broeckhove-Deumens Theorem: Z. Phys. A**292**, 243 (1979)
Given a separable Hilbert space
$$\mathscr{H}$$
 spanned by a conti-
nuous family of states $\Gamma = \{\psi(\alpha) | \alpha \in \mathbb{R}\}$, there exists a
countable subset $\Gamma_0 = \{\phi(\alpha_i) | i \in \mathbb{N}\} \subset \Gamma$ with the property
 $\mathscr{H} = \overline{\text{span}\Gamma_0}$, i.e. Γ_0 is a skew or non-orthogonal basis in
 \mathscr{H} .

Discrete Non-Orthogonal Shell Model (DNO-SM)

Broeckhove-Deumens Theorem: Z. Phys. A**292**, 243 (1979)
Given a separable Hilbert space
$$\mathscr{H}$$
 spanned by a conti-
nuous family of states $\Gamma = \{\psi(\alpha) | \alpha \in \mathbb{R}\}$, there exists a
countable subset $\Gamma_0 = \{\phi(\alpha_i) | i \in \mathbb{N}\} \subset \Gamma$ with the property
 $\mathscr{H} = \overline{\text{span}\Gamma_0}$, i.e. Γ_0 is a skew or non-orthogonal basis in
 \mathscr{H} .

$$\begin{array}{c|c} \hline \Pi & \hline \nu \\ f5/2 & \underline{} \\ p1/2 & \underline{} \\ p3/2 & \underline{} \\ f7/2 & \underline{} \\ \hline \end{array} \begin{array}{c} f5/2 \\ p1/2 \\ p3/2 \\ \hline \end{array} \begin{array}{c} f5/2 \\ p1/2 \\ p3/2 \\ \hline \end{array}$$

$$\psi = c_1\phi_1 + c_2\phi_2 + \cdots + c_3\phi_3 + \ldots$$

Several questions

- Ground state underbinding energy?
- Incorporation of correlations?
- Numerical proof of Broeckhove-Deumens Theorem?

⁴⁸Cr with KB3 effective interaction

$$4_1^+ - \frac{1661}{100}$$

$$4_1^+ - \frac{1823}{2}$$

DNO-SM(β, γ)

Exact SM

1. Projection After Variation : DNO-SM(PAV)

Hill-Wheeler-Griffin generator coordinate method:

- $\langle J_z \rangle$, $(q_{20}, q_{22}) \equiv (\beta, \gamma)$ (cranking, axial and triaxial)
- Contribution of $q = (\beta, \gamma)$ in the correlated state J_{α}
- Rotational symmetry restoration

(D.D. Dao and F. Nowacki, PRC 105, 054314 (2022)

K-mixing contents of the wave functions in the instrinsic frame

50

 $^{40}_{30} \gamma$

20

0 B

- K: Projection of total angular momentum J onto the intrinsic axis
- Contribution of K-components in the correlated state J_{lpha}

$$P^{(J)}_{lpha}(K) = \sum_{q} \left| M^{(J)}_{lpha}(q,K) \right|^2$$

Q ...

2. Variation After Projection : DNO-SM(VAP)

o Trial symmetry-projected Slater determinants:

$$\mathcal{H}_{\rm eff}|\Psi_{\alpha}^{JM}\rangle = \mathcal{E}_{\alpha}^{(J)}|\Psi_{\alpha}^{JM}\rangle \Longrightarrow \delta \frac{\langle \Psi_{\alpha}^{JM}|\mathcal{H}_{\rm eff}|\Psi_{\alpha}^{JM}\rangle}{\langle \Psi_{\alpha}^{JM}|\Psi_{\alpha}^{JM}\rangle} = 0, \quad |\Psi_{\alpha}^{JM}\rangle = \sum_{q,K} \underbrace{f_{\alpha}^{(J)}(q,K)}_{q,K} \mathcal{P}_{MK}^{J} \Phi(q)\rangle$$

