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THEORIES WITH GAUGE COVARIANT CODES
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GOALS AND OBJECTIVES

Quantum error correction

Quantum computers can
undergo errors.

We can define
symmetries and
conserved quantities.

If something is violated,

we know an error e
- ~
occurred. N
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GOALS AND OBJECTIVES

Quantum computers can Gauge Theories are
undergo errors. physical theories with a
gauge symmetry, which is

We can define a local symmetry.

symmetries and
conserved quantities.

If something is violated,
we know an error
occurred.
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GOALS AND OBJECTIVES

Gauge Theories Linking two fields

Quantum computers can Gauge Theories are We can use the Gauge
undergo errors. physical theories with a symmetry as a symmetry to
gauge symmetry, which is do error correction.
We can define a local symmetry.
symmetries and If It Is violated, an error

conserved quantities. occurred.

If something is violated,
we know an error
occurred.

QUESTIONS: what type and
how many errors can we

correct with the gauge

symmetry?

arXiv:2405.19293
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QUANTUM ERROR CORRECTION

Classical computes:

bit: 0,1

Possible errors:

0—1

bit-flip:
P 1—0

We can correct errors
adding redundancy:

0 = 000
010 — 000
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QUANTUM ERROR CORRECTION

Classical computes: Quantum computes: -
bit: 0,1 gbit: |¥) = a|0) + b|1)
Possible errors: Possible errors:
. . 0—1
- . 0 1
bit-flip: Lo bit-flip: ) — 1)
1) — |0)
We can correct errors
adding redundancy: 0) — |0)
0, — 000 phase-flip: 1) 5 1)
010 — 000
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QUANTUM ERROR CORRECTION

Classical computes: Quantum computes: -
bit: 0,1 gbit: |¢) = al0) 4 b|1) ‘O>LL — |OLOLOL>
Possible errors: Possible errors:
01 0), = |+ ++)
- : . . 0 1 L
bit-flip: Lo bit-flip: ) — 1)
1) — |0)
We can correct errors We cannot measure
adding redundancy: | 0) — |0) the state to know if
0; = 000 phase-flip: 1) = — 1) an error happened
010 — 000



EXAMPLE: BIT-FLIP

Which operators are we alloed to measure
without making the wavefunction collapse?
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EXAMPLE: BIT-FLIP

Which operators are we alloed to measure
without making the wavefunction collapse?

Remember:
z10) = [0)
Z|1) = —|1)

We can measure the
parity between 2 qubits:

ZZ|00) = |00)
ZZ|01) = —|01)
ZZ|10) = —|10)
ZZ|11) = |11)

Without destroying
superpositions:

ZZ(|00) + [11)) = (]00) + |11))
ZZ(|01) + [10)) = —(|01) + |10))
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EXAMPLE: BIT-FLIP

Which operators are we alloed to measure We can measure the -
without making the wavefunction collapse? parity between 2 qubits:
Z7|00) = |00)
The logical states: remember
0), — |000) Z|1) = —[1) 27|10) = —|10)
Stabilizers: Sl SQ il Without destroying
' - + 1 superpositions:
S1= 2125 B _
} ] ] ) ZZ(|00) + [11)) = (|00) + |11))
52 = 2223 ZZ(|01) + |10)) = —(|01) + |10))
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LATTICE GAUGE THEORIES

Consider an abelian, truncated, lattice gauge theory -

On links there is the Gauge

L|_2 . L|-1 . L| . L|+1 field with 2 possible values:
Zero O>

one ]_>
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LATTICE GAUGE THEORIES

Consider an abelian, truncated, lattice gauge theory -

On links there is the Gauge

L|_2 . L|-1 . L| . L|+1 field with 2 possible values:
Zero O>

one ]_>

Assuming no particles in the system,
the incoming and outgoing fields have
to be the same:

ZLl—lle ‘¢> — |¢>



—=
LATTICE GAUGE THEORIES

Consider an abelian, truncated, lattice gauge theory -

On links there is the Gauge

L|_2 . L|-1 . L| . L|+1 field with 2 possible values:
Zero O>

one ]_>

Assuming no particles in the system,

the incoming and outgoing fields have
to be the same: It is the repetition code, with a number of

copies equal to the number of links
ZLHZL1W> — ‘¢>
G, =21, .21,

\\ So, we can correct every bit-flip error
& )



FUTURE WORK

arXiv:2405.19293

Fault-tolerant

¢ fermions (/)quantum simulation

@ more spatial dimensions
@? higher bond dimension

? non-abelian theories

(Trotter)

e’th — eithCjHj ~ I I e’l:thHj
J

e’l:thHj —

|#) H|—A
:

) — H;
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CONCLUSIONS

arXiv:2405.19293

L. (SH) L1 . L . L1

G =21, .75, In this way we can save
We want to simulate a system memory, and easily perform
with a gauge symmetry

quantum simulations
We can use the gauge
symmetry to detect and J

correct every X error

¢) fermions

@ more spatial dimensions

eth — eithC]‘Hj ~ H e’ithHj
J
@? higher bond dimension

? non-abelian theories eithHj _ X

\\ |4) H;
\

\ A
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FERMIONS
L2 @ L e L @ L1 Sites can be:
. . . 0)

empty

If the site Is empty: If the site is full: full ]_>

ZSz‘¢> — ‘¢> ZSl"‘w — _‘¢>

Incoming and outgoing fields Incoming and outgoing fields
have to be the same: have to be different: Zzero O>

