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® rare isotope facilities will discover unknown nuclei near the edge of stability
» among those there are likely exotic states

» halos, clusters ~» few-body resonances
talks by S. Wang, M. Ploszajczak, T. Uesaka, O. Nasr, G. de Angelis, M. Wiescher, ...
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Resonances
Eigenvector Continuation

Both together
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Resonances

V()
Intuitive #0
1.5
® metastable state (finite lifetime) 1.0
® tunneling through potential barrier 0.5
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Experimentally

® peak in cross section

® related to sharp jump in scattering phase shift
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® S-matrix pole at complex energy 0.6
0.4f

® wave function similar to bound state... 0.2
® _..but not quite normalizable .
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Eigenvector continuation

Many physics problems are tremendously difficult...

® huge matrices, possibly too large to store -

> ever more so given the evolution of typical HPC clusters - ."~
® most exact methods suffer from exponential scaling
® interest only in a few (lowest) eigenvalues

Martin Grandjean, via Wikimedia Commons (CC-AS 3.0)

Introducing eigenvector continuation

D. Lee, TRIUMF Ab Initio Workshop 2018; Frame et al., PRL 121 032501 (2018)

¢ novel numerical technique, broadly applicable

» emulators, perturbation theory, ...
Duguet, Ekstrém, Furnstahl, SK, Lee, RMP 96 031002 (2024)

amazingly simple in practice

special case of "reduced basis method" (RBM)

Bonilla et al., PRC 106 054322 (2022); Melendez et al., JPG 49 102001 (2022)
KDE Oxygen Theme



Eigenvector continuation 101

Scenario Frame et al., PRL 121 032501 (2018)

® consider physical state (eigenvector) in a large space
e parametric dependence of Hamiltonian H(c) traces only small subspace
® prerequisite: smooth dependence of H(c) on ¢ (or ¢)

® enables analytic continuation of |¢(c)) from cirain tO Crarget

Procedure

e calculate [¢(c;)), i = 1,... Ngc in "training regime"
® solve generalized eigenvalue problem H|y) = AN|y) with

> HU = <’¢i|H(Ctarget)‘¢j> °

6
] LY 2t 2|
or SR
Example & L nerg 52
exact energies %
perturbation order 1 - - - - .
perturbation order 2 ------ -4 F exact energies
perturbation order 3 — - — E%C v.ﬂ:h; samFIing ppilt-l! -
perturbation order 4 6L wi sampling points ------
[ ] H u b b a rd m o d e I perturbation order 5 — - - 6 EC with 3 sampling points — - —
perturbation order 6 - - - EC with 4 sampling points
- EC with 3 sampling points 4 -8t EC with 5 sampling points — - -
sampling points <& sampling points <&
{ e— z ] t 10 . . . . . . 10 . . . . .
5 -4 3 2 -1 0 1 2 5 -4 3 2 -1 0 1
Uh Unt

¢ large number of applications/extensions in recent years!
Duguet, Ekstrém, Furnstahl, SK, Lee, RMP 96 031002 (2024)
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Chiral interactions

Many remarkable results based on chiral potentials
® Chiral EFT: expand in (Q ~ M;)/Mqcp, derive potential (2N, 3N, ...)

Weinberg (90); Rho (91); Ordofiez + van Kolck (92); van Kolck (93); Epelbaum et al. (98); Entem + Machleidt (03); ...
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Hebeler et al., PRC 91 044001 (2015)
However...

® naive potential expansion leads to issues with proper renormalization
e typically needs high orders ~~ rather large number of parameters (LECs)
> e.g. 14 (two-body) + 2 (three-body) at third order



Need for emulators

1. Fitting of LECs to few- and many-body observables

® common practice now to use A > 3 to constrain nuclear forces, e.g.:

» JISP16, NNLO,;, o-a¢ scattering

Shirokov et al., PLB 644 33 (2007); Ekstrom et al., PRC 91 051301 (2015); Elhatisari et al., PRL 117 132501 (2016)

e fitting needs many calculations with different parameters

2. Propagation of uncertainties

® statistical fitting gives posteriors for LECs
e | EC uncertainties propagate to observables
» typically achieved via Bayesian statistics
Wesolowski et al., JPG 46 045102 (2019)
® need to sample a large number of calculations
» expensive already in few-body sector

» typically not doable for many-body problems!

