FAULT-TOLERANT SIMULATION OF LATTICE GAUGE THEORIES WITH GAUGE COVARIANT CODES

LUCA SPAGNOLI

Quantum error correction

Quantum computers can undergo errors.

We can define symmetries and conserved quantities.

If something is violated, we know an error occurred.

GOALS AND OBJECTIVES

arXiv:2405.19293

Quantum error correction

Quantum computers can undergo errors.

We can define symmetries and conserved quantities.

If something is violated, we know an error occurred.

Gauge Theories

GOALS AND OBJECTIVES

Gauge Theories are physical theories with a gauge symmetry, which is a local symmetry.

arXiv:2405.19293

Quantum error correction

Quantum computers can undergo errors.

We can define symmetries and conserved quantities.

If something is violated, we know an error occurred.

Gauge Theories Linking two fields

GOALS AND OBJECTIVES

Gauge Theories are physical theories with a gauge symmetry, which is a local symmetry.

We can use the Gauge symmetry as a symmetry to do error correction.

If it is violated, an error occurred.

QUESTIONS: what type and how many errors can we correct with the gauge symmetry?

arXiv:2405.19293

Classical computes:

bit: $0,1$

Possible errors:

$$
\begin{array}{cc} \text{bit-flip:} & 0 \rightarrow 1 \\ & 1 \rightarrow 0 \end{array}
$$

We can correct errors adding redundancy: $0_L=000$ $010 \rightarrow 000$

Classical computes: Quantum computes: bit: $0,1$ qbit: $|\psi\rangle = a|0\rangle + b|1\rangle$ Possible errors: Possible errors: bit-flip: $\begin{array}{cc} 0 \rightarrow 1 \\ 1 \rightarrow 0 \end{array}$ bit-flip: $\begin{array}{c} |0\rangle \rightarrow |1\rangle \ |1\rangle \rightarrow |0\rangle \end{array}$ We can correct errors phase-flip: $|0\rangle \rightarrow |0\rangle$
 $|1\rangle \rightarrow -|1\rangle$ adding redundancy: $0_L=000$ $010 \rightarrow 000$

Classical computes: Quantum computes: bit: $0, 1$ qbit: $|\psi\rangle = a|0\rangle + b|1\rangle$ Possible errors: Possible errors: bit-flip: $\begin{array}{cc} 0 \rightarrow 1 \\ 1 \rightarrow 0 \end{array}$ bit-flip: $\begin{array}{c} |0\rangle \rightarrow |1\rangle \ |1\rangle \rightarrow |0\rangle \end{array}$ We can correct errors $|0\rangle \rightarrow |0\rangle$
phase-flip: $|1\rangle \rightarrow -|1\rangle$ adding redundancy: $0_L=000$ $010 \rightarrow 000$

We cannot measure the state to know if an error happened

Which operators are we alloed to measure without making the wavefunction collapse?

EXAMPLE: BIT-FLIP

We can measure the parity between 2 qubits:

> $ZZ|00\rangle=|00\rangle$ $|ZZ|01\rangle=-|01\rangle$ $|ZZ|10\rangle=-|10\rangle$ $|ZZ|11\rangle = |11\rangle$

Without destroying superpositions:

 $ZZ(\ket{00}+\ket{11})=(\ket{00}+\ket{11})$ $ZZ(|01\rangle+|10\rangle)=-(|01\rangle+|10\rangle)$

Which operators are we alloed to measure without making the wavefunction collapse?

EXAMPLE: BIT-FLIP

Remember:

 $Z|0\rangle=|0\rangle$ $|Z|1\rangle=-|1\rangle$

Stabilizers: $S_1=Z_1Z_2$ $S_2 = Z_2 Z_3$

The logical states:

 $|0\rangle_L \rightarrow |000\rangle$ $|1\rangle_L \rightarrow |111\rangle$

We can measure the parity between 2 qubits:

> $ZZ|00\rangle = |00\rangle$ $|ZZ|01\rangle=-|01\rangle$ $ZZ|10\rangle=-|10\rangle$ $ZZ|11\rangle = |11\rangle$

Without destroying superpositions:

 $ZZ(\ket{00}+\ket{11})=(\ket{00}+\ket{11})$ $ZZ(|01\rangle+|10\rangle)=-(|01\rangle+|10\rangle)$

Which operators are we alloed to measure without making the wavefunction collapse?

