

Estimates of loss function concentration in noisy parametrized quantum circuits

([arXiv:2410.01893\)](https://arxiv.org/abs/2410.01893)

Giulio Crognaletti, Michele Grossi and Angelo Bassi

Quantum Computing@INFN, October 29th-31st 2024

Variational Quantum Algorithms are based on a **hybrid** quantum classical optimization scheme.

Variational Quantum Algorithms are based on a **hybrid** quantum classical optimization scheme.

Giulio Crognaletti (giulio.crognaletti@phd.units.it) Ciulio Crognaletti (giulio.crognaletti@phd.units.it) Quantum Computing@INFN 24

Variational Quantum Algorithms are based on a **hybrid** quantum classical optimization scheme.

Giulio Crognaletti (giulio.crognaletti@phd.units.it) Ciulio Crognaletti (giulio.crognaletti@phd.units.it) Quantum Computing@INFN 24

Variational Quantum Algorithms are based on a **hybrid** quantum classical optimization scheme.

Variational Quantum Algorithms are based on a **hybrid** quantum classical optimization scheme.

Giulio Crognaletti (giulio.crognaletti@phd.units.it) Ciulio Crognaletti (giulio.crognaletti@phd.units.it) Quantum Computing@INFN 24

Variational Quantum Algorithms are based on a **hybrid** quantum classical optimization scheme.

Giulio Crognaletti (giulio.crognaletti@phd.units.it) Ciulio Crognaletti Quantum Computing@INFN 24

The conditions for concentration of the optimization landscape have been recently formalized for **deep**, **unitary** circuits, and hinge on the dimension of the **Dynamical Lie Algebra** (DLA) of the circuit.

E. Fontana et al., Nat. Comm. 2024, M. Ragone et al., Nat. Comm. 2024

Giulio Crognaletti (giulio.crognaletti@phd.units.it) Ciulio Crognaletti (giulio.crognaletti@phd.units.it) Quantum Computing@INFN 24

The conditions for concentration of the optimization landscape have been recently formalized for **deep**, **unitary** circuits, and hinge on the dimension of the **Dynamical Lie Algebra** (DLA) of the circuit.

E. Fontana et al., Nat. Comm. 2024, M. Ragone et al., Nat. Comm. 2024

Giulio Crognaletti (giulio.crognaletti@phd.units.it) Ciulio Crognaletti Computing@INFN 24

The conditions for concentration of the optimization landscape have been recently formalized for **deep**, **unitary** circuits, and hinge on the dimension of the **Dynamical Lie Algebra** (DLA) of the circuit.

E. Fontana et al., Nat. Comm. 2024, M. Ragone et al., Nat. Comm. 2024

One can visualize what's going on here using a **graph**. The space of bounded operators is represented here by a set of points. The action of Φ can only **connect some**, defining **invariant subspaces**.

By definition, these subspaces **do not communicate**, and hence give an **independent** contribution.

Any **substantial differences** in the presence of noise?

Any **substantial differences** in the presence of noise?

The previous analysis hinges on the **group structure** that **unitary** transformations have.

But **noise maps lack this structure**… which means no Lie-algebraic analyses here!

Any **substantial differences** in the presence of noise?

The previous analysis hinges on the **group structure** that **unitary** transformations have.

But **noise maps lack this structure**… which means no Lie-algebraic analyses here!

In this scenario, a much more dangerous effect is that of **decoherence**, which implies an **irreversible loss** of quantum **information** to the environment

Indeed, the presence of invariant subspaces is now **irrelevant**. Basically, we are saying that loss of information is so dominant, that the variance decays **regardless of the symmetries** of the ansatz.

S. Wang et al., Nat. Comm. 2021

Giulio Crognaletti (giulio.crognaletti@phd.units.it) Ciulio Crognaletti (giulio.crognaletti@phd.units.it) Quantum Computing@INFN 24

Indeed, the presence of invariant subspaces is now **irrelevant**. Basically, we are saying that loss of information is so dominant, that the variance decays **regardless of the symmetries** of the ansatz.

As the quantum information is lost, everything becomes **less and less distinguishable**. In the end, all points collapse into the same one, and all parameters inevitably produce the same output, i.e. the **variance vanishes**. S. Wang et al., Nat. Comm. 2021

Indeed, the presence of invariant subspaces is now **irrelevant**. Basically, we are saying that loss of information is so dominant, that the variance decays **regardless of the symmetries** of the ansatz.

As the quantum information is lost, everything becomes **less and less distinguishable**. In the end, all points collapse into the same one, and all parameters inevitably produce the same output, i.e. the **variance vanishes**. S. Wang et al., Nat. Comm. 2021

Variance of <H> w.r.t. the parameters

Giulio Crognaletti (giulio.crognaletti@phd.units.it) Ciulio Crognaletti Quantum Computing@INFN 24

Indeed, the presence of invariant subspaces is now **irrelevant**. Basically, we are saying that loss of information is so dominant, that the variance decays **regardless of the symmetries** of the ansatz.

The ways of the Lord are not over…

Generally, noisy evolution is described by **quantum channels**, i.e. CPTP maps Φ(ρ). While there exists a wide variety of channels, we are interested in one major distinction:

Strictly contractive maps

Such maps always strictly **reduce** the norm of any operator they act on, in **all** subspaces*

$\|\Phi(A)\| < \|A\| \forall A$

e.g. depolarizing noise, p>0

Contractive maps

Such maps **reduce** the norm of any operator they act on, but they also **preserve the norm** in some subspaces

 $\|\Phi(A)\| < \|A\|$

example: unitary transformations, but not only…

The ways of the Lord are not over…

Generally, noisy evolution is described by **quantum channels**, i.e. CPTP maps Φ(ρ). While there exists a wide variety of channels, we are interested in one major distinction:

Strictly contractive maps

Such maps always strictly **reduce** the norm of any operator they act on, in **all** subspaces*

$\|\Phi(A)\| < \|A\| \forall A$

e.g. depolarizing noise, p>0

Contractive maps

Such maps **reduce** the norm of any operator they act on, but they also **preserve the norm** in some subspaces

 $\|\Phi(A)\| < \|A\|$

example: unitary transformations, but not only…

We know about unitary circuits, and maybe something for non-unital noise, what about the general case?

…and they can give rise to different phenomena!

Indeed, BP and NIBP are just two **extreme cases** of a **richer** spectrum!

$$
\mathbb{V}_{\rho,H}^{\infty} = \sum_{z} \frac{(\ell_{\rho})_z (\ell_H)_z}{d_z} + \frac{(\ell_{\rho})_z (A \ell_H)_z}{d_z}
$$

Using **non-negative matrix theory,** we are able to **exactly** compute the **variance** in the deep circuit limit. In particular, if we focus for simplicity on **single qubit noise**, we get:

Variance of loss function in the limit of l**arge number of layers**

$$
\mathbb{V}_{\rho,H}^{\infty} = \sum_{z} \frac{(\ell_{\rho})_z(\ell_H)_z}{d_z} + \frac{(\ell_{\rho})_z(A\ell_H)_z}{d_z}
$$

Using **non-negative matrix theory,** we are able to **exactly** compute the **variance** in the deep circuit limit. In particular, if we focus for simplicity on **single qubit noise**, we get:

Variance of loss function in the limit of l**arge number of layers**

 $\mathbb{V}_{\rho,H}^{\infty} = \sum \frac{(\ell_{\rho})_z(\ell_H)_z}{d_z} + \frac{(\ell_{\rho})_z(A\ell_H)_z}{d_z}$ Sum over **invariant subspaces of both** the single qubit blocks and the intermediate channel

**Holds rigorously for aperiodic circuits. For periodic circuits only holds for the Cesàro sum of all depths L.

The general formula

Using **non-negative matrix theory,** we are able to **exactly** compute the **variance** in the deep circuit limit. In particular, if we focus for simplicity on **single qubit noise**, we get:

More specifically, we have **Theorem III.1 (Deep circuits):**

*The variance converges** exponentially fast in the number of layers to the above value, i.e.*

$$
\left|\mathbb{V}_{\rho,H}^{L} - \mathbb{V}_{\rho,H}^{\infty}\right| \in O\left(e^{-\beta L} \|H\|_{2}^{2}\right)
$$

We can visualize what's going on here again by a **graph**, summarizing the **interactions** in the **space of bounded operators**

We can visualize what's going on here again by a **graph**, summarizing the **interactions** in the **space of bounded operators**

Strictly contractive subspaces may be all connected or have symmetries, but it doesn't matter, as their contribution **vanish anyway.**

We can visualize what's going on here again by a **graph**, summarizing the **interactions** in the **space of bounded operators**

We can visualize what's going on here again by a **graph**, summarizing the **interactions** in the **space of bounded operators**

The trivial subspace normally **doesn't contribute** to the variance **by itself,** but here it has a **great importance,** since it can **collect** contributions coming from **strictly contractive subspaces!**

Strictly contractive subspaces can in general **extend outside**, i.e. they are not invariant. But **once they reach** an invariant subspace, **they are bound to stay there**! These are what makes **contributions from noise** possible!