Double variation AFTER Angular Momentum Projection: Mixing coefficient

- ◊ DNO-SM(VAP)
 - *q* = 1, 2, 3, ...
 - $J_{\alpha} = 0_1, \ldots$

HIIDert SOI

Best energy-favoring Slater states

Slater state

2. Variation After Projection : DNO-SM(VAP)

Trial symmetry-projected Slater determinants:

$$\mathcal{H}_{\rm eff}|\Psi_{\alpha}^{JM}\rangle = \mathcal{E}_{\alpha}^{(J)}|\Psi_{\alpha}^{JM}\rangle \Longrightarrow \delta \frac{\langle \Psi_{\alpha}^{JM}|\mathcal{H}_{\rm eff}|\Psi_{\alpha}^{JM}\rangle}{\langle \Psi_{\alpha}^{JM}|\Psi_{\alpha}^{JM}\rangle} = 0, \quad |\Psi_{\alpha}^{JM}\rangle = \sum_{q,\kappa} \int_{\alpha}^{(J)} \mathcal{P}_{M\kappa}^{J} \Phi(q)\rangle$$

Double variation AFTER Angular Momentum Projection: Mixing coefficient

◊ DNO-SM(VAP)

- *q* = 1, 2, 3, ...
- $J_{\alpha} = 0_1, \ldots$
- Best energy-favoring Slater states

\diamond DNO-SM(PAV): (β , γ) + NpNh

Slater state

(D.D. Dao and F. Nowacki, in preparation (2024))

Numerical realization of Broeckhove-Deumens Theorem :

USDB effective interaction^a with non-orthogonal Slater Determinants

(a B.A. Brown, W. A. Richter, PRC74, 034315 (2006))

	DNO-S	M(PAV)		Exact SM
	(β, γ)	(β,γ) +NpNh		
²⁰ No	-40.35736	-40.47233	-40.47231	-40.47233
INC	7	51	3	640
24 Ma	-86.73278	-87.10428	-87.10405	-87.10445
ivig	16	975	16	28503
280;	-135.21742	-135.85891	-135.86003	-135.86073
- 31	27	4255	45	93710
26 🗛	_	_	-105.74901	-105.74934
A	_	_	22	26914

Backbending in ⁴⁸Cr with KB3 interaction

Matching the shell-model solution in ⁷⁸Ni

Strong mixing in ⁸⁶Mo around the N=Z line

ZBM3 effective interaction

Ground State Energy in MeV

$DNO\text{-}SM(\beta,\gamma)$	DNO-SM(VAP)	SM (10p-10h)
104	44	$\sim 10^{11}$
-388.383	-391.688	-391.453

Applications to superheavy nuclei

Kuo-Herling interaction:

- ²⁰⁸₈₂Pb₁₂₆ core, realistic TBMEs
- $82 \le Z \le 126$ shells for proton and $126 \le N \le 184$ for neutrons
- monopole corrections (3N force)
- E. Caurier and F. Nowacki,

PRL 87 (2001),072511

Calculations: NATHAN & CARINA codes

 \diamond Diagonalization within the seniority scheme along the chains of N=126 and N=184

- Variation After Projection calculations:
 ^{253,254,255}Es, ^{249,251,253}Cf, ^{253,254}No, ²⁵⁶Fm
- Comparison of spectra and electromagnetic moments

