

Recent results within the sd and fpg shells

J.M. Allmond – ORNL

On behalf of the CLARION2-TRINITY and FDSi@FRIB Collaborations

ORNL is managed by UT-Battelle, LLC for the US Department of Energy

CLARION2-TRINITY @ FSU

Tim Gray

*Fully digital with XIA Pixie16

Liquid Drop Representation of Shape

$$r = R(1 + \beta_2 Y_{20} + \beta_3 Y_{30} + ...)$$

$$\sim 0 \text{ for, e.g., Ti isotopes}$$

$$R = 1.2A^{1/3} \text{ or from other theory}$$

$$\beta_2^2 \sim \langle Q^2 \rangle$$

Liquid Drop Representation of Shape

 $= (3/5)R^2 + (4\pi / 3Z^2R^2) < Q^2 >$

 $\delta < r^2 > = \delta < r^2 >_{sph} + \delta < r^2 >_{O}$

 $\sim \delta < r^2 >_{sph} + (4\pi / 3Z^2R^2) \delta < Q^2 >$

Liquid Drop Representation of Shape

 $= (3/5)R^2 + (4\pi / 3Z^2R^2) < Q^2 >$

 $\sim \delta < r^2 >_{sph} + (4\pi / 3Z^2R^2) \delta < Q^2 >$

Ground-State Deformation <Q²>

Couple E2 operators to a frame-invariant quantity

$$\{E2 \times E2\}^{0} = \frac{1}{\sqrt{5}}Q^{2}$$
Ground State
$$|\{E2 \times E2\}^{0} | s \rangle = \frac{1}{\sqrt{2s+1}} \langle s \| \{E2 \times E2\}^{0} \| s \rangle$$

$$= \frac{1}{\sqrt{2s+1}} (-1)^{2s} \sum_{r} \langle s \| E2 \| r \rangle \langle r \| E2 \| s \rangle \begin{cases} 2 & 2 & 0 \\ s & s & r \end{cases}$$

Sum over intermediate states

K

s

K. Kumar, Phys. Rev. Lett. 28, 249 (1972); D. Cline, Ann. Rev. Nucl. Part. Sci. 36, 683 (1986).

,

Ground-State Deformation <Q²>

Essentially the B(E2) sum, with addition of ground-state moment term if spin is non-zero

8

K. Kumar, Phys. Rev. Lett. 28, 249 (1972); D. Cline, Ann. Rev. Nucl. Part. Sci. 36, 683 (1986).

Coulomb Excitation – E2 Moments

Coulomb excitation cross sections or probabilities let us determine E2 M.E.s and B(E2)s.

Single-Step Coulomb Excitation of ^{46,48,49,50}Ti

Measurements for B(E2):

- Particle-Gamma / Particle
- Absolute Gamma efficiency
- Beam composition
- Stopping powers

889, 46 Ti 2 $^+$ ightarrow 0 $^+$

983, 48 Ti 2⁺ ightarrow0⁺

Ring 2 + 4

⁴⁶₂₂Ti₂₄

2500

Ring 2 + 4

2000

1000

(a

(b)

C target Al target

C target

Tim Gray

T.J. Gray et al., PLB **855**, 138856 (2024) w/ some calculations by Angela and Takayuki!

Finish the Ti Chain with Addition of ⁴⁷Ti

From Summer 2024 with all 5 Rings of TRINITY

<Q²> of Ti Isotopes

From CLARION2-TRINITY

Ti Isotope Shifts \rightarrow Differences in $< r^2 >$

Ti Isotope Shifts \rightarrow Differences in $< r^2 >$

Ti Isotope Shifts \rightarrow Differences in <r²>

CAK RIDGE National Laboratory

15

[Atomic Data and Nuclear Data Tables 99 (2013) 69–95] [Phys. Rev. C 102, 054302]

[Atomic Data and Nuclear Data Tables 99 (2013) 69–95] [Phys. Rev. C 102, 054302]

CAK RIDGE

FDSi @ FRIB

Exotic N=20-28 Region PI = Heather Crawford (LBNL)

18

New Beam Isomer in ³²Na

Spring 2025 - Ischia

Exotic N=20-28 Region PI = Heather Crawford (LBNL)

H.L Crawford *et al.*, PRL **129**, 212501 (2022)

New Beam Isomer in ³²Na

T.J. Gray et al., PRL 130, 242501 (2023)

Theory on ³²Na Consistent with Deformed Spin/K Isomer

CAK RIDGE National Laboratory

20

T.J. Gray *et al.*, PRL **130**, 242501 (2023) w/ some calculations by Alfredo and Takayuki!

New μ s Isomer at N=28 Shape Crossing – ${}^{42}P_{27}$

$B(E2;1^+\rightarrow 3^+)$ in ⁵⁴Sc and Universal sd + fp Effective Charges $\pi f_{7/2} \otimes \nu f_{5/2} \rightarrow \pi f_{7/2} \otimes \nu p_{1/2} = \nu f_{5/2} \rightarrow \nu p_{1/2}$ in weak coupling limit

[present]

Total Fit; $T_{1/2} = 26.0(22)$ ns 8 Data 600 Background 6 ∑ə¥ 400 4 150 50 100 2 200 100 t_{LaBr₃}-t_{YSO} [ns] 50 150

"No evidence for changes in the effective charges due to an isospin or orbital dependence is found."

fp shell charges = 1.30(8), 0.452(7)sd shell charges = 1.36(5), 0.45(5)Microscopic Thy = 1.31, 0.46

T.H. Ogunbeku et al.,

Submitted to PRL (2025), w/ some calculations by Angela, Takayuki, and Alex

Thank you

Supported by UT-Battelle, LLC under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy