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EASY VS COMPLEX QUANTUM LEARNING PROCESSES

Classical input  , classical feature   

By varying   we can explore different states 

We want to extract the feature   e.g. via measurements 
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EXAMPLES

Classical machine learning or QML with classical data 

Sample complexity in supervised learning: number of training data   

(Validation) Error 

N
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What we want to learn

  ϵ = 𝒪 ( B
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EXAMPLES

Quantum sensing / Quantum hypothesis testing 

Sample complexity is the number of copies of   (e.g. number of measurement 
shots)    

Continuous   (metrology):  mean square error   or   

Discrete  : probability of misclassification  

ρ
S

y ϵ = 𝒪 (S−1) ϵ = 𝒪 (S−2)
y ϵ = 1 − 2−Hmin(Q|Y) ≈ e−αS
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OPEN QUESTION

How many copies   (e.g. measurement shots) of each   do we need?  

How many values   of   does our learning strategy need to be able to extract   
for all possible  ?    Generalisation 

Error:         ?
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ϵ = f(N, S)
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What we want to learn

Open question
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Statistical Complexity of Quantum Learning

Leonardo Banchi,* Jason Luke Pereira, Sharu Theresa Jose, and Osvaldo Simeone

Learning problems involve settings in which an algorithm has to make
decisions based on data, and possibly side information such as expert
knowledge. This study has two main goals. First, it reviews and generalizes
different results on the data and model complexity of quantum learning,
where the data and/or the algorithm can be quantum, focusing on
information-theoretic techniques. Second, it introduces the notion of copy
complexity, which quantifies the number of copies of a quantum state required
to achieve a target accuracy level. Copy complexity arises from the destructive
nature of quantum measurements, which irreversibly alter the state to be
processed, limiting the information that can be extracted about quantum data.
As a result, empirical risk minimization is generally inapplicable. The paper
presents novel results on the copy complexity for both training and testing. To
make the paper self-contained and approachable by different research
communities, an extensive background material is provided on classical
results from statistical learning theory, as well as on the distinguishability of
quantum states. Throughout, the differences between quantum and classical
learning are highlighted by addressing both supervised and unsupervised
learning, and extensive pointers are provided to the literature.

1. Introduction and Summary

In this section, we provide an introduction to the topic of statis-
tical complexity of quantum learning and we highlight some key
results that will be elaborated on in the rest of the paper.
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1.1. Scope

Quantum information theory addresses the
implications of quantum mechanics on the
representation, storage, and transmission
of information in microscopic physical sys-
tems.Mathematically, it centers on the char-
acterization of probabilistic and statistical
aspects of observations made on quantum
systems through the lens of information
and uncertainty quantification. In this con-
text, recent years have seen significant activ-
ity on the problem of using observations—
i.e., data—for the purpose of learning prop-
erties of quantum systems or of process-
ing classical or quantum data via quantum
means.[1–6 ]

In this article, we study the complex-
ity of quantum learning using information-
theoretic techniques. As in classical learn-
ing, quantum learning problems involve
settings in which the mechanism generat-
ing the data is unknown, and the main goal
of a learning algorithm is to ensure sat-
isfactory accuracy levels when only given

access to data and, possibly, side information such as ex-
pert knowledge.
The complexity of quantum learning is a multi-faceted con-

cept, and in this article we focus on the following three aspects:

a) Data complexity: As in classical machine learning, limitations
on the amount of available data—which may be classical or
quantum—play a key role in determining the achievable accu-
racy levels for data-driven methods. Data complexity refers to
the requirements in terms of data set size on the performance
of a learning algorithm. Throughout the paper, we will use the
letter N to indicate the number of training data examples.

b) Training copy complexity: The second form of complexity,
first introduced in this work, arises due to the destructive
nature of quantum measurements, which irreversibly alter
the state to be processed. As a result, the amount of infor-
mation that can be extracted from quantum data depends on
the number of copies available for each quantum state in the
data set. This stands in contrast to classical data, which, bar-
ring computational complexity constraints, can be accessed,
copied, and processed an arbitrary number of times. The
disturbance caused by quantum measurements entails that,
in general, in quantum machine learning it is not possible
to evaluate the training loss simultaneously on multiple hy-
potheses using the same quantum data. In fact, each evalua-
tion irreversibly modifies the quantum training data. There-
fore, the training loss cannot be computed with arbitrary
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4.5 Learning with Helstrom measurements
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Figure 3: (a) The state exponentiation algorithm uses a target state � and m copies of ⇢ to act on � with an approximate unitary
U = eimt⇢, up to an error O(mt2). It only uses partial SWAP gates, as in Eq. (89). (b) The phase estimation algorithm uses
two registers, one initialized in |0i⌦m and the other initialized in | i. It applies Hadamard gates, powers of controlled-U gates
For a generic unitary in some diagonal (possibly unknown) basis U =

P
k e

2⇡i�k |�kih�k|, this algorithm transforms a generic input
| i =

P
k  k |�ki into

P
k  k |b1, . . . , bmi |�ki, where the measurement of the first register provides a bitstring approximation of the

phase as �k ⇡ b1/2 + · · · + bm/2m and prepares the second register in the eigenvector |�ki – see38 for an extended discussion on the
precision as a function of m.

where SWAP is the swap operator and the Tri is the partial trace over the ith subsystem. This is the first
operation shown in Figure 3(a). This routine was generalized in36 to use S copies of ⇢+ and S copies of
⇢�, with S = O(t2/�) to simulate eiHt, with H = (⇢+ � ⇢�)/2 up a precision � in the trace norm. The
number of operations scales as O(S log(d)), where d is the dimension of the Hilbert spaces of ⇢±, so it is
e�cient as the dimension increases. For instance, in multi-qubit systems, it scales linearly with the number
of qubits.

This simulation method was employed in35 to obtain sign(H), and hence the Helstrom measurement
(58). The starting point is that the exponentiated operator e2⇡iH is a unitary, U , with the same eigenvectors
as H and eigenvalues e2⇡i�j , where the �j are the eigenvalues of H (which range between �1/2 and 1/2).
Since the 2⇡�j are phases, we can equivalently say that the eigenvalues of U are e2⇡i�

0
j , where �0

j
= �j

when �j > 0 and �0

j
= 1+ �j when �j < 0 (assuming none of the �j = 0, with a simple extension if this is

not the case).
Given a target state � (which is either ⇢±), we can carry out the phase estimation algorithm (shown

in Figure 3(b)) with unitary U = e2⇡iH and initial state �. If the algorithm succeeds, this results in the
creation of a bitstring approximation b1 . . . bm of �0

j
, up to a desired precision m, with probability Tr[⇧j�].

Since �0

j
> 1/2 i↵ �j (the corresponding eigenvalue of H) is negative, the value of the first bit b1, tells

us sign(�j) (specifically, it is 0 i↵ �j > 0). The probability of b1 being 0 is therefore
P

j:�j>0
Tr[⇧j�].

Note that
P

j:�j>0
⇧j is precisely the Helstrom operator. However, the phase estimation algorithm has a

chance of failing (i.e. incorrectly approximating �0

j
). If we want the algorithm to correctly give the first k

digits of the bitstring approximation with probability at least 1� ✏, we require m = k + log
2
(2 + 1/(2✏)).

Consequently, to carry out the Helstrom measurement with a probability of failure no more than ✏, we
must set m � 1 + log

2
(2 + 1/(2✏)).

Calling Z1 the Pauli operator on the first qubit, we can summarise

� ⌦ ⇢⌦S

+
⌦ ⇢⌦S

�

SE+PE��������! hZ1i =
X

j

sign(�j) Tr[⇧j�] = Tr[sign(⇢+ � ⇢�)�], (90)

where, as already mentioned, � is either ⇢±.
To carry out the approximate Helstrom measurement, we must therefore simulate U , U2,..., U2

m�1
. To

understand the error scaling of the total operation, we can assume that each unitary has the same error,
�, so that we need O(20/�) copies of ⇢+ and ⇢� to simulate the first unitary, O(22/�) copies for the second
unitary, etc., up to O(22(m�1)/�) copies for the last unitary. With O((

P
m�1

x=0
22x)/�) = O(22m/�) copies

of ⇢+ and ⇢�, we have an additional error (to be added to the failure probability of the phase estimation
algorithm) of at most O(m�) due to the imperfect simulations of U . The phase estimation algorithm then
has a failure probability of at most ✏ = O(2�m). Therefore, the total failure probability is upper bounded

