Early exiting from Quantum Neural Networks as a noise mitigation strategy in NISQ devices, a preliminary study

Giacomo Vittori, Simone Scardapane, Stefano Giagu, Andrea Ciardiello

October 29, 2024

Summary 1 Objectives Of The Research

► Objectives Of The Research

- ► Early Exiting Neural Networks
- Early Exiting Quantum Neural Networks To Mitigate Noise
- Experimental Setup
- Conclusion

1 Objectives Of The Research

Actual quantum computers are intrinsically affected by noise.

Noise Intermediate Scale Quantum (NISQ) era of quantum computation

- limited number of qubits $\mathcal{O}(100)$;
- qubit decoherence and gates infidelity.

1 Objectives Of The Research

Actual quantum computers are intrinsically affected by noise.

- Noise Intermediate Scale Quantum (NISQ) era of quantum computation
 - limited number of qubits $\mathcal{O}(100)$;
 - qubit decoherence and gates infidelity.
- ▲ Strong limitations on Quantum Neural Network (QNN) architectures
 - circuit depth \rightarrow expressibility;
 - precise computation.

1 Objectives Of The Research

Actual quantum computers are intrinsically affected by noise.

- Noise Intermediate Scale Quantum (NISQ) era of quantum computation
 - limited number of qubits $\mathcal{O}(100)$;
 - qubit decoherence and gates infidelity.
- ▲ Strong limitations on Quantum Neural Network (QNN) architectures
 - circuit depth \rightarrow expressibility;
 - precise computation.
- **V** Novel noise mitigation strategy based on **early-exiting** the network to
 - maintain the advantages of a deeper architecture;
 - limit the cumulative effect of noise;

Summary 2 Early Exiting Neural Networks

Objectives Of The Research

► Early Exiting Neural Networks

Early Exiting Quantum Neural Networks To Mitigate Noise

Experimental Setup

Conclusion

Why should we use early exits in neural networks? 2 Early Exiting Neural Networks

Most Neural Networks are a sequential stack of differentiable layers. Taking x as input and considering L differentiable operators f_i

 $f(\mathbf{x}) = (f_l \circ f_{L_1} \circ \cdots \circ f_1)(\mathbf{x})$

Why should we use early exits in neural networks? 2 Early Exiting Neural Networks

Most Neural Networks are a sequential stack of differentiable layers. Taking x as input and considering L differentiable operators f_i

$$f(\mathbf{x}) = (f_l \circ f_{L_1} \circ \cdots \circ f_1)(\mathbf{x})$$

The parameters can be trained with iterative methods, such Stochastic Gradient Descent. Given a set of examples $\{x_n, y_n\}_{n=1}^N$ and a loss function l

$$f^* = \operatorname*{argmin}_{ heta} \sum_{n=1}^N l(\mathbf{y}_n, f(\mathbf{x}_n))$$

In this setup, all the layers must be evaluated to obtain the final prediction.

Why should we use early exits in neural networks? 2 Early Exiting Neural Networks

Most Neural Networks are a sequential stack of differentiable layers. Taking x as input and considering L differentiable operators f_i

$$f(\mathbf{x}) = (f_l \circ f_{L_1} \circ \cdots \circ f_1)(\mathbf{x})$$

The parameters can be trained with iterative methods, such Stochastic Gradient Descent. Given a set of examples $\{x_n, y_n\}_{n=1}^N$ and a loss function l

$$f^* = \operatorname*{argmin}_{ heta} \sum_{n=1}^N l(\mathbf{y}_n, f(\mathbf{x}_n))$$

In this setup, all the layers must be evaluated to obtain the final prediction.

- Training can be improved by techniques such residual connections;
- overfitting and vanishing gradient can still happen even with a strong regularization;
- inference of large models can be hard with limited resources or in distributed scenarios.

