## FAULT-TOLERANT SIMULATION OF LATTICE GAUGE THEORIES WITH GAUGE COVARIANT CODES

**LUCA SPAGNOLI** 







**UNIVERSITY OF TRENTO** 





# **GOALS AND OBJECTIVES**

#### Quantum error correction

Quantum computers can undergo errors.

We can define symmetries and conserved quantities.

If something is violated, we know an error occurred.



arXiv:2405.19293

# GOALS AND OBJECTIVES

#### Quantum error correction

Quantum computers can undergo errors.

We can define symmetries and conserved quantities.

If something is violated, we know an error occurred.



Gauge Theories are physical theories with a gauge symmetry, which is a local symmetry.



arXiv:2405.19293

## GOALS AND OBJECTIVES

#### Quantum error correction

Quantum computers can undergo errors.

We can define symmetries and conserved quantities.

If something is violated, we know an error occurred.



Gauge Theories are physical theories with a gauge symmetry, which is a local symmetry.



arXiv:2405.19293

#### Linking two fields

We can use the Gauge symmetry as a symmetry to do error correction.

If it is violated, an error occurred.

QUESTIONS: what type and how many errors can we correct with the gauge symmetry?



Classical computes:

bit: 0,1

Possible errors:

bit-flip: 
$$egin{array}{cc} 0 
ightarrow 1 \ 1 
ightarrow 0$$

We can correct errors adding redundancy:  $0_L = 000$ 

010 
ightarrow 000

Classical computes: Quantum computes: qbit:  $|\psi
angle = a|0
angle + b|1
angle$ bit: 0,1 Possible errors: Possible errors: bit-flip:  $egin{array}{cc} 0 
ightarrow 1 \ 1 
ightarrow 0$ bit-flip:  $egin{array}{cc} |0
angle 
ightarrow |1
angle \ |1
angle 
ightarrow |0
angle \end{array}$ We can correct errors phase-flip:  $egin{array}{c} |0
angle 
ightarrow |0
angle \\ |1
angle 
ightarrow -|1
angle \end{array}$ adding redundancy:  $0_L = 000$ 010 
ightarrow 000

Classical computes: Quantum computes: qbit:  $|\psi
angle = a|0
angle + b|1
angle$ bit: 0,1 Possible errors: Possible errors: bit-flip:  $egin{array}{cc} 0 
ightarrow 1 \ 1 
ightarrow 0$ bit-flip:  $egin{array}{cc} |0
angle 
ightarrow |1
angle \ |1
angle 
ightarrow |0
angle \end{array}$ We can correct errors phase-flip:  $egin{array}{c} |0
angle 
ightarrow |0
angle \\ |1
angle 
ightarrow -|1
angle \end{array}$ adding redundancy:  $0_L = 000$ 010 
ightarrow 000



We cannot measure the state to know if an error happened

## **EXAMPLE: BIT-FLIP**

Which operators are we alloed to measure without making the wavefunction collapse?





## **EXAMPLE: BIT-FLIP**

Which operators are we alloed to measure without making the wavefunction collapse?

Remember:

|Z|0
angle=|0
angle|Z|1
angle=-|1
angle



We can measure the parity between 2 qubits:

> |ZZ|00
> angle = |00
> angle|ZZ|01
> angle=-|01
> angleZZ|10
> angle=-|10
> angle|ZZ|11
> angle=|11
> angle

Without destroying superpositions:

 $ZZ(\ket{00}+\ket{11})=(\ket{00}+\ket{11})$  $ZZ(\ket{01}+\ket{10})=-(\ket{01}+\ket{10})$ 

## **EXAMPLE: BIT-FLIP**

Which operators are we alloed to measure without making the wavefunction collapse?

The logical states:

$$egin{array}{c} |0
angle_L 
ightarrow |000
angle \ |1
angle_L 
ightarrow |111
angle \end{array}$$

Remember:

|Z|0
angle = |0
angle|Z|1
angle=-|1
angle

Stabilizers:  $S_1 = Z_1 Z_2$  $S_2 = Z_2 Z_3$ 

| $S_1$ | $S_2$ | error |
|-------|-------|-------|
| _     | +     | 1     |
| _     | -     | 2     |
| +     | _     | 3     |

We can measure the parity between 2 qubits:

> |ZZ|00
> angle = |00
> angle|ZZ|01
> angle=-|01
> angle|ZZ|10
> angle=-|10
> angle|ZZ|11
> angle=|11
> angle

Without destroying superpositions:

 $ZZ(\ket{00}+\ket{11})=(\ket{00}+\ket{11})$ ZZ(|01
angle+|10
angle)=-(|01
angle+|10
angle)