38

Training 
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Test 
state

ϵ = 𝒪 ((NS)−1/3)

ϵ = 𝒪 (d (NS)−1/2) with tomography



LEARNING WITH QUANTUM STATES
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CLUSTERING IN HILBERT SPACES
▸ Generalisation depends on both data and 

algorithm 

▸ Good generalisation when the states are 
clustered in the Hilbert space 

▸ Large  , small  I(Y : Q) I(X : Q)

L BANCHI, J PEREIRA, S PIRANDOLA 
PRX QUANTUM 2, 040321 (2021)



LEARNING TO CLASSIFY 
QUANTUM PHASES OF MATTER



RECOGNISING QUANTUM PHASES OF MATTER IS “EASY”

5

FIG. 3. Predicted phase diagram for the Hamiltonian (9)
with N = 41 spins, where the ground state is simulated using
tensor network methods with a bond dimension 150. The
training points, marked with black crosses, are located along
the line h = 1. The phase transition lines (dashed white) are
estimated by interpolating the numerically observed points
(white asterisks) from Ref. [4].

discretized as a 30 ⇥ 30 grid. For comparison, we also
draw the phase transition lines obtained in [4]. From the
results shown in Fig. 3 we see that the SVM classifier
is able to accurately recognise all three phases, gener-
alizing the given information from the states along the
h = 1 line. Imperfections around the phase transition
lines are possibly due to finite size e↵ects or due to the
small bond-dimension in the tensor network. Misclassi-
fications around the h = 0 line are comparable to those
obtained with other methods [4, 47] and may be exac-
erbated by the fact that the states around h = 0 might
be qualitatively quite di↵erent from the training states
along h = 1.

Conclusions:– We studied the classification of quan-
tum phases of matter using a combination of classical and
quantum techniques. We studied how to use knowledge
from part of a phase diagram to populate other, possi-
bly unknown, parts of the phase diagram. The result
of our learning approach is a set of observables that can
be measured in quantum devices, with a number of mea-
surements that scale polynomially in the system size. We
studied di↵erent models with rather rich phase diagrams
and showed that our classifier is able to both interpolate
and extrapolate the information from the training set to
predict the quantum phase for new sets of parameters.
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Appendix A: Quantum-enhanced support vector
machines

Support Vector Machines [13] are a family of ma-
chine learning models based on decision hyperplanes on
a Hilbert space, called feature space. Training consists in
finding such a hyperplane, while classification of a new in-
put is done by checking on which side of the plane the in-
put belongs. Since multiclass classification problems are
broken down into a cascade of binary decisions, we will fo-
cus on binary classification problems with Y = {+1,�1}.
Given a fixed map x 7! ⇢(x), embedding a classical vari-
able x into the quantum (feature) space, the linear deci-
sion hyperplanes in the feature space yields a non-linear
hypersurface in the input space, defined as

f(x) = Tr[W⇢(x)] + b = 0. (A1)

The above equation describes a hyperplane in the feature
space, with parameters encoded into the “observable” W

and the shift b. It can be shown that the optimization
of those parameters during training can be cast into a
“dual” formulation that can be solved with open-source
libraries [29] with polynomial complexity in the number
of training pairs M . The resulting convex optimization
problem is described by

argmax
{0↵i<C}

2

4
MX

i=1

↵i �
1

2

MX

i,j=1

yiyj↵i↵jk(xi,xj)

3

5 , (A2)

with constraints
PM

i=1↵iyi = 0 and a hyper-parameter C.
In the above equation the kernel is defined as in Eq. (1),
and (xi, yi) for i = 1, . . . ,M define the M training pairs
with inputs xi and known label yi. Training consists in
finding the coe�cients ↵i. Once those are obtained, we
can get the “observable” and shift from Eq. (A1) analyt-
ically as

W =
MX

i=1

yi↵i⇢(xi), (A3)

b =
MX

i=1

 
yi �

PM
j=1 ↵jyjk(xi,xj)

M

!
, (A4)

as well, as the predicted class y of a new test x, via the
decision function (A1)

y = sign[f(x)] = sign

"
b+

MX

i=1

↵iyik (xi,x)

#
. (A5)

We conclude this appendix by clarifying the di↵erences
between the classification of quantum and classical data.

x ρ(x, y) y

   is the set of classical 
Hamiltonian parameters (magnetic fields, 
couplings) 

   is the ground state 

   is the phase (paramagnetic, 
topological…)  

x = (h1, h2)

ρ(x, y)

y

SEE MEHRAN’S TALKS



WHY LEARNING QUANTUM PHASES OF MATTER ?

Generalisation bound grows (linearly?) with the number 
of qubits 

The learnt observable requires few measurements, e.g. 
single-qubit measurements 

x ρ(x, y) y
We learn the observable
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FIG. 2. (a) Scaling of the generalization error bound Eq. (C1),
for the ground state of the ANNNI model with h 2 [0, 2],
k 2 [0, 1], as a function of the number of qubits N , and for
the two di↵erent parity sectors (even and odd). (b) Kernel
matrix entries for the training states shown in Fig. 1.

sus over the di↵erent phases schematically depicted in
Fig. 1(a), some works split the paramagnetic phase into
two di↵erent phases [35], while others found the floating
phase over an extended region. For the phase diagram of
Fig. 1, the transition lines between the di↵erent phases
have been found using di↵erent perturbative and numer-
ical methods to approximately be [5, 37]

hI(k) '
1� k

k

 
1�

r
1� 3k + 4k2

1� k

!
, (8a)

hKT(k) ' 1.05
p

(k � 0.5)(k � 0.1), (8b)

hAP(k) ' 1.05 (k � 0.5). (8c)

Our numerical results for the ANNNI model are shown
in Fig. 1 for a chain with N = 50 spins. The ground
states were obtained using the DMRG algorithm imple-
mented in the quimb library [44] . In spite of the small
bond dimension (20), the predicted phase diagram is in
good agreement with the theoretical prediction, shown
in Fig. 1, with di↵erences only near the phase transition
points. These di↵erences might be due to finite size ef-
fects, as the phase diagram in Fig. 1 is expected in the
thermodynamic limit N ! 1, and due to the finite bond
dimension, as close to the phase transition point the en-
tanglement area law breaks down [45] and a larger bond
dimension might be needed. This highlights a use case in
which a classically learned observable could be measured
in a shallow quantum circuit for ground states near the
transition point in order to locate the phase boundary
with greater precision than is possible purely classically.

In Fig. 1 we trained the model in two di↵erent ways,
and then tested over the same parameter region. In
panel (b), the training points are uniformly spaced (in-
distribution), while in panel (c) they are chosen along a
line that passes through all four di↵erent phases (out-of-
distribution). Prediction in (b) is simpler, as the model
has to interpolate over the training points, while in (c) it
is more complex as the model has to extrapolate, result-
ing in a lower accuracy. Nonetheless, in both cases the

model displays remarkable generalization abilities given
the limited amount of data.
The ability of the training algorithm to generalize,

namely to predict the phase of ground states outside of
the training set, can be explained using the language of
Ref. [20, 21] when the training and test data belong to
the same distribution. Indeed, the generalization error,
namely the di↵erence between an optimal classifier with
full knowledge of the data distribution and an empirical
classifier that only has access toM samples from that dis-
tribution, is upper bounded by B/

p
M where B depends

on the mutual information between the parameter space
and the set of possible ground states. The in-distribution
generalization error is small as long as M � B

2. The val-
ues of B2, estimated by following Appendix C, are shown
in Fig. 2(a), where we show that B2 increases at most lin-
early with the number of qubits. Therefore, in the worst
case, at most a number of training points that scales lin-
early with the number of qubits is su�cient to ensure a
good generalization, in spite of the exponentially growing
Hilbert space. In practice though, as discussed in [21], be-
cause of the regularization term, the above bound might
be loose and the model might be able to generalize even
with less data. The good generalization capabilities are
due to the “clustering” of the ground states within the
di↵erent phases, which is evident from the kernel matrix
entries shown in Fig. 2(b). In that figure, the “tiled” sub-
regions are due to the degeneracy of the ground states,
which can be labeled by the parity and are mutually or-
thogonal.
When training and test data belong to di↵erent dis-

tributions, as in Fig. 1(c), we need to employ out-of-
distribution bounds, which have been discussed in the
quantum case only for di↵erent settings [46].
Numerics, Haldane model:– As a second model, we fo-

cus on the one-dimensional symmetry-protected topolog-
ical spin model described by the Hamiltonian [4]