Early Exiting Neural Networks 2 Early Exiting Neural Networks

We can select a set of *interesting points* in the architecture (*backbone*), called **early-exits**. Feeding the intermediate embedding h_i to an auxiliary neural network, we can obtain an intermediate prediction y_i

Early Exiting Neural Networks

We can select a set of *interesting points* in the architecture (*backbone*), called **early-exits**. Feeding the intermediate embedding h_i to an auxiliary neural network, we can obtain an intermediate prediction y_i

Training approaches examples:

• jointly approach defining a single optimization, combining the per-classifier losses or the outputs;

Early Exiting Neural Networks 2 Early Exiting Neural Networks

We can select a set of *interesting points* in the architecture (*backbone*), called **early-exits**. Feeding the intermediate embedding h_i to an auxiliary neural network, we can obtain an intermediate prediction y_i

Training approaches examples:

- *jointly approach* defining a single optimization, combining the per-classifier losses or the outputs;
- *layer-wise approach* training at each iteration a single auxiliary classifier together with the backbone and then freezing it;

Early Exiting Neural Networks 2 Early Exiting Neural Networks

We can select a set of *interesting points* in the architecture (*backbone*), called **early-exits**. Feeding the intermediate embedding h_i to an auxiliary neural network, we can obtain an intermediate prediction y_i

Training approaches examples:

- *jointly approach* defining a single optimization, combining the per-classifier losses or the outputs;
- *layer-wise approach* training at each iteration a single auxiliary classifier together with the backbone and then freezing it;
- training the backbone network and then separately training the auxiliary classifiers on top.

Inference 2 Early Exiting Neural Networks

Early exiting can be useful to:

- improve the training phase, using only the final output in inference;
- obtain a joint prediction merging the intermediate ones;
- exploit the exits to improve efficiency, using the full network only for hard prediction.

Inference 2 Early Exiting Neural Networks

Early exiting can be useful to:

- improve the training phase, using only the final output in inference;
- obtain a joint prediction merging the intermediate ones;
- exploit the exits to improve efficiency, using the full network only for hard prediction.
- Each input can be processed up to the optimal *depth*, corresponding to a specific prediction $c_i(x)$ and then stop the execution.

Inference 2 Early Exiting Neural Networks

Early exiting can be useful to:

- improve the training phase, using only the final output in inference;
- obtain a joint prediction merging the intermediate ones;
- exploit the exits to improve efficiency, using the full network only for hard prediction.
- Each input can be processed up to the optimal *depth*, corresponding to a specific prediction $c_i(x)$ and then stop the execution.

Considering a classification problem, a **confidence** measure on the intermediate prediction can be used to decide if and where to early-exit.

• Select (or train) a threshold for each auxiliary classifier.

Summary 3 Early Exiting Quantum Neural Networks To Mitigate Noise

Objectives Of The Research

► Early Exiting Neural Networks

► Early Exiting Quantum Neural Networks To Mitigate Noise

Experimental Setup

Conclusion

Variational Quantum Algorithms

3 Early Exiting Quantum Neural Networks To Mitigate Noise

Most of Quantum Neural Networks are based on Variational Quantum Algorithms.

Given a problem description and a set of training data:

- 1. encode the solution in a **cost function**;
- 2. propose an **ansatz**, quantum operations depending on a set of parameters;
- 3. train in a hybrid quantum-classical loop to solve the optimization task.

Variational Quantum Algorithms

3 Early Exiting Quantum Neural Networks To Mitigate Noise

Most of Quantum Neural Networks are based on Variational Quantum Algorithms.

Given a problem description and a set of training data:

- 1. encode the solution in a **cost function**;
- 2. propose an **ansatz**, quantum operations depending on a set of parameters;
- 3. train in a hybrid quantum-classical loop to solve the optimization task.
- **Barren Plateau**: extremely flat regions in the parameter space.
 - random initialization and ansatz choice;
 - noise.

Early-Exiting Quantum Neural Networks

3 Early Exiting Quantum Neural Networks To Mitigate Noise

- Strend early exits to quantum neural networks to
 - adapt the computation to the complexity of the task;
 - reduce the cumulative effects of noise;
 - maintain the expressibility of a deeper architecture.

