Tensor Networks Fashion MNIST Gene communities UNIVERSITÀ degli studi di bari ALDO MORO DIPARTIMENTO INTERATENEC INFN DI FISICA Istituto Nazionale di Fisica Nucleare Grokking as an entanglement transition during training dynamics of MPS machine learning Domenico Pomarico October 29, 202 Quantum Computing @ INFN, Padov

Domenico Pomarico, Quantum Computing @ INFN

Grokking as entanglement transition

Matrix Product State (MPS) Gradient descent

Outline

- Tensor Networks Matrix Product State (MPS) Gradient descent
- Fashion MNIST
 - Features extraction in magnetization patterns Entanglement transition
- Gene communities
 - Dataset & workflow MPS classification

Matrix Product State (MPS) Gradient descent

Outline

Tensor Networks

Matrix Product State (MPS) Gradient descent

Fashion MNIST

Features extraction in magnetization patterns Entanglement transition

Gene communities

Dataset & workflow MPS classification

Matrix Product State (MPS) Gradient descent

Matrix Product State (MPS)

Matrix Product State (MPS) Gradient descent

Matrix Product State (MPS)

Ν Qubits encoding: features vector $\mathbf{x} \in \mathbb{R}^N \mapsto |\Phi(\mathbf{x})\rangle = \bigotimes |\phi(x^{(j)})\rangle \in \mathbb{R}^{2^N}$ $f_W^{\ell}(\mathbf{x}) = \sum_{s_1...s_N} W_{s_1,...,s_N}^{\ell} |\phi(x^{(1)})^{s_1} \dots \phi(x^{(N)})^{s_N} \rangle$ W $\mathcal{C}(W) = \frac{1}{2} \sum_{\omega=1}^{N_T} \sum_{\ell} \left(f_W^{\ell}(\mathbf{x}_{\omega}) - y_{\omega}^{\ell} \right)^2$ \$2 6 MPS format uses iterated SVD ($M = U\Sigma V^{\dagger}$): s_1 $W^{\ell}_{s_1,\ldots,s_N} = \sum U^{1,a_1}_{s_1} U^{a_1,a_2}_{s_2} \ldots U^{a_{j-2},a_{j-1}}_{s_{j-1}} \times$ $a_1,...,a_N$ $\times \Lambda_{s,\ell}^{a_{j-1},a_{j}} V_{s_{j+1}}^{\dagger a_{j},a_{j+1}} \dots V_{s_{N-1}}^{\dagger a_{N-2},a_{N-1}} V_{s_{N}}^{\dagger a_{N-1},1}$

Matrix Product State (MPS) Gradient descent

Matrix Product State (MPS)

Ν Qubits encoding: features vector $\mathbf{x} \in \mathbb{R}^N \mapsto |\Phi(\mathbf{x})\rangle = \bigotimes |\phi(x^{(j)})\rangle \in \mathbb{R}^{2^N}$ $f_W^{\ell}(\mathbf{x}) = \sum W_{s_1,...,s_N}^{\ell} |\phi(x^{(1)})^{s_1} \dots \phi(x^{(N)})^{s_N} \rangle$ W $\mathcal{C}(W) = \frac{1}{2} \sum_{\omega=1}^{N_T} \sum_{\ell} \left(f_W^{\ell}(\mathbf{x}_{\omega}) - y_{\omega}^{\ell} \right)^2$ \$2 0 SN# singular values = bond dimension χ MPS format uses iterated SVD ($M = U\Sigma V^{\dagger}$): *s*₁ $W^{\ell}_{s_1,\ldots,s_N} = \sum U^{1,a_1}_{s_1} U^{a_1,a_2}_{s_2} \ldots U^{a_{j-2},a_{j-1}}_{s_{j-1}} \times$ $a_1,...,a_N$ $\times \Lambda_{s,\ell}^{a_{j-1},a_j} V_{s_{j+1}}^{\dagger a_j,a_{j+1}} \dots V_{s_{N-1}}^{\dagger a_{N-2},a_{N-1}} V_{s_N}^{\dagger a_{N-1},1}$