EXAMPLE: BIT-FLIP

Remember:

$$
\begin{aligned} Z|0\rangle&=|0\rangle\\ Z|1\rangle&=-|1\rangle \end{aligned}
$$

LATTICE GAUGE THEORIES

On links there is the Gauge field with 2 possible values:

zero one

Consider an abelian, truncated, lattice gauge theory

$$
\frac{L_{1\text{-}2}}{S_{1\text{-}1}}\left(\frac{L_{1\text{-}1}}{S_{1}}\right)\frac{L_{1}}{S_{1}}\left(\frac{L_{1}}{S_{1\text{-}1}}\right)\frac{L_{1\text{+}1}}{S_{1\text{-}1}}
$$

LATTICE GAUGE THEORIES

Assuming no particles in the system, the incoming and outgoing fields have to be the same:

$$
Z_{L_{l-1}}Z_{L_l}|\psi\rangle=|\psi\rangle
$$

On links there is the Gauge field with 2 possible values:

zero one

Consider an abelian, truncated, lattice gauge theory

$$
L_{12}(S_{11})L_{11}(S_{1})L_{1}L_{11}
$$

LATTICE GAUGE THEORIES

Assuming no particles in the system, the incoming and outgoing fields have to be the same:

On links there is the Gauge field with 2 possible values:

$$
Z_{L_{l-1}}Z_{L_l}
$$

Consider an abelian, truncated, lattice gauge theory

$$
L_{1-2}(S_{1-1})L_{1-1}(S_{1})L_{1}L_{1}L_{1+1}
$$

It is the repetition code, with a number of copies equal to the number of links

 $Z_{L_{l-1}}Z_{L_{l}}|\psi\rangle=|\psi\rangle.$

 $G_l =$

So, we can correct every bit-flip error

FUTURE WORK arXiv:2405.19293

Ø fermions more spatial dimensions higher bond dimension $\mathbf{?}$ non-abelian theories

Fault-tolerant quantum simulation (Trotter)

We want to simulate a system with a gauge symmetry

 L_{1-2}

CONCLUSIONS arXiv:2405.19293

$$
\begin{array}{cc}\n\frac{1}{2} & \sum_{l=1}^{l} E_{l+1} & \\
& G_l = Z_{L_{l-1}} Z_{L_l}\n\end{array}
$$

We can use the gauge symmetry to detect and correct every X error

- O fermions
- \emptyset more spatial dimensions
- higher bond dimension
	- ? non-abelian theories

In this way we can save memory, and easily perform quantum simulations

THANK YOU

FERMIONS

$$
L_{1-2}(S_{1-1}) - L_{1-1}(S_{1}) - L_{1-1}(S_{1+1}) - L_{1+1}
$$

If the site is empty:

$$
Z_{S_l}|\psi\rangle=|\psi\rangle
$$

Incoming and outgoing fields have to be the same:

 $Z_{L_{l-1}}Z_{L_{l}}|\psi\rangle=|\psi\rangle.$

If the site is full:

$$
Z_{S_l}|\psi\rangle=-|\psi\rangle
$$

Incoming and outgoing fields have to be different:

$$
Z_{L_{l-1}}Z_{L_l}|\psi\rangle=-|\psi\rangle
$$

 $G_l = Z_{L_{l-1}}Z_{S_l}Z_{L_l}$

We can correct every X error in the system, but we cannot detect Z errors

MEASUREMENT AND CORRECTION $G_l = Z_{L_{l-1}} Z_{S_l} Z_{L_l}$ L_{H1} L_{I-1} (S_{1}) S_{1+1} $S₁₋₁$ $G_l|\psi\rangle=|\psi\rangle$

To correct Z errors we can use more layers of redundancy

TIME EVOLUTION

The hamiltonian, can be written as

 $H=\sum_i c_j H_j$

The time evolution operator we want to apply is

 $e^{iHt}=e^{it\sum_j c_j H_j}$

To simplify the implementation, we can break up the operator, approximating it:

$$
e^{it\sum_j c_j H_j} \approx \prod_j e^{it c_j H_j}
$$

This is the first-order Trotter formula, and the error is:

$$
\left | \left | e^{itH} - \prod_j e^{itc_jH_j} \right | \right | \leq t^2 \sum_j \left | \left | \sum_k [H_j, H_j] \right | \right |
$$

So we need a way to implement the single exponentials

But we can apply easily on the system only the logical operations

They correspond to Pauli matrices on the logical qubits

TIME EVOLUTION

How do we implement

 $e^{itc_jH_j}$

Assuming the Hamiltonian is a sum of Pauli matrices:

To do this, let us assume to have an ancilla qubit on which we can do arbitrary rotations, prepared in the following state:

 $|\phi\rangle = \cos$

 $|\phi\rangle$

 $|\psi|$

Then, the following circuit applies the right exponential:

 $e^{itc_jH_j}=\cos(tc_j)+i\sin(tc_j)H_j.$

In this way we move the problem of applying the exponential, to the problem of preparing an ancilla qubit state

$$
(tc_j)|0\rangle + i\sin (tc_j)|1\rangle
$$

IMPLEMENTATION OF TROTTER

Why the following circuit implements the right exponential?

