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Introduction
Machine learning and quantum computing

Quantum Research Center, October 2024

Machine 

Learning

Quantum 

computing

● Parametrized quantum circuits

● Quantum anomaly detection

● Quantum generative algorithms

● Speedup of ML training routines

● Quantum error correction

● Noise modelling

● Transpiling

● Optimal control



3TII – Technology Innovation Institute

Introduction
Table of contents

1. Reinforcement Learning

• Working principle

• Policy training

2. Noise

• Causes

• Noise channels

• Coherent errors

3. Methodology

• Algorithm implementation

• Quantum circuit representation

• Reward shaping

4. Results

• Training

• Benchmarking

• Grover

• Quantum hardware

5. Conclusions and future work

Quantum Research Center, October 2024



4TII – Technology Innovation Institute

Reinforcement learning
Working principle

Environment Policy

Reward

Action

Markov decision process: the future state depends solely on the current state and action, 

regardless of the history of the system.

Training a reinforcement learning agent involves finding an optimal policy that maximizes the 

expected long-term cumulative reward.
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Reinforcement learning
Policy training

The policy can be implemented with an artificial neural network (in this work we use CNN).

Weights of the policy are updated using standard gradient based optimization (backpropagation).

High instability during training. To address this issue many training strategies have been developed. 

In this work we use Proximal Policy Optimization (PPO)  [arXiv:1707.06347].

Observation Action

Backpropagation

Reward

New environment
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Noise in quantum circuits
Causes

Noise is caused by many possible factors:

• Environment interactions.

• Calibration errors.

• Crosstalk.

• Excited states decay.

• Measurements errors.

Different nature and characteristics of the 

different noise sources makes the total 

noise difficult to characterize and 

reproduce in simulations.

Euristic noise models use a set of noise 

channels placed in the circuit to reproduce 

noisy behavior.

The parameters of these channels are fitted 

with the calibration data (T1, T2, gates 

fidelity…).

Calibration 

errors

Environment 

interactions

Measurements 

errors

Spontaneous 

emission

Noisy 

output

Crosstalk
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Noise in quantum circuits
Noise channels

Depolarizing channel

Schematization of the interaction with environment that 

brings the state closer to the maximally mixed state. 

The parameter λ is the probability of an error occurring.

Damping channel

Schematization of spontaneous decay 

of the excited state. The parameter ɣ 

controls the decay probability.

Noise channels are super-operators acting on state density matrices.

Below the description of two noise channels used in this work:
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Noise in quantum circuits
Coherent errors

Coherent errors are unitary, they don’t reduce the purity of quantum states. 

These kind of errors don’t require noise channels, they can be schematized using rotation gates (Rx, Ry, Rz).

These errors do not destroy quantum information, they can be corrected once identified. 
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X gate
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0
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Methodology
Algorithm implementation

• A non noisy quantum circuit representation is 

given to the agent at each episode. 

• For every circuit moment the agent can put any 

number of noise channels with a chosen 

parameter. 

• At the end of an episode the Density Matrix 

(DM) of the circuit obtained with this process is 

computed.

• The trace distance (TD) between this DM and 

the ground truth DM is used to compute the 

reward. 

• Weights of the policy NN are update to 

maximize fidelity.

After many episodes the agent should learn where 

to put noise channels in a non-noisy circuit to 

reconstruct the DM of the real noisy circuit.

Environment:

Quantum circuit 

representation

Policy:

Convolutional 

neural network

Reward:

Trace distance 

between DM

Action: 

Place error 

channels
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Methodology
Quantum circuit representation

To train the RL agent it is necessary to 

represent the quantum circuit as an 

array, that can be used as input of the 

policy neural network. In the general case 

this vector has three dimensions: the first 

entrance identifies the qubit, the second 

the circuit moment and the third the 

features of gates and noise channels. 

Features are organized as follows:

• Presence of single qubit gates.

• Presence of two qubit gates.

• Rotation angles of single qubit gates.

• Depolarizing channel parameter.

• Amplitude damping channel parameter.

• Coherent error parameters.

Quantum Research Center, October 2024
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Methodology
Reward shaping

The reward is the key element for good convergence of the RL algorithm during training.

Best results obtained using: 1/ ( 𝑇𝐷 𝑥, 𝑥′ 2 + δ)
where x and x’ are the result and ground truth density matrices, δ avoids infinite values.

On quantum hardware the ground truth DM can be computed using state tomography.

Ground truth DM

RL Agent Result DM

1/ ( 𝑇𝐷 𝑥, 𝑥′ 2+ δ) Reward

State tomography
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Results
Training

Top: 1 Qubit.

Bottom: 3 Qubits. 

Custom noise model:

• Depolarizing channels.

• Damping channels.

• Coherent RX and RZ.

Dataset:

• Clifford circuits.

• Train set 400 circuits.

• Test set 100 circuits.

Training and CNN:

• 3*10^6 timesteps.

• 2 convolutional layers    

+ 2 dense layers.

• ReLU activation.

• PPO algorithm.

Quantum Research Center, October 2024
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Results
Benchmarking

Performance comparison of 

RL agent and Randomized 

Benchmarking (RB) 

[arXiv:0707.0963] for circuits 

with different depths (from 3 

to 30), also maximally mixed 

state (MMS) and circuits with 

no noise added.

1 Qubit (top), 3 Qubits 

(bottom).

RB considers all the noise 

sources as depolarizing. The 

RL agent shows better 

performance because it is 

able to identify specific 

features of the noise.
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Results
Quantum algorithms

Top: Grover’s algorithm (low noise).

Bottom: QFT (high noise).
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Results
Quantum hardware

Training on single qubit superconducting chip at TII.

Training set composed of 60 circuits of depth 10. Ground truth density matrices have been obtained with 

quantum state tomography, 2048 shots for circuit.
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Results
Quantum hardware benchmarking 

Benchmarking with circuits with depth spanning from 5 to 50.
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Future work

• Scale to simulations with more than three qubits.

• Scale to multi qubit hardware.

• Solve bottleneck of quantum state tomography.

• Benchmark with other state of the art noise simulation techniques.

• Error mitigation with similar working principle.

Conclusions

• RL agents can learn complex noise patterns.

• Better adaptability to different noise models.

• Better generalization to new circuits.

• Possibility to learn long-term correlations.

• Identification of coherent errors and other calibration problems.

Quantum Research Center, October 2024
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