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The emergence of Barren Plateaus (BP)
The conditions for concentration of the optimization landscape have been recently formalized for deep, 
unitary circuits, and hinge on the dimension of the Dynamical Lie Algebra (DLA) of the circuit. 

E. Fontana et al., Nat. Comm. 2024, M. Ragone et al., Nat. Comm. 2024 
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The emergence of Barren Plateaus (BP)
The conditions for concentration of the optimization landscape have been recently formalized for deep, 
unitary circuits, and hinge on the dimension of the Dynamical Lie Algebra (DLA) of the circuit. 

Parameterized unitary circuit, with DLA  

Structure of the DLA 

Variance of <H> w.r.t. the parameters

Dimension of the j-th component of the DLA

Measure of purity in the respective 
sub-algera,

 where {Bk} is a basis of gj 
E. Fontana et al., Nat. Comm. 2024, M. Ragone et al., Nat. Comm. 2024 
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The emergence of Barren Plateaus (BP)
One can visualize what’s going on here using a graph. The space of bounded operators is represented 
here by a set of points. The action of Φ can only connect some, defining invariant subspaces.

Structure of the DLA 

Variance of <H> w.r.t. the parameters…

By definition, these subspaces do not communicate, and hence give an independent contribution.
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The emergence of Noise-Induced Barren Plateaus (NIBP)
Any substantial differences in the presence of noise?

The previous analysis hinges on the group structure 
that unitary transformations have.

But noise maps lack this structure… which means no 
Lie-algebraic analyses here!

In this scenario, a much more dangerous effect is that of 
decoherence, which implies an irreversible loss of 
quantum information to the environment
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The emergence of Noise-Induced Barren Plateaus (NIBP)
Indeed, the presence of invariant subspaces is now irrelevant. Basically, we are saying that loss of 
information is so dominant, that the variance decays regardless of the symmetries of the ansatz.

S. Wang et al., Nat. Comm. 2021
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Variance of <H> w.r.t. the parameters

The emergence of Noise-Induced Barren Plateaus (NIBP)
Indeed, the presence of invariant subspaces is now irrelevant. Basically, we are saying that loss of 
information is so dominant, that the variance decays regardless of the symmetries of the ansatz.

NIBP phenomenon, expressed in terms of 
the variance in the deep circuit limit

As the quantum information is lost, everything becomes less and less 
distinguishable. In the end, all points collapse into the same one, and all 
parameters inevitably produce the same output, i.e. the variance vanishes. S. Wang et al., Nat. Comm. 2021
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The ways of the Lord are not over… 
Generally, noisy evolution is described by quantum channels, i.e. CPTP maps Φ(ρ). While there exists a 
wide variety of channels, we are interested in one major distinction:

Contractive maps

Such maps reduce the norm of any operator they 
act on, but they also preserve the norm in some 

subspaces

example: unitary transformations, but not only…

Strictly contractive maps

Such maps always strictly reduce the norm of any 
operator they act on, in all subspaces*

e.g. depolarizing noise, p>0

*Except the trivial one
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Generally, noisy evolution is described by quantum channels, i.e. CPTP maps Φ(ρ). While there exists a 
wide variety of channels, we are interested in one major distinction:

Contractive maps

Such maps reduce the norm of any operator they 
act on, but they also preserve the norm in some 

subspaces

example: unitary transformations, but not only…

Strictly contractive maps

Such maps always strictly reduce the norm of any 
operator they act on, in all subspaces*

e.g. depolarizing noise, p>0

Suffer from NIBP, we already know them 
well unfortunately…

We know about unitary circuits, and maybe something 
for non-unital noise, what about the general case??

*Except the trivial one
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…and they can give rise to different phenomena!
Indeed, BP and NIBP are just two extreme cases of a richer spectrum!
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How we plan to study it?
To investigate the main mechanisms at play in this general scenario, we devise a simple yet general 
model, comprised of local unitary designs and general quantum channels
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How we plan to study it?