ClSO
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Exact calculations can be
prohibitively expensive!



Hamiltonian parameter spaces

e Consider a Hamiltonian depending on several parameters:

d
H=Ho+V=H+)» oV (1)
k=1
> in particular, V' can be a chiral potential with LECs ¢y,
» Hamiltonian is element of d-dimensional parameter space
> convenient notation: ¢ = {cx}{_;
> typical for O(Q?) potential: 14 two-body LECs + 2 three-body LECs

Generalized EC SK, A. Ekstrém, K. Hebeler, D. Lee, A. Schwenk, PLB 810 135814 (2020)

e EC construction is straightforward to generalize to this case:
e simply replace ¢; — ¢; in construction
> |1hi) = [¥(ci)) fori =1, - Nic
> Hij = (i H(Crarget ) %), Nij = (ilth;)
® the sum in Eq. (1) can be carried out in small (dimension = Ny ) space!

> this permits an offline/online decomposition of the problem

p. 10



Many more EC applications, e.g.:

Many-body perturbation theory Demol, SK, et al, PRC 101 041302(R) (2020)

Two- and three-body scattering
Melendez et al. PLB (2021); Drischler et al. PLB (2021); Zhang + Furnstahl (2022)
Volume extrapolation Yapa + SK, PRC 106 014309 (2022)

Shell-model emulators Yoshida+Shimizu, PTEP 2022 053D02 (2022)

Duguet, Ekstrém, Furnstahl, SK, Lee, RMP 96 031002 (2024)
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Formal look at resonances

® in stationary scattering theory, resonances are described as generalized eigenstates
> S-matrix poles at comples energies £ = Er — iI'/2 (lifetime ~ 1/I")

» wave functions are not normalizable (exponentially growing in r-space)
Complex scaling method
® one way to circumvent this problem is the complex scaling method:

r — er , P — e_i¢p P

scattering

~+ "reveals' the resonance regime bound states
§ continuum

P 3

(¢] ] °

R

‘ ) ) r\(/ resonances

antiresonances virtual states

p. 12



Complex-scaled resonance wave functions

® complex scaling suppresses the exponentially growing tail of the wave function

u(r)
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calculations by Nuwan Yapa

p. 13
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Formal look at resonances

® in stationary scattering theory, resonances are described as generalized eigenstates
> S-matrix poles at comples energies £ = Er — iI'/2 (lifetime ~ 1/I")

» wave functions are not normalizable (exponentially growing in r-space)

Complex scaling method

® one way to circumvent this problem is the complex scaling method:

r—efr . p—e?p P
~+ "reveals' the resonance regime bound states
scattering
Im IL § continuum

/

L ]
-
¢ gl resonances
) . .
. . l .

antiresonances virtual states

Notes

® this particular method is also called "uniform" complex scaling

® essentially, one uses a basis of complex momentum modes

.14



EC for resonances



EC for resonances

Why?
e LEC fitting and/or observable predictions may include unstable states
» accurate and efficient resonance emulators are needed for this
» especially in the few-body sector, where calculations rapidly become expensive
® but there is also an important technical reason:
» basis expansion methods are typically good for targeting extremal eigenvalues
> Lanczos/Arnoldi iteration and related techniques
» complex physical resonance eigenvalues can be difficult to identify
» bound states, on the other hand, are easy to find

» tracking a state from being bound to becoming unbound can help!

p. 16



EC for resonances

Why?
e LEC fitting and/or observable predictions may include unstable states
» accurate and efficient resonance emulators are needed for this
» especially in the few-body sector, where calculations rapidly become expensive
® but there is also an important technical reason:
» basis expansion methods are typically good for targeting extremal eigenvalues
> Lanczos/Arnoldi iteration and related techniques
» complex physical resonance eigenvalues can be difficult to identify
» bound states, on the other hand, are easy to find

> tracking a state from being bound to becoming unbound can help!