Applications to superheavy nuclei : Yrast systematics

First complete description of low-lying spectroscopy in ²⁵⁴No

Applications to superheavy nuclei : Electromagnetic moments

First complete description of low-lying spectroscopy in ²⁵⁴No

Duy Duc Dao¹ and Frédéric Nowacki¹

¹Université de Strasbourg, CNRS, IPHC UMR7178, 23 rue du Loess, F-67000 Strasbourg, France

arXiv:2409.08210

Comparison of magnetic and quadrupole moments

J_{gs}^{π}		E (MeV)			$\mu(\mu_N)$			Q _s (eb)		
		PHF	VAP	PHF	VAP	EXP	PHF	VAP	EXP	
²⁵³ No	9/2-	-241.818	-242.816	+0.591	-0.493	-0.527(33)(75)	-3.5	+7.2	+5.9(1.4)(0.9)	
²⁵³ Cf	$7/2^{+}$	-253.402	-253.818	-0.677	-0.556	-0.731(35)	+5.77	+5.78	+5.53(51)	
²⁵¹ Cf	$1/2^{+}$	-241.321	-241.724	-0.727	-0.610	-0.571(24)		-	-	
²⁴⁹ Cf	9/2-	-229.021	-229.381	-0.480	-0.461	-0.395(17)	+6.62	+6.63	+6.27(33)	
²⁵⁵ Es	$7/2^{+}$	-263.512	-264.695	-1.10	+3.94	+4.14(10)	+6.0	+5.8	+5.1(1.7)	
²⁵⁴ Es	7+	-257.492	-258.441	+0.778	+3.36	+3.42(7)	+1.8	+8.4	+9.6(1.2)	
²⁵³ Es	$7/2^{+}$	-251.837	-252.280	+3.63	+3.93	+4.10(7)	+5.87	+5.9	+6.7(8)	
²⁵⁶ Fm	0+	-268.999	-269.717	+0.87	+0.89	-	-3.57	-3.60	-	
²⁵⁴ No	0+	-249.568	-250.187	+0.87	+0.91	-	-3.78	-3.75	-	

Effective charges: $e_p = 1.72$, $e_n = 0.75$

Applications to superheavy nuclei : Electromagnetic moments

First complete description of low-lying spectroscopy in ²⁵⁴No

Duy Duc Dao¹ and Frédéric Nowacki¹

¹Université de Strasbourg, CNRS, IPHC UMR7178, 23 rue du Loess, F-67000 Strasbourg, France

arXiv:2409.08210

Comparison of magnetic and quadrupole moments

Effective charges: $e_p = 1.72$, $e_n = 0.75$

J_{gs}^{π}		E (MeV)			$\mu(\mu_N)$			<i>Q_s</i> (eb)		
		PHF	VAP	PHF	VAP	EXP	PHF	VAP	EXP	
²⁵³ No	9/2-	-241.818	-242.816	+0.591	-0.493	-0.527(33)(75)	-3.5	+7.2	+5.9(1.4)(0.9)	
²⁵³ Cf	7/2+	-253.402	-253.818	-0.677	-0.556	-0.731(35)	+5.77	+5.78	+5.53(51)	
²⁵¹ Cf	$1/2^{+}$	-241.321	-241.724	-0.727	-0.610	-0.571(24)	-	-	-	
²⁴⁹ Cf	9/2-	-229.021	-229.381	-0.480	-0.461	-0.395(17)	+6.62	+6.63	+6.27(33)	
²⁵⁵ Es	7/2+	-263.512	-264.695	-1.10	+3.94	+4.14(10)	+6.0	+5.8	+5.1(1.7)	
²⁵⁴ Es	7+	-257.492	-258.441	+0.778	+3.36	+3.42(7)	+1.8	+8.4	+9.6(1.2)	
²⁵³ Es	$7/2^{+}$	-251.837	-252.280	+3.63	+3.93	+4.10(7)	+5.87	+5.9	+6.7(8)	
²⁵⁶ Fm	0+	-268.999	-269.717	+0.87	+0.89	-	-3.57	-3.60	-	
²⁵⁴ No	0+	-249.568	-250.187	+0.87	+0.91	-	-3.78	-3.75	-	