Early-Exiting Quantum Neural Networks

3 Early Exiting Quantum Neural Networks To Mitigate Noise

- Stepsilon State State
 - adapt the computation to the complexity of the task;
 - reduce the cumulative effects of noise;
 - maintain the expressibility of a deeper architecture.
- The implementation would require partial measurements at intermediate points to obtain the predictions
 - Measurement process interrupts the signal propagation to successive points of the network;
 - No Cloning theorem forbids the creation of identical copies of an arbitrary unknown quantum state;

Early-Exiting Quantum Neural Networks

3 Early Exiting Quantum Neural Networks To Mitigate Noise

- Stepsilon State State
 - adapt the computation to the complexity of the task;
 - reduce the cumulative effects of noise;
 - maintain the expressibility of a deeper architecture.
- The implementation would require partial measurements at intermediate points to obtain the predictions
 - Measurement process interrupts the signal propagation to successive points of the network;
 - No Cloning theorem forbids the creation of identical copies of an arbitrary unknown quantum state;
- Simplest approach:
 - Measure a different set of qubits for each required prediction.

Summary 4 Experimental Setup

Objectives Of The Research

► Early Exiting Neural Networks

Early Exiting Quantum Neural Networks To Mitigate Noise

Experimental Setup

Conclusion

MNIST classification 4 Experimental Setup

The MNIST dataset is a widely used benchmark in the field of machine learning and computer vision, consisting in grayscale handwritten images (0-9) 28×28 .

MNIST classification 4 Experimental Setup

The MNIST dataset is a widely used benchmark in the field of machine learning and computer vision, consisting in grayscale handwritten images (0-9) 28×28 .

Considering an 8 qubits system:

 $n = 2^8$ possible states

Image preprocessing:

- min-max scaling to improve training;
- reshaping to 16×16 ;
- normalization to perform amplitude encoding.

Denoting as p_i the pixels values:

$$\sum_{i=1}^{256} p_i^2 = 1$$

Model Architecture 4 Experimental Setup

Layer design is inspired by the circut-centric classifier ansatz.

- RX, RY, RZ parametric rotations applied on each qubit;
- CNOT gates to create entanglement;
- 24 parameters per layers;
- measurement in the computational basis for the prediction.

Each possible outcome is associated to a specific class.

Early exiting through mid circuit measurements 4 Experimental Setup

Calling Π_i the projector associated to the outcome *i* of the measurement, the output state is

$$\rho_i = \frac{\Pi_i \rho \Pi_i}{\mathrm{Tr}[\Pi_i \rho]}$$

Early exiting through mid circuit measurements 4 Experimental Setup

Calling Π_i the projector associated to the outcome *i* of the measurement, the output state is

$$\rho_i = \frac{\Pi_i \rho \Pi_i}{\mathrm{Tr}[\Pi_i \rho]}$$

Characteristic States States Characteristic States State

Early exiting through mid circuit measurements 4 Experimental Setup

Calling Π_i the projector associated to the outcome *i* of the measurement, the output state is

$$o_i = \frac{\Pi_i \rho \Pi_i}{\mathsf{Tr}[\Pi_i \rho]}$$

- **Characteristic Training phase**: cross-entropy loss $\mathcal{L}_{tot} = \mathcal{L}_{early} + \mathcal{L}_{final}$, ADAM optimizer.
- **Q** Test phase: a threhshold determines the intermediate or the full execution depending on the confidence of the prediction.