How?

® combine EC with complex scaling, work with complex eigenvalues

¢ formalism needs to be developed/adapted for this task
Yapa, Fossez, SK, PRC 107 064316 (2023); arXiv: 2409.03116 [nucl-th], PRC in press (2025)

® related work discusses other extension of EC to non-Hermitian systems
see e.g. Zhang, 2408.03309 [nucl-th], 2411.06712 [nucl-th]; Cheng et al., 2411.15492 [nucl-th]

p. 16



One important detail

¢ under complex scaling, the Hamiltonian becomes non-Hermitian

r—eér  poe¥p ~~H=H"

> instead, it becomes complex symmetric

» as such, it can have complex eigenvalues v

® this changes the inner product between states

(Bp) = / dr $(r)(r)

> no complex conjugation for bra-side states
» this is called the "c-product”

> physical states with different energies are orthogonal w.r.t. c-product
Moiseyev, Certain, Weinhold, Mol. Phys. 36 1613 (1978)

p. 17



One important detail

¢ under complex scaling, the Hamiltonian becomes non-Hermitian
r—eér  poe¥p ~~H=H"

> instead, it becomes complex symmetric

» as such, it can have complex eigenvalues v

® this changes the inner product between states

(Bp) = / dr $(r)(r)

> no complex conjugation for bra-side states
> this is called the "c-product”

> physical states with different energies are orthogonal w.r.t. c-product
Moiseyev, Certain, Weinhold, Mol. Phys. 36 1613 (1978)

Note

® bound-state energies remain invariant under complex scaling

® but the c-product is still needed in the non-Hermitian framework

p. 17



Resonance-to-resonance continuation

¢ for resonance to-resonance continuation, EC works directly...

e _..if one simply uses the c-product for all matrix elements
Yapa, Fossez, SK, PRC 107 064316 (2023)

p. 18



Eigenvector continuation 101

Scenario Frame et al., PRL 121 032501 (2018)

® consider physical state (eigenvector) in a large space
e parametric dependence of Hamiltonian H(c) traces only small subspace
® prerequisite: smooth dependence of H(c) on ¢ (or ¢)

® enables analytic continuation of |¢(c)) from cirain tO Crarget

Procedure

e calculate [¢(c;)), i = 1,... Ngc in "training regime"
® solve generalized eigenvalue problem H|y) = AN|y) with

> HU = <’¢i|H(Ctarget)‘¢j> °
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¢ large number of applications/extensions in recent years!
Duguet, Ekstrém, Furnstahl, SK, Lee, RMP 96 031002 (2024)
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Resonance-to-resonance continuation

¢ for resonance to-resonance continuation, EC works directly...

e _..if one simply uses the c-product for all matrix elements

0.000
—0.0254
—0.0504
—0.0754
&) —0.100+
g
= —0.125- X
) ¢
—0.1504
training region X
—0.1754 ° exact
X extrapolated (median) ¢
—0.2004 -+ extrapolated (68.2% int.)
+  extrapolated (95.4% int.) x
—0.225 T T T T
0.00 0.05 0.10 0.15 0.20 0.25

Re B

Yapa, Fossez, SK, PRC 107 064316 (2023)

momentum-space two-body calculation
Viegsr) =c [—5e_’°2/3 + 2e_r2/10]

sampled points within training regime
repeated EC evaluation with 5 points
benchmark against exact result

excellent agreement

. 18



Resonance-to-resonance continuation

¢ for resonance to-resonance continuation, EC works directly...