Single qubit unitary operation Entangling operation

To investigate the main mechanisms at play in this general scenario, we devise a simple yet general 
model, comprised of local unitary designs and general quantum channels

Single qubit unitary operation Generic quantum channel, which includes 
both entangling operations and noise 

Add noise 
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The general formula
Using non-negative matrix theory, we are able to exactly compute the variance in the deep circuit limit. 
In particular, if we focus for simplicity on single qubit noise, we get:
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More specifically, we have Theorem III.1 (Deep circuits):

The variance converges** exponentially fast in the number of layers to the above value, i.e.

The general formula
Using non-negative matrix theory, we are able to exactly compute the variance in the deep circuit limit. 
In particular, if we focus for simplicity on single qubit noise, we get:

Variance of loss function in the 
limit of large number of layers

Sum over invariant subspaces 
of both the single qubit blocks 
and the intermediate channel Dimension of such 

subspaces

Locality (= purity) of the initial state and observable
Absorption matrix, 
represents the 
absorption to the 
invariant subspaces

Unitary 
contribution

Noise 
contribution

**Holds rigorously for aperiodic circuits. For periodic 
circuits only holds for the Cesàro sum of all depths L.
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An intuitive picture
We can visualize what’s going on here again by a graph, summarizing the interactions in the space of 
bounded operators

Strictly contractive 
subspaces may be all 
connected or have 
symmetries, but it 
doesn't matter, as their 
contribution vanish 
anyway.

Norm-preserving 
subspaces, exactly as 
in the unitary case, 
cannot communicate 
with the outside. Their 
contribution is 
proportional to their 
dimension.

The trivial subspace normally doesn’t contribute to the variance 
by itself, but here it has a great importance, since it can collect 
contributions coming from strictly contractive subspaces!

Strictly contractive subspaces can in general extend outside, 
i.e. they are not invariant. But once they reach an invariant 
subspace, they are bound to stay there! These are what makes 
contributions from noise possible!
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TL;DR
There is a meme template for everything these days :)
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Examples: Unitary circuits

Corollary III.1.1 (Deep, unitary circuits). 

If the channel is unitary, then the absorption 
terms vanish.

The absorption term A vanishes in this case because unitary dynamics is reversible.
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In particular, if the channel is unital, then                 .

Examples: Contractive circuits

Corollary III.1.2 (Deep, contractive circuits).

If the channel has no unitary subspaces, then only 
the absorption term survives. 

Conversely, since each invariant subspace norm-preserving to ‘survive’ the deep circuit limit, in the strictly 
contractive case only the absorption terms remain.



Quantum Computing@INFN 24Giulio Crognaletti (giulio.crognaletti@phd.units.it)

In particular, if the channel is unital, then                 .

Examples: Contractive circuits

Corollary III.1.2 (Deep, contractive circuits).

If the channel has no unitary subspaces, then only 
the absorption term survives. 

Conversely, since each invariant subspace norm-preserving to ‘survive’ the deep circuit limit, in the strictly 
contractive case only the absorption terms remain.



Quantum Computing@INFN 24Giulio Crognaletti (giulio.crognaletti@phd.units.it)

In particular, if the channel is unital, then                 .

Examples: Contractive circuits

Corollary III.1.2 (Deep, contractive circuits).

If the channel has no unitary subspaces, then only 
the absorption term survives. 

Conversely, since each invariant subspace norm-preserving to ‘survive’ the deep circuit limit, in the strictly 
contractive case only the absorption terms remain.



Quantum Computing@INFN 24Giulio Crognaletti (giulio.crognaletti@phd.units.it)

Summary



Quantum Computing@INFN 24Giulio Crognaletti (giulio.crognaletti@phd.units.it)

Summary



Quantum Computing@INFN 24Giulio Crognaletti (giulio.crognaletti@phd.units.it)

Summary



Quantum Computing@INFN 24Giulio Crognaletti (giulio.crognaletti@phd.units.it)

Quantum Residual Networks
A simple way to escape the results shown here is to resort to shallow circuit. Even for deep circuits, we 
can get away from the main theorem if the circuit is effectively shallow.
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Proposition IV.1 (QUResNet). 
If the channel is unitary, and parameterized, with parameters having variance scaling inversely 
proportional to L, then

where F(n) decays polynomially with n.