Matrix Product State (MPS) Gradient descent

Gradient descent

Two sites update:

$$f_W^{\ell}(\mathbf{x}) = \sum_{\substack{s_j, s_{j+1} \\ a_{j-1}, a_{j+1}}} B_{s_j, s_{j+1}}^{a_{j-1}, \ell, a_{j+1}} |\widetilde{\Phi}(\mathbf{x})_{a_{j-1}, a_{j+1}}^{s_j, s_{j+1}} |\widetilde{\Phi}(\mathbf{x})_{a_{j-1}, a_{j+1}}^{s_j, s_{j+1}} |\widetilde{\Phi}(\mathbf{x})_{a_{j-1}, a_{j+1}}^{s_j, s_{j+1}} |\widetilde{\Phi}(\mathbf{x})| | \\ \Delta B^{\ell} = -\frac{\partial \mathcal{C}}{\partial B^{\ell}} \\ = \sum_{\omega=1}^{N_T} |\widetilde{\Phi}(\mathbf{x}_{\omega})\rangle \otimes (y_{\omega}^{\ell} - f_W^{\ell}(\mathbf{x}_{\omega})) \\ \Longrightarrow B'^{\ell} = B^{\ell} + \alpha \Delta B^{\ell}$$

Stoudenmire, Schwab, Supervised Learning with Tensor Networks, 2016

Matrix Product State (MPS) Gradient descent

Gradient descent

Two sites update:

Features extraction in magnetization patterns Entanglement transition

Fashion MNIST

 Tensor Networks Matrix Product State (MPS) Gradient descent

Fashion MNIST

Features extraction in magnetization patterns Entanglement transition

Gene communities

Dataset & workflow MPS classification

Features extraction in magnetization patterns Entanglement transition

Fashion MNIST

Domenico Pomarico, Quantum Computing @ INFN

Grokking as entanglement transition 6/16

Features extraction in magnetization patterns Entanglement transition

Features extraction in magnetization patterns

Features extraction in magnetization patterns Entanglement transition

Features extraction in magnetization patterns

Features extraction in magnetization patterns Entanglement transition

Entanglement transition

Domenico Pomarico, Quantum Computing @ INFN Grokking as entanglement transition 8/16

Features extraction in magnetization patterns Entanglement transition

Entanglement transition

Dataset & workflow MPS classification

Outline

- Tensor Networks Matrix Product State (MPS) Gradient descent
- Fashion MNIST
 - Features extraction in magnetization patterns Entanglement transition

Gene communities

Dataset & workflow MPS classification

Dataset & workflow MPS classification

Hepatocellular carcinoma (HCC) classification

hierarchical clustering: 46 stable communities C1, ..., C46

Training set: GSE102079 Dataset 140 samples (83 HCC) Independent set: GSE54236 Dataset with 161 samples (81 HCC)

	# genes		# genes		# genes	-	# genes
C8	28	C17	26	C29	48	C35	31
C12	47	C23	31	C30	32	C40	29
C14	31	C24	23	C31	25	C41	48
C15	25	C27	36	C32	35	C42	33
C16	34	C28	35	C33	35	C43	32

Lacalamita *et al.*, Artificial Intelligence and Complex Network Approaches Reveal Potential Gene Biomarkers for Hepatocellular Carcinoma, Int. J. Mol. Sci. 24 (2023)

Domenico Pomarico, Quantum Computing @ INFN

Dataset & workflow MPS classification

Flowchart

Domenico Pomarico, Quantum Computing @ INFN

Dataset & workflow MPS classification

Biologically meaningful gene communities: C29

Domenico Pomarico, Quantum Computing @ INFN

Grokking as entanglement transition 12/16

Dataset & workflow MPS classification

Biologically meaningful gene communities: C41

Dataset & workflow MPS classification

Volume to sub-volume law entanglement transition

_e	n bounda	ary: 10g	gs = q	+ c l c	$\log l$		RIQ	ght boun	dary: 1	$\log S =$	q + c	$\log(N)$	-l)
	transition slope	transition \mathbb{R}^2	initial slope	initial \mathbb{R}^2	final slope	final ${\mathbb R}^2$		transition slope	transition \mathbb{R}^2	initial slope	initial \mathbb{R}^2	final slope	final \mathbb{R}^2
C8	0.991	0.972	0.972	0.999	0.704	0.997	C8	0.686	0.995	0.938	0.997	0.630	0.999
C12	0.700	0.987	0.988	1.000	0.771	0.998	C12	1.004	0.972	0.974	0.999	0.761	0.996
C14	0.823	0.967	0.969	0.999	0.602	0.997	C14	0.453	0.991	0.934	0.997	0.597	0.996
C15	0.656	0.992	0.971	0.999	0.640	0.998	C15	0.919	0.991	0.937	0.997	0.639	0.997
C16	0.426	0.982	0.970	0.999	0.606	0.995	C16	0.701	0.986	0.935	0.997	0.620	0.996
C17	0.595	0.997	0.971	0.999	0.612	0.997	C17	0.835	0.977	0.937	0.997	0.626	0.998
C23	0.579	0.963	0.962	0.999	0.628	0.998	C23	0.765	0.968	0.920	0.994	0.611	0.997
C24	0.611	0.943	0.890	0.989	0.570	0.999	C24	0.728	0.981	0.794	0.973	0.496	0.995
C27	0.849	0.974	0.972	0.999	0.754	0.998	C27	0.668	0.995	0.942	0.997	0.674	0.997
C28	0.852	0.989	0.989	1.000	0.635	0.999	C28	0.670	0.987	0.972	0.999	0.669	0.998
C29	0.986	0.982	0.987	1.000	0.760	0.997	C29	0.714	0.966	0.972	0.999	0.759	0.999
C30	0.538	0.980	0.972	0.999	0.564	0.996	C30	0.873	0.990	0.939	0.997	0.604	0.995
C31	0.602	0.982	0.970	0.999	0.611	0.997	C31	0.806	0.995	0.938	0.997	0.633	0.996
C32	0.789	0.989	0.971	0.999	0.575	0.993	C32	0.654	0.962	0.934	0.997	0.566	0.998
C33	0.876	0.976	0.970	0.999	0.641	0.998	C33	0.961	0.918	0.936	0.997	0.620	1.000
C35	0.708	0.994	0.970	0.999	0.618	0.998	C35	0.766	0.989	0.939	0.997	0.604	0.996
C40	0.408	0.971	0.979	0.999	0.557	0.999	C40	0.656	0.943	0.939	0.997	0.601	0.997
C41	0.611	0.979	0.989	1.000	0.757	0.997	C41	0.726	0.965	0.973	0.999	0.769	0.993
C42	0.469	0.956	0.970	0.999	0.626	0.997	C42	0.715	0.986	0.935	0.997	0.631	0.996
~ ~ ~	0.400	0.044	0.074	0.000	0.004	0.000	040	0.704	0.074	0.005	0.007	0.010	0.005

Domenico Pomarico, Quantum Computing @ INFN

Grokking as entanglement transition

Dataset & workflow MPS classification

New enriched gene sub-communities

	C8	C12	C14	C15	C16	C17	C23	C24	C27	C28	C29	C30	C31	C32	C33	C35	C40	C41	C42	C43
accuracy	0.60	0.63	0.48	0.58	0.66	0.58	0.77	0.68	0.57	0.75	0.73	0.68	0.68	0.60	0.67	0.71	0.65	0.78	0.65	0.61
sensitivity	0.41	0.41	0.57	0.56	0.58	0.43	0.69	0.53	0.59	0.63	0.63	0.65	0.77	0.56	0.59	0.69	0.49	0.75	0.49	0.65
specificity	0.79	0.86	0.39	0.60	0.75	0.72	0.85	0.84	0.54	0.86	0.82	0.70	0.59	0.64	0.75	0.74	0.80	0.80	0.81	0.56

Correlation: $C_{i,j}^k = \left(\langle \sigma_Z^{k,i} \sigma_Z^{k,j} \rangle - \langle \sigma_Z^{k,i} \rangle \langle \sigma_Z^{k,j} \rangle \right) / \varrho_{k,k}^{(\ell)}, |C_{i,j}^k| < t, t \in [0, 1], \text{ step } 0.1$

Dataset & workflow MPS classification

New enriched gene sub-communities

	C8	C12	C14	C15	C16	C17	C23	C24	C27	C28	C29	C30	C31	C32	C33	C35	C40	C41	C42	C43
accuracy	0.60	0.63	0.48	0.58	0.66	0.58	0.77	0.68	0.57	0.75	0.73	0.68	0.68	0.60	0.67	0.71	0.65	0.78	0.65	0.61
sensitivity	0.41	0.41	0.57	0.56	0.58	0.43	0.69	0.53	0.59	0.63	0.63	0.65	0.77	0.56	0.59	0.69	0.49	0.75	0.49	0.65
specificity	0.79	0.86	0.39	0.60	0.75	0.72	0.85	0.84	0.54	0.86	0.82	0.70	0.59	0.64	0.75	0.74	0.80	0.80	0.81	0.56

Correlation: $C_{i,j}^k = \left(\langle \sigma_Z^{k,i} \sigma_Z^{k,j} \rangle - \langle \sigma_Z^{k,i} \rangle \langle \sigma_Z^{k,j} \rangle \right) / \varrho_{k,k}^{(\ell)}, |C_{i,j}^k| < t, t \in [0, 1], \text{ step } 0.1$

C41	C29	C16
GOBP_POSITIVE_REGULATION_OF_INTRACELLULAR_SIGNAL_TRANSDUCTION	GOBP_AMEBOIDAL_TYPE_CELL_MIGRATION	GOBP_NEGATIVE_REGULATION_OF_WINT_SIGNALING_PATHWAY
GOBP_CELL_CHEMOTAXIS	008P_EMBRYONIC_PLACENTA_MORPHODENESIS	008P_055IFICATION
GOEP_NEGATIVE_REGULATION_OF_RESPONSE_TO_STIMULUS	GOEP_MORPHOGENESIS_OF_AN_EPITHELIAL_FOLD	GOBP_HEART_MORPHOGENESIS
REACTOME_CLASS_R_2_SECRETIN_FAMILY_RECEPTORS	GOBP_NEURAL_TUBE_FORMATION	GOMF_GLYCOSAMINOGLYCAN_BINDING
REACTOME_OPCR_LIGAND_BINDING	008P_0D0NT00ENESIS_0F_DENTIN_CONTAINING_T00TH	008P_CELL_CELL_SIGNALING_8Y_WNT
00MF_SIONALIN0_RECEPTOR_REGULATOR_ACTIVITY	OOBP_NEGATIVE_REGULATION_OF_KERATINOCYTE_PROLIFERATION	GOBP_POSITIVE_REGULATION_OF_NERVOUS_SYSTEM_DEVELOPMENT
GOBP_TUBE_MORPHOGENESIS	GOBP_REGULATION_OF_CANONICAL_WNT_SIGNALING_PATHWAY	GOBP_NEGATIVE_REGULATION_OF_CANONICAL_WINT_SIGNALING_PATHWAY
GOBP_NEGATIVE_REGULATION_OF_MULTICELLULAR_ORGANISMAL_PROCESS	GOBP_IN_UTERO_EMBRYONIC_DEVELOPMENT	GOBP_SKELETAL_SYSTEM_DEVELOPMENT
GOBP_NEGATIVE_REGULATION_OF_VIRAL_ENTRY_INTO_HOST_CELL	008P_LABYRINTHINE_LAYER_MORPHOGENESIS	WNT_SIGNALING
GOBP_INFLAMMATORY_RESPONSE	WP_ANGLOGENESIS	C28
GOBP_POSITIVE_REGULATION_OF_SIGNALING	GOBP_METANEPHRIC_GLOMERULUS_DEVELOPMENT	GOBP_COMPLEMENT_ACTIVATION_LECTIN_PATHWAY
GOBP_RESPONSE_TO_POTASSIUM_ION	008P_MESENCHYMAL_CELL_DIFFERENTIATION	KEGG_COMPLEMENT_AND_COAGULATION_CASCADES
GOBP_MAPK_CASCADE	KEGG_MEDICUS_REFERENCE_REGULATION_OF_GF_RTK_RAS_ERK_SIGNALING_UBIQUITINATION_OF_RTK_BY_CBL	GOBP_COMPLEMENT_ACTIVATION
GOBP_SKELETAL_SYSTEM_DEVELOPMENT	GOBP_GLAND_DEVELOPMENT	KEGG_FOLATE_BIOSYNTHESIS
REACTOME_PLATELET_ACTIVATION_SIGNALING_AND_AGGREGATION	GOEP_WALE_GENITALIA_DEVELOPMENT	C30
60MF_PROTEIN_CONTAINING_COMPLEX_BINDING	008P_RESPONSE_TO_ALCOHOL	900C_VACUOLE
GOMF_HORMONE_BINDING	C35	GOBP_MONONUCLEAR_CELL_MIGRATION
REACTOME_HEMOSTASIS	GOBP_PURINERGIC_NUCLEOTIDE_RECEPTOR_SIGNALING_PATHWAY	GOBP_REGULATION_OF_BLOOD_PRESSURE
REACTOME_ERYTHROCYTES_TAKE_UP_CARBON_DIOXIDE_AND_RELEASE_OXY0EN	008P_MATURE_8_CELL_DIFFERENTIATION_INVOLVED_IN_IMMUNE_RESPONSE	GOBP_MACROPHAGE_CHEMOTAXIS
WP_GPCRS_CLASS_B_SECRETINLIKE	GOBP_POSITIVE_REGULATION_OF_MOLECULAR_FUNCTION	GOBP_CELLULAR_RESPONSE_TO_OXYGEN_CONTAINING_COMPOUND
GOCC_SECRETORY_GRANULE	GOIP_MONOATOMIC_ION_TRANSPORT	KEGG_FOCAL_ADHESION
REACTOME_G_ALPHA_S_SIGNALLING_EVENTS	GORP_POSITIVE_REGULATION_OF_PEPTIDYL_TYROSINE_PHOSPHORYLATION	GOBP_MONOATOMIC_CATION_TRANSMEMBRANE_TRANSPORT
GOBP_CELL_ACTIVATION	GOBP_NEGATIVE_REGULATION_OF_LYMPHOCYTE_ACTIVATION	GOBP_REGULATION_OF_CELL_CELL_ADHESION
GOBP_RESPONSE_TO_OXYGEN_CONTAINING_COMPOUND	C40	WP_MRRMA_TARGETS_IN_ECM_AND_MEMBRANE_RECEPTORS
GOBP_ACTIVATION_OF_IMMUNE_RESPONSE	GOMF_LYASE_ACTIVITY	EACTOME_DISEASES_ASSOCIATED_WITH_GLYCOSAMINOGLYCAN_METABOLISM
	GORE DENERATION OF REFCUENCE METABOLITES AND ENERGY	PID FRA PATHWAY