e _..if one simply uses the c-product for all matrix elements
Yapa, Fossez, SK, PRC 107 064316 (2023)

0.000
0.025- ® momentum-space two-body calculation
—0.050-

2 3 _ 2/10
V(e;r) =c|—5e "/ 2¢ "
—0.075- ( ! ) +

g —0.100-

E | on x ® sampled points within training regime
o150 x ® repeated EC evaluation with 5 points

) training region bt .
e | ® benchmark against exact result
X extrapolated (median) ¢

—0.2004 -+ extrapolated (68.2% int.) ¢ excellent agreement

extrapolated (95.4% int.) x
~0.225 : : : :

0.00  0.05 010  0.15 020  0.25
Re B

® Note: in the plot, we only show benchmarks for EC extrapolation
» that is because interpolation is generally much easier

» for resonance emulators, both are relevant and needed

. 18



Bound-state-to-resonance continuation

¢ bound-state-to-resonance extrapolation fails with naive approach...

0.1 ;
Y B 10—
: °
: ([
014 : )
2 0.1 training region ! °
= _p.o4 ©® exact i .
extrapolated (median) i
_0.341 -+ extrapolated (68.2% int.) i
extrapolated (95.4% int.) i
_O . 4 1 I i I
—0.6 —0.4 —0.2 0.0 0.2

Re £
® it can be shown that for bound states, the EC Hamiltonian is real symmetric

» this is a consequence of using the c-product for complex-scaled bound states

» as such, it can have only real eigenvalues

p. 19



Bound-state-to-resonance continuation

® however, there is a way to make this work!

0.1 ;
0.0 -~ == ———— A==
L Y x
a —0.17 o . I x
training region i w
= _p.o4 ©® exact i o
extrapolated (median) i
_0.341 -+ extrapolated (68.2% int.) i
extrapolated (95.4% int.) i
—0.4 : : : .
—0.6 —0.4 —0.2 0.0 0.2

Re ¥

® we introduced complex-augmented eigenvector continuation (CA-EC)
» in addition to the training wave functions, include also their complex conjugates
» this provides the key information to describe the long-distance asymptotics

R .
doubles EC basis size at (almost) zero cost Yapa, Fossez, SK, PRC 107 064316 (2023)

p. 20



Why does this work?



Complex-augmented EC

Intuitive explanation | o )
® bound-state energies CS-invariant | N :,’ complex-conjugated
) ’ bound N ./ bound states
® but asymptotic wave numbers change ' Si’;ltfgs' . , o e
® complex conjugation moves them into | f‘? :

> Re (pe'?)

the right quadrant for describing

resonances

Formal explanation

® consider the Schrodinger equation for the complex-conjugated bound state

® evalulate it at large distances, where the potential becomes negligible:

A V£
—ezl‘bﬁ (r) = Ey(r) for |r|] — o0

® multiplication with e 4¢ yields Hy1)*(r) = e 49 E4*(r)

.22



What about more than two particles?

Benchmark different few-/many-body methods



Complex scaling in finite volume

Consider a cubic peridioc boundary condition:

__________________

__________________

[ It would be a whole other talk why this is generally interesting... ]

p. 24



Discrete variable representation

Efficient calculation of few-body energy levels

e use a Discrete Variable Representation (DVR)
well established in quantum chemistry, suggested for nuclear physics by Bulgac+Forbes, PRC 87 051301 (2013)

1.0
® basis functions localized at grid points 0
® potential energy matrix diagonal o
® kinetic energy matrix very sparse o
» precalculate only 1D matrix elements 0

L TN /\

-6 -4 ) 2 \/1 6

-0.2

® periodic boundary condistions <+ plane waves as starting point
o efficient implementation for large-scale calculations
> handle arbitrary number of particles (and spatial dimensions)
> numerical framework scales from laptop to HPC clusters o sk et ol PrC 98 034004 (2018)

» recent extensions: GPU acceleration, separable interactions
Dietz, SK et al., PRC 105 064002 (2022); SK, JP Conf. Ser. 2453 012025 (2023)

p. 25



Complex scaling in finite volume

Consider a cubic peridioc boundary condition:

__________

________

p. 26



Complex scaling in finite volume

Consider a cubic peridioc boundary condition:

Now imagine it in terms of complex-scaled coordinates!