Strictly contractive subspaces may be all connected or have symmetries, but it doesn't matter, as their contribution **vanish anyway.**

We can visualize what's going on here again by a **graph**, summarizing the **interactions** in the **space of bounded operators**

The trivial subspace normally **doesn't contribute** to the variance **by itself,** but here it has a **great importance,** since it can **collect** contributions coming from **strictly contractive subspaces!**

Strictly contractive subspaces can in general **extend outside**, i.e. they are not invariant. But **once they reach** an invariant subspace, **they are bound to stay there**! These are what makes **contributions from noise** possible!

Norm-preserving subspaces, exactly as in the unitary case, cannot communicate with the outside. Their contribution is **proportional to their dimension.**

Strictly contractive subspaces may be all connected or have symmetries, but it doesn't matter, as their contribution **vanish anyway.**

TL;DR

There is a meme template for everything these days :)

Examples: Unitary circuits

The absorption term A vanishes in this case because unitary dynamics is **reversible**.

Corollary III.1.1 (Deep, unitary circuits).

If the channel is unitary, then the absorption terms vanish.

$$
\mathbb{V}_{\rho,H}^{\infty} = \sum_{z} \frac{(\ell_{\rho})_z (\ell_{H})_z}{d_z}
$$

Examples: Unitary circuits

The absorption term A vanishes in this case because unitary dynamics is **reversible**.

Corollary III.1.1 (Deep, unitary circuits).

If the channel is unitary, then the absorption terms vanish.

$$
\mathbb{V}_{\rho,H}^{\infty} = \sum_{z} \frac{(\ell_{\rho})_z (\ell_{H})_z}{d_z}
$$

Examples: Unitary circuits

The absorption term A vanishes in this case because unitary dynamics is **reversible**.

Corollary III.1.1 (Deep, unitary circuits).

If the channel is unitary, then the absorption terms vanish.

$$
\mathbb{V}_{\rho,H}^{\infty} = \sum_{z} \frac{(\ell_{\rho})_z (\ell_{H})_z}{d_z}
$$

Examples: Contractive circuits

Conversely, since each invariant subspace norm-preserving to '*survive*' the deep circuit limit, in the strictly contractive case **only the absorption terms** remain.

Corollary III.1.2 (Deep, contractive circuits).

If the channel has no unitary subspaces, then only the absorption term survives.

$$
\mathbb{V}_{\rho,H}^{\infty} = \frac{(A\ell_H)_0}{d}
$$

In particular, if the channel is unital, then $\mathbb{V}_{a,H}^{\infty} = 0$.

Examples: Contractive circuits

Conversely, since each invariant subspace norm-preserving to '*survive*' the deep circuit limit, in the strictly contractive case **only the absorption terms** remain.

Corollary III.1.2 (Deep, contractive circuits).

If the channel has no unitary subspaces, then only the absorption term survives.

$$
\mathbb{V}_{\rho,H}^{\infty} = \frac{(A\ell_H)_0}{d}
$$

In particular, if the channel is unital, then $\mathbb{V}_{a,H}^{\infty} = 0$.

Examples: Contractive circuits

Conversely, since each invariant subspace norm-preserving to '*survive*' the deep circuit limit, in the strictly contractive case **only the absorption terms** remain.

Corollary III.1.2 (Deep, contractive circuits).

If the channel has no unitary subspaces, then only the absorption term survives.

$$
\mathbb{V}_{\rho,H}^{\infty} = \frac{(A\ell_H)_0}{d}
$$

In particular, if the channel is unital, then $\mathbb{V}_{a,H}^{\infty} = 0$.

Giulio Crognaletti (giulio.crognaletti@phd.units.it) Ciulio Crognaletti Computing@INFN 24

A simple way to escape the results shown here is to resort to **shallow circuit**. Even for deep circuits, we can get away from the main theorem if the circuit is **effectively shallow**.

Proposition IV.1 (QUResNet).

If the channel is unitary, and parameterized, with parameters having variance scaling inversely proportional to L, then

$$
\mathbb{V}_{\rho,H}^L \ge F(n)(\ell_\rho, \ell_H)
$$

where F(n) decays polynomially with n.