Quantum Residual Networks
A simple way to escape the results shown here is to resort to shallow circuit. Even for deep circuits, we 
can get away from the main theorem if the circuit is effectively shallow.

“squeeze”

Unitary channel, 
arbitrary but with 
no parameter 
dependence 

Unitary channel, 
restricted but 
with parameter 
dependence 
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An intuitive picture
This result still hinges, although indirectly, on the deep circuit limit result, as it works by enforcing a slower 
speed of convergence to the process, acting on the constant β
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any number of layers

Theorem III.1 in the 
aperiodic regime

Upper bound on β, explicitly requiring it to go to zero at 
least as fast as the number of layers increase.
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An intuitive picture
This result still hinges, although indirectly, on the deep circuit limit result, as it works by enforcing a slower 
speed of convergence to the process, acting on the constant β

No formal bound to ensure convergence after 
any number of layers

This regime is achieved also in the noisy regime, when the noise is sufficiently weak.

Theorem III.1 in the 
aperiodic regime

Upper bound on β, explicitly requiring it to go to zero at 
least as fast as the number of layers increase.
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Stochastic unravelling of channels and QResNets
For any given noise map, we are guaranteed to be able to describe it as a stochastic unravelling, i.e. as 
the expectation value of some simpler operators. For certain maps, such operators can even be unitary!
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The variance of a channel is always smaller than the variance of the corresponding stochastic unravelling, 
with equality holding if and only if the channel is unitary.
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Conclusions

● Concentration for noisy circuits is more intricate than one can naively expect.

● Noise can not only induce barren plateaus, but also prevent it if engineered correctly.

● Weak noise maps are closely related to small angle-like initialization strategies. 

Takeaway messages:



Thanks for your attention!

Any question?

giulio.crognaletti@phd.units.it
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Extra: the theoretical framework

Space of bounded 
operators on H

Space of bounded, 
traceless operators 
acting non-trivially on k 
qubits

Orthonormal basis of Bk
Dimension of Bk

General operator in B
Locality vector

Generic quantum channels do not have a group structure, therefore the algebraic arguments do not 
apply. However, we can still divide the space of bounded operator based on the unitary part of the circuit.

Since the unitary part is divided into qubits, these subspaces are linked to how “local” an operator is, and 
we can define a measure analogous to the previously mentioned purity in this context as well.
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Extra: locality and locality transfer matrix
The action of the unitary and local part of the circuit is easily computed using the tools from Weingarten 
calculus in the Lie-algebraic picture, and yields a result analogous to the previously mentioned.

Convenient scalar 
product in this context

Diagonal matrix
Locality vectors of the 
corresponding operators

Dimension of the 
operator subspace k

This can be interpreted a diagonal matrix applied to the locality vectors.
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Extra: locality and locality transfer matrix
This work extends this idea, showing how the action of a generic quantum channel is described instead 
by a more generic matrix.

We can now analyze the spectral properties of T to deduce the main properties of the deep circuit limit.

Generic, non-negative matrix

Formal definition of T
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Extra: irreducible blocks and absorption coefficients
The matrix T is most fruitfully examined graphically as an adjacency matrix for some graph. This graph 
represents the subspaces of B put in communication by the intermediate channel.
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Examples: Non-unital noise and entanglement 
Employing the last result one can obtain a variance with different scaling as a function of noise strength 
based on the entangling power of each layer.

Specific example for the 
intermediate channel

P is a projector. A good approximation for 
rapidly entangling an slowly entangling gate

Slowly entangling limit:

P≈1
Rapidly entangling limit:

P≈dk/d

Linear dependence on noise strength Quadratic dependence on noise strength
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Examples: Non-unital noise and entanglement 
Variance in the deep circuit limit as a 

function of noise strength
Speed of convergence to the deep circuit 

limit as a function of L

Linear scaling
(theoretical value)

Quadratic scaling
(theoretical value)

Exponential decay 
(fit)