$$
|\phi\rangle|\psi\rangle=\cos(tc_j)|0\rangle|\psi\rangle
$$

$$
CH_j \to \cos(t c_j) |0\rangle |\psi\rangle
$$

$$
\begin{aligned} H &\rightarrow \cos(t c_j) \frac{1}{\sqrt{2}}(|0\rangle+|1\rangle) |\psi\rangle + i \sin(t c_j) \frac{1}{\sqrt{2}}(|0\rangle-|1\rangle) H_j |\psi\rangle \\ &= \frac{1}{\sqrt{2}} (\cos(t c_j) + i \sin(t c_j) H_j) |0\rangle |\psi\rangle + \frac{1}{\sqrt{2}} (\cos(t c_j) - i \sin(t c_j) H_j) |1\rangle |\psi\rangle \\ &= \frac{1}{\sqrt{2}} |0\rangle e^{i t c_j H_j} |\psi\rangle + \frac{1}{\sqrt{2}} |1\rangle e^{-i t c_j H_j} |\psi\rangle \end{aligned}
$$

The circuit applies with probability 1/2 the right exponential, with probability 1/2 its hermitian conjugate

- $\langle i \sin(t c_j)|1 \rangle |\psi\rangle \rangle$
- $\langle i \sin(t c_j)|1 \rangle H_j |\psi\rangle.$

We can apply always the right exponential with a cycle of oblivious amplitude amplification

HAMILTONIAN

The starting Hamiltonian:
\n
$$
H = m \sum_{l} (-1)^{l} \psi_{l}^{\dagger} \psi_{l} + \epsilon \sum_{l} (\psi_{l}^{\dagger} Q_{l} \psi_{l+1} + \psi_{l+1}^{\dagger} Q_{l}^{\dagger} \psi_{l}) + 2\lambda_{E} \sum_{l} P_{l}
$$
\n
$$
H = \frac{m}{2} \sum_{l} (-1)^{l} (1 - (-1)^{l} Z_{S_{l}})
$$
\n
$$
H = \frac{m}{2} \sum_{l} (-1)^{l} (1 - (-1)^{l} Z_{S_{l}})
$$
\n
$$
+ \frac{\epsilon}{2} \sum_{l} (1 + Z_{S_{l}} Z_{S_{l+1}}) X_{S_{l}} X_{L_{l}} X_{S_{l+1}} + 2\lambda_{E} \sum_{l} Z_{L_{l}}
$$
\n
$$
= \overline{Z}_{l}
$$
\n
$$
\overline{Z}_{l} = Z_{L_{l}}
$$
\n
$$
\overline{X}_{l} = X_{S_{l}} X_{L_{l}} X_{S_{l+1}}
$$

In terms of logical operations:

$$
H=\frac{m}{2}\sum_l(-1)^l(1-\overline{Z}_{l-1}\overline{Z}_l)+\frac{\epsilon}{2}\sum_l\Big(1-\overline{Z}_{l-1}\overline{Z}_{l+1}\Big)\overline{X}_l+2\lambda_E\sum_l\overline{Z}_l
$$

$$
\begin{aligned} \mathsf{b}\cdot\mathsf{s} \quad & \psi = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} = \frac{1}{2}(1+Z)X \\ & Q = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} = X \\ & P = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} = Z \end{aligned}
$$

 $\left\langle \bar{X}|0\right\rangle _{L}=\left| 1\right\rangle _{L}$ $\left\langle \bar{X}|1\right\rangle _{L}=|0\big\rangle _{L}$ $\left<\bar{Z}\middle|0\right>_L = \left|0\right>_L$ $\left\langle \bar{Z}|1 \right\rangle_L = -|1 \rangle_L$

FULL ENCODING

3 qubits per site 3 qubits per link

$$
\ket{+}=\frac{1}{\sqrt{2}}(\ket{0}+\ket{1})
$$

$$
\ket{-}=\frac{1}{\sqrt{2}}(\ket{0}-\ket{1})
$$

$$
\begin{aligned} X|+\rangle &= |+\rangle \\ X|-\rangle &= -|-\rangle \end{aligned}
$$

codewords stabilizers

- $\ket{0}_L \rightarrow \ket{+++}$
- $\ket{1}_L \rightarrow \ket{---}$
-
- $S_1=X_1X_2$
- $S_1 = X_2 X_3$

STABILIZER CODES

Let "P" be the n-qubits Pauli group

Define "S" the stabilizer group as an abelian subgroup of P

If we start with n physical qubits

The element of S are traceless, with eigenvalues +1 or -1

A codword is a state such that, for every element of S

$$
S_i|x\rangle=|x\rangle
$$

By adding an element to S, we half the Hilbert space of codewords

we define n-k stabiliser operators

we will have a number of codewords equal to

$$
\displaystyle 2^n/2^{n-k}=2^k
$$

So we will have k logical qubits

Logical operators are elements of P that commute with S

They are 2k operators. Every operator commute with all other operators but one that has to anti commute