H = �

N�2X

j=1

�
x
j�

z
j+1�

x
j+2 � k

N�1X

j=1

�
z
j�

z
j+1 � h

NX

j=1

�
z
j , (9)

with parameters x = (h, k). When k = 0 the model is ex-
actly solvable via the Jordan-Wigner transformation [36].
Such a Hamiltonian has a Z2⇥Z2 symmetry generated by
the operators X̂even(odd) =

Q
i2even(odd) �

z
i . The ground

state of H displays, as a function of h and k, a param-
agnetic phase, an antiferromagnetic phase and a Z2 ⇥Z2

symmetry-protected topological (SPT) phase. The lat-
ter can be detected by non-zero string order parameters
Sab = �

x
a

Q
a<i<b(�

z
i )�

x
b or with a quantum convolutional

neural network circuit [4].
To train the model, we fix N = 41 and provide just

the known information from Refs. [4, 47] that the model
belongs to the SPT phase for h = 1 and �1.15  k  0,
to the paramagnetic phase for k > 0 and to the antifer-
romagnetic phase for k < �1.15. The 50 training points
are displayed with black crosses in Fig. 3. We then test
the model over the entire phase space shown in Fig. 3,

See arXiv:2409.05188 



LEARNING TO CLASSIFY 
ENTANGLEMENT WITHOUT KNOWING 
ENTANGLEMENT THEORY



LEARNING TO CLASSIFY ENTANGLEMENT IS “HARD”
Toy problem: binary classification of separable (class 0) vs maximally entangled (class 1) 
states 

                                          

Simple analytical strategy: measure the purity (~ Renyi-2 entropy)  of either A or B 
subsystems. Outcomes 1 vs   variance   

The states from both classes uniformly populate the Hilbert space, the two classes are 
not clustered 

           

Linear observables cannot discriminate the two states. 

|ψ0(x)⟩ = UA(x) |0⟩ ⊗ UB(x) |0⟩ |ψ1(x)⟩ ∝ UA(x) ⊗ UB(x)
d

∑
i=1

| i, i⟩AB

𝒪(d−1) (1 − d−2)/S

∫ dx |ψ0(x)⟩⟨ψ0(x) | = ∫ dx |ψ1(x)⟩⟨ψ1(x) | =
𝕀 ⊗ 𝕀

d2



CLASSIFICATION WITH SUPPORT VECTOR MACHINES

 K(x, x′ ) = |⟨ψ(x) |ψ(x′ )⟩ |4

= Tr [ρ(x)⊗2ρ(x′ )⊗2]

Theorem: if we estimate kernels via 
the SWAP test, the optimal 
observable learnt from data 
converges to the purity measurement 
when   

Error   with     data

N → ∞, S → ∞

ϵ N =
1
ϵ (1 +

d4

S )
2
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FIG. 1. Success rate in learning to classify a new state, not present in the training set, vs number of shots S and number of
training pairs N for di↵erent dimensions d = 2, 4, 8, 16.

and the irrelevant dependence on y has been dropped
to simplify the notation. Inserting Eq. (5) in (4) we can
rewrite the classifier of a new state ⇢ as a kernel expansion
of the data [17]

f(⇢⌦c) =
NX

n=1

X

yn=±1

↵nynKc(⇢
yn
n , ⇢) + b, (10)

where ↵n were computed by solving Eq. (8), and b de-
pends on ↵n and on the kernel values [20].