Early exiting model without noise 4 Experimental Setup

 $\mathsf{RER}_i = rac{1 - \mathsf{Accuracy}[\mathsf{Model}_i]}{1 - \mathsf{Accuracy}[\mathsf{Original Model}~(\mathsf{8 layer})]}$

 $CR_i = \frac{\#Executed gates[Model_i]}{\#Executed gates[Original Model (8 layers)]}$

Early exiting model without noise 4 Experimental Setup

4 Experimental Setup

Coherent noise

- incorrect gates calibration;
- purity preservation.
- 😳 Pure state simulator

4 Experimental Setup

Coherent noise

- incorrect gates calibration;
- purity preservation.
- 😳 Pure state simulator
- \rightarrow Rotational parameters disturbance

4 Experimental Setup

Coherent noise

- incorrect gates calibration;
- purity preservation.
- 😳 Pure state simulator
- \rightarrow Rotational parameters disturbance

- entanglement with environment;
- no purity preservation.
- Mixed state simulator

4 Experimental Setup

👗 Coherent noise

- incorrect gates calibration;
- purity preservation.
- 😳 Pure state simulator
- \rightarrow Rotational parameters disturbance

🚑 Incoherent noise

- entanglement with environment;
- no purity preservation.
- Mixed state simulator
- \rightarrow Depolarizing channel

Noise effects on the original model 4 Experimental Setup

\mathfrak{V} 8 layers vs 4 layers noise effects on the original architecture.

Noise effects on the original model 4 Experimental Setup

\mathfrak{V} 8 layers vs 4 layers noise effects on the original architecture.

Less expressive circuits tend to be more resilient to noise, as the execution is shorter and therefore less susceptible to accumulated errors.

Noise mitigation through early exit

4 Experimental Setup

Coherent noise

Low = 0.15 High = 0.25

Incoherent noise

Low = 0.015 High = 0.12

Noise mitigation through early exit

4 Experimental Setup

Coherent noise

Low = 0.15 High = 0.25

Incoherent noise

Low = 0.015 High = 0.12

- Under coherent and low levels of incoherent noise early exiting save computational resources while maintaining good performances
- 🖄 Noise mitigation strategy under high levels of incoherent noise needs further refinements

17/21

► Early Exiting Neural Networks

Early Exiting Quantum Neural Networks To Mitigate Noise

Experimental Setup

► Conclusion

Conclusions and future directions 5 Conclusion

Summary:

- mitigation of coherent noise effects and low levels of incoherent noise;
- ✓ adaptability to the difficulty of the task;
- ✓ better computational efficiency while maintaining greater expressive capacity;
- ✓ adaptability to noise levels allowing the use of a single circuit instead of searching for an optimal configuration of layers for each noise level.

Conclusions and future directions 5 Conclusion

Summary:

- mitigation of coherent noise effects and low levels of incoherent noise;
- adaptability to the difficulty of the task;
- better computational efficiency while maintaining greater expressive capacity;
- ✓ adaptability to noise levels allowing the use of a single circuit instead of searching for an optimal configuration of layers for each noise level.

Future directions:

- further refinements for high incoherent noise levels;
- realistic noise simulation;
- Incertainty analysis;
- generalization to different ansatzes and multiple exit configurations.

Bibliography 5 Conclusion

- Marco Cerezo, Andrew Arrasmith, Ryan Babbush, Simon C Benjamin, Suguru Endo, Keisuke Fujii, Jarrod R McClean, Kosuke Mitarai, Xiao Yuan, Lukasz Cincio, et al., Variational quantum algorithms, Nature Reviews Physics 3 (2021), no. 9, 625–644.
- Vinayak Jagadish and Francesco Petruccione, *An invitation to quantum channels*, arXiv preprint arXiv:1902.00909 (2019).
 - PennyLane Team, *Dynamic quantum circuits*, 2021.
- John Preskill, *Quantum computing in the nisq era and beyond*, *Quantum 2* (2018), 79.
- Maria Schuld, Alex Bocharov, Krysta M Svore, and Nathan Wiebe, *Circuit-centric quantum classifiers*, Physical Review A **101** (2020), no. 3, 032308.
- Simone Scardapane, Michele Scarpiniti, Enzo Baccarelli, and Aurelio Uncini, Why should we add early exits to neural networks?, Cognitive Computation **12** (2020), no. 5, 954–966.

Thanks for your attention!