Three-boson resonance trajectory

® take potential from before that generates a (genuine) three-body resonance
> established via avoided level crossings (purely real spectrum)

® add attractive two-body potential to bind system Klos, SK et al., PRC 98 034004 (2018)

® use eigenvector continuation (via complex scaling in FV) to extrapolate

V(r) = 2exp [— (rl;;)] + Vo exp(—(r/3)?)

Im E
1 | 3 i feb
_. ©19© ® 166 ° .144. _’_1.2. o . 08
2. 1.8 1.5 1.3 1.1 1. 0.9 + ° 0.6
07 @ 005 o exact
—0.005¢
Ho4 O training
®0.3
+ + extrapolated
0.2
-0.010¢ R
0.1
[}
0.

-0.015"

. 28



Resonance EC for few/many-body systems

CA-EC can be implemented with different numerical methods:
Yapa, Fossez, SK, arXiv: 2409.03116 [nucl-th]

® Finite-Volume (FV) DVR

» just discussed

e Harmonic Oscillator (HO) basis (complex freq.) [ e eeee oo ]

» HO
» equivalent to complex scaling ~0.005 |- 2 |
® Berggren Basis (BB) 2 ool .
» deformed contour plus selection of poles ol s
® Gamow Shell Model N 1 1 —
» path towards many-body applications ooos| Tttt Tt ] va
=
g 2

= —0.01 .

Comparison / Benchmark

—0.015 |- |
® three-boson system with... | | | |

» HO basis : . BB

—0.005 |- B

» FV-DVR calculation Lg 2
= 0.0l [, . -
. o training
» Berggren Basis o o
—0.015 | A extrapolated L
~» excellent agreement overall! 3 0 9 1

Re F

p- 29



Realistic physics application

e consider Gamow Shell Model (GSM) for He system Fossez et al., PRC 98 061302 (2018)
> *He core plus two neutrons

» Woods-Saxon potential for core-neutron interaction, fit to *He-n phase shifts
» contact interaction between neutrons
¢ reduce strengh of nn interaction to make system unbound

OOO' L L] | o Do BN B B R B L R

O —0.051 | .
v —0.101 ' s

nn %

=} —0.15 .

© _020{ = training (10) 4
é e training (3)

( —0.257 o exact (GSM) L

>

—0.301 « EC(10)
v CA-EC(10) K
—0.351 *+ CA-EC(3) v
-2 —1 0 1
Re(FE) (MeV)
- i i |
CA-EC works nlcely also for this system: Yapa, Fossez, SK, arXiv:2409.03116 [nucl-th]

p- 30



Conclusion

Summary

complex scaling method can be combined with eigenvector continuation
possible to construct emulators for resonance states
resonance-to-resonance extrapolation is straightforward
conjugate-augmented EC enables bound-state-to-resonance extrapolation
method initially developed for two-body resonances

extension to three-body resonances recently established

method works independent of particular numerical framework

GSM application paves way towards extrapolating many-body resonances

Outlook

® inclusion of Coulomb force important to treat charged-particles resonances

application to recently discoverd exotic resonances, such as ON

consider possible extensions to handle virtual ("anti-bound") states

p. 31



Thanks...

..to my students and collaborators...

® N. Yapa (NCSU — FSU); H. Yu, A. Taurence, A. Andis (NCSU)
e K. Fossez (FSU), D. Lee (FRIB/MSU), R. Furnstahl (OSU)
® A. Ekstrom (Chalmers U.), T. Duguet (CEA Saclay)

..for support, funding, and computing time...