This result still hinges, although indirectly, on the deep circuit limit result, as it works by enforcing a **slower speed of convergence** to the process, acting on the constant **β**

$$
\left| \mathbb{V}_{\rho,H}^{L} - \mathbb{V}_{\rho,H}^{\infty} \right| \in O\left(e^{-\beta L} \| H \|_{2}^{2} \right)
$$

$$
\beta \in O\left(1/L \right)
$$

This result still hinges, although indirectly, on the deep circuit limit result, as it works by enforcing a **slower speed of convergence** to the process, acting on the constant **β**

No formal bound to ensure convergence after **any number** of layers

This result still hinges, although indirectly, on the deep circuit limit result, as it works by enforcing a **slower speed of convergence** to the process, acting on the constant **β**

No formal bound to ensure convergence after **any number** of layers

This regime is achieved also in the **noisy regime**, when the noise is **sufficiently weak.**

Stochastic unravelling of channels and QResNets

For any given noise map, we are guaranteed to be able to describe it as a **stochastic unravelling**, i.e. as the **expectation value** of some simpler operators. For certain maps, such operators can even be **unitary**!

$$
\mathcal{E}(\rho) = \mathbb{E}_{\phi} \left\{ W_{\phi} \rho W_{\phi}^{\dagger} \right\} \qquad \{ W_{\phi} \} \subset U(d)
$$

Stochastic unravelling of channels and QResNets

For any given noise map, we are guaranteed to be able to describe it as a **stochastic unravelling**, i.e. as the **expectation value** of some simpler operators. For certain maps, such operators can even be **unitary**!

$$
\mathcal{E}(\rho) = \mathbb{E}_{\phi} \left\{ W_{\phi} \rho W_{\phi}^{\dagger} \right\} \qquad \qquad \{W_{\phi}\} \subset U(d)
$$

Proposition IV.2 (informal)

The variance of a channel is always smaller than the variance of the corresponding stochastic unravelling, with equality holding if and only if the channel is unitary.

Stochastic unravelling of channels and QResNets

For any given noise map, we are guaranteed to be able to describe it as a **stochastic unravelling**, i.e. as the **expectation value** of some simpler operators. For certain maps, such operators can even be **unitary**!

$$
\mathcal{E}(\rho) = \mathbb{E}_{\phi} \left\{ W_{\phi} \rho W_{\phi}^{\dagger} \right\} \qquad \qquad \{W_{\phi}\} \subset U(d)
$$

Proposition IV.2 (informal)

The variance of a channel is always smaller than the variance of the corresponding stochastic unravelling, with equality holding if and only if the channel is unitary.

Stochastic unravelled **ATRADE OFFERA** ResNets

Proposition IV.2 (informal) with equality holding if and only

channel

 $\mathcal{E}(\rho)$

raflin.com

OResnet

For any given noise map, we a **regularant it as a stochastic unravelling**, i.e. as the **expectation value** of some weak noise **Such operators** operators can even be unitary!

 $\subset U(d)$

The variance of a channel is always smaller than the variance of a channel is always smaller than the variance of the corresponding stochastic unravelling,

Giulio Crognaletti (giulio.crognaletti@phd.units.it) Ciulio Crognaletti Quantum Computing@INFN 24

 Var_{θ}

Conclusions

Takeaway messages:

- **Concentration** for noisy circuits is more **intricate** than one can naively expect.
- Noise can **not only induce** barren plateaus, but **also prevent it** if engineered correctly.
- **Weak noise** maps are closely related to **small angle-like initialization** strategies.

Thanks for your attention!

Any question?

giulio.crognaletti@phd.units.it

Extra: the theoretical framework

Generic quantum channels **do not have a group structure**, therefore the algebraic arguments do not apply. However, we can still divide the space of bounded operator based on the **unitary part of the circuit**.

Since the unitary part is divided into qubits, these subspaces are linked to how "local" an operator is, and we can define a measure analogous to the previously mentioned **purity** in this context as well.

Extra: locality and locality transfer matrix

The action of the unitary and local part of the circuit is **easily computed** using the tools from Weingarten calculus in the Lie-algebraic picture, and yields a result analogous to the previously mentioned.

This can be interpreted a **diagonal matrix** applied to the locality vectors.

Extra: locality and locality transfer matrix

This work extends this idea, showing how the action of a **generic quantum channel** is described instead by a more **generic matrix**.

We can now analyze the **spectral properties** of T to deduce the main properties of the **deep circuit** limit.

Extra: irreducible blocks and absorption coefficients

The matrix T is most fruitfully examined **graphically** as an adjacency matrix for some graph. This graph represents the subspaces of B put in **communication** by the intermediate channel.

Examples: Non-unital noise and entanglement

Employing the last result one can obtain a variance with **different scaling** as a function of noise strength based on the **entangling power** of each layer.

Linear dependence on noise strength **Quadratic** dependence on noise strength

Giulio Crognaletti (giulio.crognaletti@phd.units.it) Ciulio Crognaletti Quantum Computing@INFN 24

Examples: Non-unital noise and entanglement

Giulio Crognaletti (giulio.crognaletti@phd.units.it) Ciulio Crognaletti Quantum Computing@INFN 24