## LATTICE GAUGE THEORIES

Consider an abelian, truncated, lattice gauge theory

On links there is the Gauge field with 2 possible values:



## LATTICE GAUGE THEORIES

Consider an abelian, truncated, lattice gauge theory

Assuming no particles in the system, the incoming and outgoing fields have to be the same:

$$Z_{L_{l-1}}Z_{L_l}|\psi
angle=|\psi
angle$$

On links there is the Gauge field with 2 possible values:



## LATTICE GAUGE THEORIES

Consider an abelian, truncated, lattice gauge theory

Assuming no particles in the system, the incoming and outgoing fields have to be the same:

It is the repetition code, with a number of copies equal to the number of links

 $Z_{L_{l-1}}Z_{L_l}|\psi
angle=|\psi
angle$ 

 $G_l =$ 

So, we can correct every bit-flip error

On links there is the Gauge field with 2 possible values:



$$Z_{L_{l-1}}Z_{L_l}$$

## FUTURE WORK arXiv:2405.19293

Ø fermions If more spatial dimensions **?** higher bond dimension ? non-abelian theories

#### Fault-tolerant quantum simulation (Trotter)



## CONCLUSIONS arXiv:2405.19293

**L**|-2

 $G_l = Z_{L_{l-1}} Z_{L_l}$ 

We want to simulate a system with a gauge symmetry



We can use the gauge symmetry to detect and correct every X error

- Ø fermions
- Ø more spatial dimensions
- **Ø?** higher bond dimension
  - ? non-abelian theories



#### In this way we can save memory, and easily perform quantum simulations



# THANK YOU





## FERMIONS

If the site is empty:

$$Z_{S_l}|\psi
angle=|\psi
angle$$

Incoming and outgoing fields have to be the same:

 $Z_{L_{l-1}}Z_{L_l}|\psi
angle=|\psi
angle$ 

If the site is full:

$$Z_{S_l}|\psi
angle=-|\psi
angle$$

Incoming and outgoing fields have to be different:

$$Z_{L_{l-1}}Z_{L_l}|\psi
angle=-|\psi
angle$$

 $G_l = Z_{L_{l-1}} Z_{S_l} Z_{L_l}$ 







# $\begin{array}{c} \textbf{MEASUREMENT AND CORRECTION} \\ \hline \textbf{L}_{l-2} & \textbf{S}_{l-1} & \textbf{L}_{l-1} & \textbf{S}_{l} & \textbf{L}_{l-1} & \textbf{L}_{l+1} \\ \hline \textbf{G}_{l} = Z_{L_{l-1}} Z_{S_{l}} Z_{L_{l}} \\ \hline \textbf{G}_{l} | \psi \rangle = | \psi \rangle \end{array}$

| $G_{l-1}$ | $G_l$ | $G_{l+1}$ | error location |
|-----------|-------|-----------|----------------|
| +         | +     | +         | none           |
|           | _     | +         | $L_{l-1}$      |
| +         | _     | +         | $S_l$          |
| +         | _     |           | $L_l$          |

We can correct every X error in the system, but we cannot detect Z errors

To correct Z errors we can use more layers of redundancy The hamiltonian, can be written as

 $H=\sum_{j}c_{j}H_{j}$ The time evolution operator we want to apply is

 $e^{iHt}=e^{it\sum_j c_j H_j}$ 

## TIME EVOLUTION

To simplify the implementation, we can break up the operator, approximating it:

$$e^{it\sum_j c_j H_j}pprox \prod_j e^{itc_j H_j}$$

This is the first-order Trotter formula, and the error is:

$$\left| \left| e^{itH} - \prod_j e^{itc_jH_j} \right| 
ight| \leq t^2 \sum_j \left| \left| \sum_k [H_j, H_j] \right| 
ight|$$

So we need a way to implement the single exponentials

But we can apply easily on the system only the logical operations

They correspond to Pauli matrices on the logical qubits

## TIME EVOLUTION

How do we implement

 $e^{itc_jH_j}$ 

To do this, let us assume to have an ancilla qubit on which we can do arbitrary rotations, prepared in the following state:

 $|\phi\rangle$ 

 $|\psi\rangle$ 

Assuming the Hamiltonian is a sum of Pauli matrices:

Then, the following circuit applies the right exponential:

 $e^{itc_jH_j} = \cos(tc_j) + i\sin(tc_j)H_j$ 

In this way we move the problem of applying the exponential, to the problem of preparing an ancilla qubit state