Applications to superheavy nuclei : Electromagnetic moments

First complete description of low-lying spectroscopy in $^{254}\mathrm{No}$

Duy Duc Dao¹ and Frédéric Nowacki¹

¹Université de Strasbourg, CNRS, IPHC UMR7178, 23 rue du Loess, F-67000 Strasbourg, France

arXiv:2409.08210

Comparison of magnetic and quadrupole moments

Effective charges: $e_p = 1.72$, $e_n = 0.75$

²⁵³ N	o P	PHF VA	٨P	EXP	
$J^{\pi}=9$	/2- +0).591 – <mark>0</mark> .4	493 –0.52	27(33)(75)	
<i>K</i> = 9	/2 10	0.0% 99.	6%		
K 7		0.0/ 0.4	0/		

Applications to superheavy nuclei : ²⁵⁴No

Applications to superheavy nuclei : ²⁵⁴No

Applications to superheavy nuclei : Pairing correlations in ²⁵⁴No

First complete description of low-lying spectroscopy in ²⁵⁴No

Duy Duc Dao¹ and Frédéric Nowacki¹

¹Université de Strasbourg, CNRS, IPHC UMR7178, 23 rue du Loess, F-67000 Strasbourg, France

Applications to superheavy nuclei : Pairing correlations in ²⁵⁴No

First complete description of low-lying spectroscopy in ²⁵⁴No

Duy Duc Dao¹ and Frédéric Nowacki¹

¹Université de Strasbourg, CNRS, IPHC UMR7178, 23 rue du Loess, F-67000 Strasbourg, France

- The DNO-SM exactly matches the Shell Model solutions.
- Broeckhove-Deumens Theorem is proved numerically in various physics regimes.
- Pairing correlations are perfectly captured by non-orthogonal Slater Determinants without using Hartree-Fock-Bogoliubov wavefunctions nor breaking the particle numbers.
- First shell-model calculations for superheavy nuclei in the ²⁵⁴No region show an excellent agreement with experiments.
- Complete description of both the rotational band and various excited *K* bands and isomeric states in ²⁵⁴No.

THANK YOU FOR YOUR ATTENTION !

