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Actual quantum computers are intrinsically affected by noise.
5 Noise Intermediate Scale Quantum (NISQ) era of quantum computation

= limited number of qubits O(100);
= qubit decoherence and gates infidelity.

/\ Strong limitations on Quantum Neural Network (QNN) architectures

= circuit depth — expressibility;
= precise computation.

@ Novel noise mitigation strategy based on early-exiting the network to

= maintain the advantages of a deeper architecture;
= |imit the cumulative effect of noise;
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fx) = (fiofi, o0 fi)x)

The parameters can be trained with iterative methods, such Stochastic Gradient Descent. Given a set of
examples {x,, yn Y21 and a loss function I

N
= argmin> (. o0)

In this setup, all the layers must be evaluated to obtain the final prediction.
= Training can be improved by techniques such residual connections;
= overfitting and vanishing gradient can still happen even with a strong regularization;

= inference of large models can be hard with limited resources or in distributed scenarios.
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Training approaches examples:
= jointly approach defining a single optimization, combining the per-classifier losses or the outputs;

= layer-wise approach training at each iteration a single auxiliary classifier together with the backbone
and then freezing it;

= training the backbone network and then separately training the auxiliary classifiers on top.
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Inference

2 Early Exiting Neural Networks

Early exiting can be useful to:
= improve the training phase, using only the final output in inference;
= obtain a joint prediction merging the intermediate ones;
= exploit the exits to improve efficiency, using the full network only for hard prediction.

&P Each input can be processed up to the optimal depth, corresponding to a specific prediction ¢;(x) and
then stop the execution.

Considering a classification problem, a confidence measure on the intermediate prediction can be used to
decide if and where to early-exit.

= Select (or train) a threshold for each auxiliary classifier.
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Most of Quantum Neural Networks are based on Variational Quantum Algorithms.

Given a problem description and a set of training data:
1. encode the solution in a cost function;

2. propose an ansatz, quantum operations
depending on a set of parameters;

3. trainin a hybrid quantum-classical loop to solve
the optimization task.

8/21



Variational Quantum Algorithms
3 Early Exiting Quantum Neural Networks To Mitigate Noise

Most of Quantum Neural Networks are based on Variational Quantum Algorithms.

Given a problem description and a set of training data:

Quantum Computer

1. encode the solution in a cost function; i
2. propose an ansatz, quantum operations E @ E
depending on a set of parameters; 3 -
3. trainin a hybrid quantum-classical loop to solve
the optimization task.
Quantum £ 4
Machine Learning

Landscape with Barren Platcaus
- I

/\ Barren Plateau: extremely flat regions in the

parameter space. D
= random initialization and ansatz choice;

* noise. 3
Classical Computer
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Q@ Extend early exits to quantum neural networks to

= adapt the computation to the complexity of the task;
* reduce the cumulative effects of noise;
= maintain the expressibility of a deeper architecture.

! The implementation would require partial measurements at intermediate points to obtain the
predictions

= Measurement process interrupts the signal propagation to successive points of the network;
= No Cloning theorem forbids the creation of identical copies of an arbitrary unknown quantum
state;

« Simplest approach:

= Measure a different set of qubits for each required prediction.
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MNIST classification
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The MNIST dataset is a widely used benchmark in the field of machine learning and computer vision,
consisting in grayscale handwritten images (0-9) 28 x 28.
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MNIST classification

4 Experimental Setup

The MNIST dataset is a widely used benchmark in the field of machine learning and computer vision,
consisting in grayscale handwritten images (0-9) 28 x 28.

Considering an 8 qubits system:
n = 2% possible states

Image preprocessing:
e min-max scaling to improve training;

e reshapingto 16 x 16;

e normalization to perform amplitude encoding.

Denoting as p; the pixels values:

256

dopi=1
i=1
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Model Architecture

4 Experimental Setup

Layer design is inspired by the circut-centric classifier |

ansatz.

e RX, RY, RZ parametric rotations applied on each
qubit;

e CNOT gates to create entanglement;
e 24 parameters per layers;

e measurement in the computational basis for the
prediction.

Each possible outcome is associated to a specific class.
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Early exiting through mid circuit measurements
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Calling I1; the projector associated to the outcome i of the measurement, the output state is
o HipHi
L Tr{Ip]

£ Training phase: cross-entropy 10ss Liot = Learly + Lfinal,  ADAM optimizer.

Q, Test phase: a threhshold determines the intermediate or the full execution depending on the
confidence of the prediction.
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4 Experimental Setup

RER, — 1 — Accuracy[Model;] R #Executed gates[Model;]
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Noise in quantum circuits
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Noise in quantum circuits
4 Experimental Setup

A Coherent noise &4 Incoherent noise
= incorrect gates calibration; = entanglement with environment;
= purity preservation. = no purity preservation.
@® Pure state simulator @® Mixed state simulator
— Rotational parameters disturbance — Depolarizing channel
E7Y
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Noise effects on the original model
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Qs 8 layers vs 4 layers noise effects on the original architecture.

0 Coherent noise conditions o Incoherent noise conditions (300 images)
09 09
0.8 08
0.7 07
3 g
g g
506 506
8 ]
<0s Working zone < s Working zone
04 04
03 ~&~ 8layers 03 —&— 8layers.
- dlayers - dlayers
02 02
0.00 005 0.10 0.15 020 025 030 035 0.40 0,00 0.05 0.10 015 020 025 030
P Probability

16/21



&

Accuracy
o
S

16/21

Noise effects on the original model

4 Experimental Setup

8 layers vs 4 layers noise effects on the original architecture.

Coherent noise conditions . Incoherent noise conditions (300 images)
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Less expressive circuits tend to be more resilient to noise, as the execution is shorter and therefore less
susceptible to accumulated errors.
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4 Experimental Setup

Coherent noise
Low = 0.15 High = 0.25
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Noise mitigation through early exit

Incoherent noise
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Under coherent and low levels of incoherent noise early exiting save computational resources while

maintaining good performances

(X) Noise mitigation strategy under high levels of incoherent noise needs further refinements
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adaptability to noise levels allowing the use of a single circuit instead of searching for an optimal
configuration of layers for each noise level.
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Summary:
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mitigation of coherent noise effects and low levels of incoherent noise;
adaptability to the difficulty of the task;
better computational efficiency while maintaining greater expressive capacity;

adaptability to noise levels allowing the use of a single circuit instead of searching for an optimal
configuration of layers for each noise level.

Future directions:

@
@
@

@
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further refinements for high incoherent noise levels;
realistic noise simulation;
uncertainty analysis;

generalization to different ansatzes and multiple exit configurations.
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Thanks for your attention!

21/21



	Objectives Of The Research
	Early Exiting Neural Networks
	Early Exiting Quantum Neural Networks To Mitigate Noise
	Experimental Setup
	Conclusion