## $|\phi angle = \cos(tc_j)|0 angle + i\sin(tc_j)|1 angle$



## **IMPLEMENTATION OF TROTTER**

Why the following circuit  $|\phi
angle|\psi
angle=\cos(tc_{j})|0
angle|\psi
angle+i\sin(tc_{j})|1
angle|\psi
angle$ implements the right exponential?  $|\phi\rangle$ H $H o \cos(tc_j) rac{1}{\sqrt{2}} (\ket{0} + \ket{1}) ert$  $H_{i}$  $|\psi\rangle$  $=rac{1}{\sqrt{2}}(\cos(tc_j)+i\sin(tc_j)H_j)$  $|\phi
angle = \cos(tc_j)|0
angle + i\sin(tc_j)|1
angle$  $=rac{1}{\sqrt{2}}|0
angle e^{itc_jH_j}|\psi
angle+rac{1}{\sqrt{2}}|1
angle e^{itc_jH_j}|\psi
angle$ 

> The circuit applies with probability 1/2 the right exponential, with probability 1/2 its hermitian conjugate

- $CH_{i}
  ightarrow \cos(tc_{i})|0
  angle|\psi
  angle+i\sin(tc_{i})|1
  angle H_{i}|\psi
  angle$

$$egin{aligned} |\psi
angle+i\sin(tc_j)rac{1}{\sqrt{2}}(|0
angle-|1
angle)H_j|\psi
angle\ |\psi
angle+rac{1}{\sqrt{2}}(\cos(tc_j)-i\sin(tc_j)H_j)|1
angle|\psi
angle\ e^{-itc_jH_j}|\psi
angle \end{aligned}$$

We can apply always the right exponential with a cycle of oblivious amplitude amplification

## HAMILTONIAN

The starting Hamiltonian:  

$$H = m \sum_{l} (-1)^{l} \psi_{l}^{\dagger} \psi_{l} + \epsilon \sum_{l} (\psi_{l}^{\dagger} Q_{l} \psi_{l+1} + \psi_{l+1}^{\dagger} Q_{l}^{\dagger} \psi_{l}) + 2\lambda_{E} \sum_{l} P_{l}$$
Field operators  

$$P = \frac{m}{2} \sum_{l} (-1)^{l} (1 - (-1)^{l} Z_{S_{l}})$$

$$H = \frac{m}{2} \sum_{l} (-1)^{l} (1 - (-1)^{l} Z_{S_{l}})$$

$$Logical operator
$$\frac{\bar{\epsilon}}{2} \sum_{l} (1 + Z_{S_{l}} Z_{S_{l+1}}) X_{S_{l}} X_{L_{l}} X_{S_{l+1}} + 2\lambda_{E} \sum_{l} Z_{L_{l}}$$

$$\bar{Z}_{l} = Z_{L_{l}}$$

$$\bar{X}_{l} = X_{S_{l}} X_{L_{l}} X_{L_{l}}$$$$

In terms of logical operations:

$$H=rac{m}{2}\sum_l (-1)^l(1-\overline{Z}_{l-1}\overline{Z}_l)+rac{\epsilon}{2}\sum_l \Big(1-\overline{Z}_{l-1}\overline{Z}_{l+1}\Big)\overline{X}_l+2\lambda_E\sum_l \overline{Z}_l \, .$$



Ts 
$$\psi = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} = \frac{1}{2}(1+Z)X$$
  
 $Q = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} = X$   
 $P = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} = Z$ 

ons:

$$= X_{S_l} X_{L_l} X_{S_{l+1}}$$

 $ar{X}|0
angle_L=|1
angle_L$  $ar{X}|1
angle_L=|0
angle_L$  $ar{Z}|0
angle_L=|0
angle_L$  $ar{Z}|1
angle_L=-|1
angle_L$ 

## FULL ENCODING



codewords

- $|0
  angle_L 
  ightarrow |+++
  angle$
- $|1
  angle_L
  ightarrow |--angle$

- stabilizers
- $S_1 = X_1 X_2$
- $S_1 = X_2 X_3$

### 3 qubits per site 3 qubits per link

$$\ket{+} = rac{1}{\sqrt{2}} (\ket{0} + \ket{1}) \ \ket{-} = rac{1}{\sqrt{2}} (\ket{0} - \ket{1})$$

$$egin{array}{lll} X|+
angle = |+
angle \ X|-
angle = -|-
angle \end{array}$$

## STABILIZER CODES

Let "P" be the n-qubits Pauli group A codword is a state such that, for every element of S

$$|S_i|x
angle = |x
angle$$

Define "S" the stabilizer group as an abelian subgroup of P

If we start with n physical qubits

we define n-k stabiliser operators

we will have a number of codewords equal to

$$2^n/2^{n-k}=2^k$$

So we will have k logical qubits

The element of S are traceless, with eigenvalues +1 or -1

By adding an element to S, we half the Hilbert space of codewords

Logical operators are elements of P that commute with S

They are 2k operators. Every operator commute with all other operators but one that has to anti commute