ZLl—lle‘¢> — ‘¢> ZLl—lle|¢> — _‘¢> one 1>

On links there is the Gauge
field with 2 possible values:

@ Gl — ZLl—l ZSZZLZ
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MEASUREMENT AND CORRECTION

G = ZL1—1ZSzZLz :

Gi|lvY) = |¢)
b ;
L OO — Lo+
\\§§A . G
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MEASUREMENT AND CORRECTION
G = ZLZ—IZSZZLZ /

Lo . L, . L, . Li+1
== Gi|lvY) = |¢)

Gi1—1|Gi| G4 |error location We can correct every X
In the system, but we
+ 4+ + none error in ,
cannot detect Z errors
— | —| T L1
To correct Z errors we
+ || T Ol can use more layers of
—\ _ _ redundanc
\\\\&z + Ly Y



The hamiltonian, can be
written as

H = ZCjHj
J

The time evolution operator
we want to apply is

6th — 6it Zj CjHj

TIME EVOLUTION

To simplify the implementation,

we can break up the operator,
approximating it:

~ I I eithHj

elt Zj CjHJ

J

This is the first-order Trotter
formula, and the error is:

eitH . H eithHj
J

> [Hj, Hy)

<t*)
J

k
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So we need a way to
iImplement the single
exponentials

But we can apply easily on
the system only the logical
operations

They correspond to Pauli
matrices on the logical
qubits



TIME EVOLUTION

To do this, let us assume to have an ancilla —
. qubit on which we can do arbitrary rotations,
e’ltcjﬂj prepared in the following state:

¢) = cos(tc;)|0) + isin(tc;)[1)

How do we implement

Assuming the Hamiltonian is
a sum of Pauli matrices: Then, the following circuit applies the right

e'“i'i = cos(tc;) + isin(tc;)H,; exponential

[ I H X

In this way we move the problem of |¢> — Hj
applying the exponential, to the problem

—\ of preparing an ancilla qubit state




—=

IMPLEMENTATION OF TROTTER

Why the following circuit ..
— tc;) |0 tc;)|1
Implements the right exponential? ‘¢>‘¢> COS( CJ)‘ >W> —|—zsm( c])\ >W>

) I H A CH; — cos(te,)|0)|4) + i sin(te;)|1) Bl

1 L 1
|@D> — Hj H — COS(tcj)Eﬂm + (1)) 4) + ZSlﬂ(th)E(\(D — 1) H;|4)
1 1
= ——(cos(tc;) + isin(te;)H;)|0) 1) + —=(cos(tc;) — isin(te;) Hj)[1)[4h)
|¢) = cos(tc;)|0) + isin(tc;)|1) f V2

. 1 :
= 50w + = e )

The circuit applies with probability 1/2 the right
exponential, with probability 1/2 its hermitian conjugate

% We can apply always the right exponential with a cycle of
&\\ N oblivious amplitude amplification



HAMILTONIAN

The starting Hamiltonian: Fermionic operators % = (

H=m) (-1l +e) ($]Qupr +¢],,Qlv1) +2Xp ) _ P, 0o (o
! l z 1

Field operators

1
-
In terms of Pauli matrices: 0
m
H=—) (-1(1-(-1'z _
2 El:( ) (=1) Sl) Logical operations: X‘O>L — |1>L
€ — % —
-+ E zl:(]- + ZSZZSZ+1)X51 XL1X51+1 T 2)‘EEZ:ZL1 Zl — ZLZ X‘1>L — |O>L
X, = XgX1,Xs, . 2/0), = [0),
Z|1>L — _|1>L

In terms of logical operations:
™m

—_ —_ 6 —_ —_ —_ —_
H = > Z(—l)l(l —Z117;) + 5 Z (1 — Zl—1Zl+1)Xl + ZAEZ Z
l l l



FULL ENCODING

3 qubits per site

/H\ \ ) 3 qubits per link
@ @ @ \@ @ ), +) = —=(0)+ 1)

7
1
=) =—=(0) — 1))
codewords stabilizers V2
0); — |+ + +) S1 = X1.X X[ = [4)
1) — | ) 51 = X2 X3 X|-) = —|-)
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STABILIZER CODES

Let “P" be the n-qubits

Define “S” the stabilizer
group as an abelian
subgroup of P

If we start with n physical qubits
we define n-k stabiliser operators

we will have a number of
codewords equal to

zn/zn—k — 2]-6‘

® So we will have k logical qubits

A codword is a state such
Pauli group that, for every element of S

Sifz) = |)

The element of S are traceless,
with eigenvalues +1 or -1

By adding an element to S, we
half the Hilbert space of
codewords

Logical operators are elements
of P that commute with S

They are 2k operators. Every
operator commute with all
other operators but one that
has to anti commute