Theory :g““ °"‘~‘«% U.S. DEPARTMENT OF Office of @
FRlB Alliance », ENERGY Science i {

® Jiilich Supercomputing Center
e NCSU High-Performance Computing Services

p. 32



Thanks...

..to my students and collaborators...

® N. Yapa (NCSU — FSU); H. Yu, A. Taurence, A. Andis (NCSU)
e K. Fossez (FSU), D. Lee (FRIB/MSU), R. Furnstahl (OSU)
® A. Ekstrom (Chalmers U.), T. Duguet (CEA Saclay)

..for support, funding, and computing time...

Theory

FRIB Allionce %= i8

® Jiilich Supercomputing Center
e NCSU High-Performance Computing Services

..and to you, for your attention!

:ﬁ\m % U.S. DEPARTMENT OF Office of @ |
»,' EN ERGY Science . A

p. 32
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DVR construction

Basic idea

: _— : 1 .27
® start with some initial basis; here: plane waves ¢;(z) = ——exp (1—:13)

VL L
N/2-1
® consider (zx,wr) such that > wi ¢f(ar)pj(xr) = 6

k=—N/2

0.3 1.0

0.2 . 0.8

unitary trans.
0.1 0.6
—
1 6 o 0.4
U = \/widi(xk) 0.2
-6 —4 - 2 6
~0.2 \/é1

DVR states

* ¢i(z) localized at xk, Yr(x;) = o/ \/wk
® note duality: momentum mode ¢; <> spatial mode ¥

p. 34



Finite-volume resonance signatures

Liuischer formalism

e finite volume — discrete energy levels — pcot dp(p) = = S(E(L)) — phase shift

1
mL
® resonance contribution < avoided level crossing

VE
12 A
ob oL no interaction, j(p) =0
8 I 2
E = <n X —>
6 L
4.
2t ““*—-_: ______________________________________
. L
2 4 6 8 10

Lischer, NPB 354 531 (1991); ...
Wiese, NPB (Proc. Suppl.) 9 609 (1989); ...

p. 35
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Liuischer formalism

e finite volume — discrete energy levels — pcot dp(p) = = S(E(L)) — phase shift

1
7L

® resonance contribution <> avoided level crossing Lischer, NPB 354 531 (1991); ...
Wiese, NPB (Proc. Suppl.) 9 609 (1989); ...

VE
12

10
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Finite-volume resonance signatures

Liuischer formalism

e finite volume — discrete energy levels — pcot dp(p) = = S(E(L)) — phase shift

1
mL
® resonance contribution < avoided level crossing

VE 5(p)
12 \\ ‘\

2.5

\ \
10} A 2.0
\ \\

1.5

Lischer, NPB 354 531 (1991); ...
Wiese, NPB (Proc. Suppl.) 9 609 (1989); ...
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Finite-volume resonance signatures

Liuischer formalism

e finite volume — discrete energy levels — pcot dp(p) = = S(E(L)) — phase shift

Lischer, NPB 354 531 (1991); ...
Wiese, NPB (Proc. Suppl.) 9 609 (1989); ...

1
mL
® resonance contribution < avoided level crossing

VE 3(p)
12 ] \

10

® direct correspondence between phase-shift jump and avoided crossing only for two-

body systems, but the spectrum signature carries over to few-body systems
Klos, SK et al., PRC 98 034004 (2018)

p. 35



Genuine three-body resonance

Three-boson system v

2.0
® shifted Gaussian two-body potential 12
® no two-body bound state! 05

® add short-range three-body force ; 5 3 7 5t

SK et al., PRC 98 034004 (2018)

5 6 7 8 9 10
box size

p. 36



Genuine three-body resonance

Three-boson system v

2.0
® shifted Gaussian two-body potential 12
® no two-body bound state! 05

® add short-range three-body force ; 5 3 7 5t

SK et al., PRC 98 034004 (2018)