Grokking as entanglement transition

15/16

Dataset & workflow MPS classification

Conclusions

- Monitoring the training dynamics allows us to identify critical behaviors influencing generalization properties;
- MPS classifiers are able to manage high computational complexity and highlight local magnetization for each "mask" trained per class;
- Grokking implies an entanglement phase transition, but the viceversa does not hold true;
- Correlations allow us to identify gene sub-communities endowed with enriched gene sets.

Dataset & workflow MPS classification

Conclusions

- Monitoring the training dynamics allows us to identify critical behaviors influencing generalization properties;
- MPS classifiers are able to manage high computational complexity and highlight local magnetization for each "mask" trained per class;
- Grokking implies an entanglement phase transition, but the viceversa does not hold true;
- Correlations allow us to identify gene sub-communities endowed with enriched gene sets.

Thank you! Questions/Comments?

Domenico Pomarico, Quantum Computing @ INFN

Grokking as entanglement transition

Gradient descent

single right step, leading to a sweep when back at the initial sites pair.

Stoudenmire, Schwab, Supervised Learning with Tensor Networks, 2016

Gradient descent

Stoudenmire, Schwab, Supervised Learning with Tensor Networks, 2016

Domenico Pomarico, Quantum Computing @ INFN

Grokking as entanglement transition

Gradient descent

Stoudenmire, Schwab, Supervised Learning with Tensor Networks, 2016

Measured observables

Measured observables

Measured observables

Binary sneaker classifications entropies

Entanglement transition

Domenico Pomarico, Quantum Computing @ INFN

Grokking as entanglement transition

Fake classification sneaker vs sneaker with coherence

Domenico Pomarico, Quantum Computing @ INFN

Grokking as entanglement transition

Hepatocellular carcinoma (HCC) classification

GSE102079 Dataset 257 samples (152 HCC)

	Cluster 1	Cluster 2
Normal +	100	5
Peritumoral		
HCC	20	132

Hepatocellular carcinoma (HCC) classification

Domenico Pomarico, Quantum Computing @ INFN

Grokking as entanglement transition

MPS correlations for gene community C23

Optimal permutation of features:

Decreased bond dimension: $400 \rightarrow 300$, still showing magnetization after ≈ 30 sweeps

Volume to sub-volume law entanglement transition

Domenico Pomarico, Quantum Computing @ INFN

Grokking as entanglement transition

Eigenvalues evaporation and correlations

Eigenvalues evaporation and correlations

Domenico Pomarico, Quantum Computing @ INFN

Grokking as entanglement transition