Proton orbits	0 <i>h</i> _{9/2}	0 <i>i</i> _{13/2}	1 <i>f</i> _{7/2}	1 <i>f</i> _{5/2}	2p _{3/2}	2p _{1/2}	
0 ₁ ⁺	6.03	7.75	3.43	1.49	0.77	0.52	
0 ₂ +	7.08	7.91	3.23	0.89	0.69	0.21	
$3^+_1(K=3)$	6.47	7.98	3.34	1.15	0.72	0.34	
$4^+_4(K=4)$	6.50	7.83	3.41	1.18	0.72	0.36	
$8^{-}_{2}(K=8)$	6.48	7.90	3.36	1.19	0.70	0.37	
$10^+_6(K=10)$	6.55	7.03	3.48	1.56	0.79	0.58	
Neutron orbits	0 <i>i</i> _{11/2}	0 <i>j</i> _{15/2}	1 <i>g</i> _{9/2}	1 <i>g</i> _{7/2}	2 <i>d</i> _{5/2}	2 <i>d</i> _{3/2}	3 <i>s</i> _{1/2}
Neutron orbits 0 ⁺ ₁	0 <i>i</i> _{11/2} 7.30	0 <i>j</i> _{15/2} 9.91	1 <i>g</i> _{9/2} 5.43	1 <i>g</i> _{7/2} 1.00	2 <i>d</i> _{5/2} 1.09	2 <i>d</i> _{3/2} 0.84	3 <i>s</i> _{1/2} 0.43
Neutron orbits 0 ⁺ ₁ 0 ⁺ ₂	0 <i>i</i> _{11/2} 7.30 7.36	0 <i>j</i> _{15/2} 9.91 9.95	1 <i>g</i> _{9/2} 5.43 5.45	1 <i>g</i> _{7/2} 1.00 0.96	2 <i>d</i> _{5/2} 1.09 1.05	2 <i>d</i> _{3/2} 0.84 0.80	3 <i>s</i> _{1/2} 0.43 0.42
Neutron orbits 0^+_1 0^+_2 $3^+_1(K=3)$	0 <i>i</i> _{11/2} 7.30 7.36 7.32	0 <i>j</i> _{15/2} 9.91 9.95 9.94	1 <i>g</i> _{9/2} 5.43 5.45 5.46	1 <i>g</i> _{7/2} 1.00 0.96 0.97	2 <i>d</i> _{5/2} 1.09 1.05 1.07	2 <i>d</i> _{3/2} 0.84 0.80 0.81	3 <i>s</i> _{1/2} 0.43 0.42 0.42
Neutron orbits 0^+_1 0^+_2 $3^+_1(K = 3)$ $4^+_4(K = 4)$	0 <i>i</i> _{11/2} 7.30 7.36 7.32 7.34	0 <i>j</i> _{15/2} 9.91 9.95 9.94 9.79	1 <i>g</i> _{9/2} 5.43 5.45 5.46 5.48	1g _{7/2} 1.00 0.96 0.97 1.03	2 <i>d</i> _{5/2} 1.09 1.05 1.07 1.11	2 <i>d</i> _{3/2} 0.84 0.80 0.81 0.81	3s _{1/2} 0.43 0.42 0.42 0.42
Neutron orbits 0_1^+ 0_2^+ $3_1^+(K=3)$ $4_4^+(K=4)$ $8_2^-(K=8)$	0 <i>i</i> _{11/2} 7.30 7.36 7.32 7.34 7.42	0 <i>j</i> _{15/2} 9.91 9.95 9.94 9.79 9.00	1 <i>g</i> _{9/2} 5.43 5.45 5.46 5.48 6.30	1g _{7/2} 1.00 0.96 0.97 1.03 0.98	2 <i>d</i> _{5/2} 1.09 1.05 1.07 1.11 1.06	2 <i>d</i> _{3/2} 0.84 0.80 0.81 0.81 0.81	$3s_{1/2} \\ 0.43 \\ 0.42 \\ 0.42 \\ 0.44 \\ 0.43$

$J^{\pi}_i ightarrow$	J_f^{π}	B(E2) (e ² .fm ⁴)	$B(M1) \ (\mu_N^2)$
$\mathbf{2_{1}^{+}}\rightarrow$	01+	28666	-
$4^+_1 \rightarrow$	2 ₁ ⁺	41021	-
$0^+_2 \rightarrow$	2 ⁺ ₁	98.236	-
$\mathbf{2_2^+} \rightarrow$	02+	25327	-
	4 ₁ ⁺	60.738	-
	2 ₁ ⁺	25.227	3.980×10^{-6}
$\mathbf{3_{1}^{+}}\rightarrow$	2^{+}_{2}	2.5959×10^{-2}	8.020×10^{-6}
	4 ⁺ ₁	2.7359×10^{-4}	2.957×10^{-7}
	2 ₁ ⁺	9.6147×10^{-4}	6.050×10^{-6}
$4^+_2 \rightarrow$	2^{+}_{2}	36147	-
	3 ₁ +	5.4204×10^{-1}	$4.200 imes 10^{-7}$
	4 ⁺ ₁	23.783	8.360×10^{-6}
	2 ₁ ⁺	18.569	-
$4^+_3 \rightarrow$	3 ₁ +	45803	1.3852×10^{-1}
	6 ₁ +	$6.3712{ imes}10^{-4}$	-
	4 ⁺ ₁	$6.5482{ imes}10^{-3}$	3.634×10^{-5}
	2 ₁ ⁺	8.2100×10^{-6}	-
$4^+_4 \rightarrow$	3 ₁ +	1.1354×10^{3}	1.977×10^{-3}
	4_{3}^{+}	9.6847×10^{2}	1.737×10^{-2}
	2^{+}_{2}	$4.438 { imes} 10^{-4}$	-
	2 ₁ ⁺	1.398×10^{-4}	-