8 | I | |
7k Af rep. -
V3 =-—1

6 - -

5 = —
3
g4 N -

2 =

1 | | | |

5 6 7 8 9 10
box size
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Genuine three-body resonance

Three-boson system Vo
® shifted Gaussian two-body potential 12
® no two-body bound state! 05
® add short-range three-body force - - - -

SK et al., PRC 98 034004 (2018)

8 T

5 6 7 8 9 10
box size
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Genuine three-body resonance

Three-boson system v

2.0
® shifted Gaussian two-body potential 12
® no two-body bound state! 05

® add short-range three-body force ; 5 3 7 5t

SK et al., PRC 98 034004 (2018)

(e
T

1 \ \ \ \
5 6 7 8 9 10

box size

w
T
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Genuine three-body resonance

Three-boson system Vo
® shifted Gaussian two-body potential 12
® no two-body bound state! 05
® add short-range three-body force - - - - =

SK et al., PRC 98 034004 (2018)

8 ‘
7 Af rep. -
Vs=—4
6 —
5 —
.
=
@ \

5 6 7 8 9 10
box size

® possible to move three-body state <+ spatially localized wavefunction

p. 37



Complex scaling in finite volume

Key |dea Yu, Yapa, SK, PRC 109 014316 (2023)

® put system into a box, apply peridioc boundary condition along rotated axes

Volume dependence

® resonances, like bound states, correspond to isolated S-matrix poles
® complex scaling renders their wave functions normalizable

® we can adapt bound-state techniques to derive their volume dependence

) 3,2 | . 4 exp(i€+/3poo L)
-2 exp(i¢Poo L) + v/2exp(iv/2(poo L) + 3V3L

® in this equation ¢ = €, py = 1/2uE(0)

e explicit form for leading term (LO) and subleading corrections (NLO)

AE(L) + O (XL

® note: dependence on volume L and complex-scaling angle ¢

Numerical implementation

® DVR method can be adapted to this scenario (scaling of z,y, z ~» scaling of r)
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Resonance examples

® two-body calculations are in excellent agreement with derived volume dependence

» S-wave resonance generated via explicit barrier

» P-wave resonance from purely attractive potential

S-wave state

1.60625 | .

1.60600 -/

~

1.60525 -

P-wave state

0.262 -

Re F

0.258 1

0.256 -

0.260 4

—0.1625
g —0.1650

0.1675 4

~0.1700 4

e fitting the L dependence yields physical resonance position and lifetime!
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More applications

Single-volume bound-state fitting

—2.5425 4
® bound-state energies normally remain real under S s
~

complex scaling (strictly true in infinite volume) 25475 -
—2.5500 1

® the finite-volume, however, induces a non-zero

0.002 -

imaginary part
® Re F and Im F oscillate as a function of L

0.000 1

—0.002 A

ImFE

> and also as a function of ¢ 00041
—0.006 -

® possible to fit ¢ dependence at fixed volume! "
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More applications

Single-volume bound-state fitting
—2.5425 4

® bound-state energies normally remain real under 9, s4so
complex scaling (strictly true in infinite volume) 25475 -

—2.5500 1

® the finite-volume, however, induces a non-zero

Imaginary part 0.002 1

0.000 1

® Re E and Im F oscillate as a function of L 2 o 00m-
» and also as a function of ¢ 0,004 -
. . . —0.006 A o
® possible to fit ¢ dependence at fixed volume! o —
é
Three-body resonance - s
4.0770 e N_ot
® the exact volume dependence is only known for Q40650 4 e e,
& A * o
two-body system 4.0760 1 .
® the complex scaled FV-DVR can however be B s e
used to study more particles 00107 N=2
e N=24
® three-boson example in good agreement with E—O-m-
previous avoided-crossings analysis —~0.014 1 L
Klos, SK et al., PRC 98 034004 (2018) D S
10 11 12 13 14 15 16 17 18
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