Numerical results:– Numerical results are shown in
Fig. 1, where the accuracy of the decision observable (7),
which results in decision function (10), is tested over new
states. Both the test states and the 2N training states are
randomly generated following Eq. (1), with Haar-random
choices of the matrices UA and UB . Each kernel entry for
training, Eq. (8), and testing, Eq. (10), is estimated via
the SWAP test [17] using S measurement shots, tough
better precision can be obtained with global strategies
[24]. We perform numerical experiments for di↵erent di-
mensions d of the Hilbert spaces of the two subsystems
in (1). From the numerical simulations, we see that for

d = 2 and d = 4, the success rate is low for low values of
S and N , but then reaches basically perfect success for
larger values of both N and S. On the other hand, for the
still small value d = 16, namely when the subsystems in
(1) have just 4 qubits, the success rate is close to that of
random decisions (50%), in spite of the large number of
training data (up to ⇠ 8000) and large number of shots
(⇠ 16000). This numerical analysis shows that, even
for small dimensional systems, the learner is not able to
find an observable capable of successfully discriminating
separable and maximally entangled states, although such
observable exists and is rather simple – see Eq. (5).
We can understand the dependence on S from Fig. 1

by noting that, on average, the kernel entries quickly
decrease for larger d. Indeed, letting �yy0 be the average
kernel entry between two states from classes y and y0,
then in Appendix B, we find

�++ =
4

d2(d+ 1)2
, ��� =

1

d4
,

�+� = ��+ =
2

d3(d+ 1)
,

(11)
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when N ! 1. For any finite N , the coe�cients ↵n can
be numerically obtained using open-source libraries [20]
by solving the following convex optimization problem

max
{0↵nC}

X

n

↵n�
X

n,m,yn,ym

↵n↵mynym

2
Kc(⇢

yn
n , ⇢

yn
m ), (8)

for a given constant C (we use the default value C = 1),
while � can be expressed in terms of the learnt ↵n. In
the above equation we have defined the “kernel” for an
arbitrary number of copies c as

Kc(⇢, ⇢
0) = Tr[⇢⌦c

⇢
0⌦c] = |h | 0i|2c, (9)

and the irrelevant dependence on y has been dropped to
simplify the notation.

Inserting Eq. (7) in (4) we can rewrite the classifier of
a new “test” state ⇢ as a kernel expansion of the data [17]

f(⇢⌦c) =
NX

n=1

X

yn=±1

↵nynKc(⇢
yn
n , ⇢) + �. (10)

Both training, via Eq. (8), and testing, via Eq. (10), re-
quire the estimation of the kernel entries in Eq. (9). This
can be done in multiple ways, using swap tests [17] with S

measurement shots, global strategies involving S copies
[24] or via classical shadow techniques [25]. We focus
on the swap test, due to its simplicity. Per Eq. (9), es-
timating Kc(⇢, ⇢0) is equivalent to estimating K1(⇢, ⇢0)
(the overlap of the states) and taking the c

th power as a
post-processing step. This is allowed due to the tensor
product form of the states; if either state were not in this
form, we would need to perform a c-system swap test.

Numerical results:– Numerical results are shown in
Fig. 1, where the accuracy of the decision observable
(7), which results in decision function (10), is tested over
new states. The full numerical results are presented in
Appendix A. Both the test states and the 2N training
states are randomly generated following Eq. (1), with
Haar-random choices of the matrices UA and UB . Each
kernel entry for training, Eq. (8), and testing, Eq. (10),
is obtained by estimating K1 via a SWAP test [17] with
S measurement shots, and taking the cth power, though
better precision can be obtained with global strategies
[24]. Here we focus on c = 2 and for di↵erent dimensions
d of the Hilbert spaces of the two subsystems in (1). In
Fig. 1(a) we plot the values of S and N for which the
learnt classifier is able to classify new states with accu-
racy higher than 99%. We see that the high-accuracy
region shrinks for larger d, to the point of being empty
for d = 32, in spite of the large number of training data
and large number of shots (both about ⇠ 16000). The
di↵erence with respect to the classical literature is further
emphasized in Fig. 1(b), where we compare the perfor-
mance of the classifier with the largest number of shots
(214) with the noiseless one. We see that for d = 8 the
performance of the two is comparable, they start to di↵er
for d = 16 and are very di↵erent for d = 32. In summary,
the poor performance of the d = 32 case is not due to
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FIG. 1. (a) Region with success rate higher than 99% in clas-
sifying a new state, not present in the training set, vs. number
of training pairs N and number of shots S, for di↵erent di-
mensions d = 2, 4, 8, 16. (b) Comparison between success rate
in classifying a new state and N , for d = 8, 16, 32. Solid lines
show numerical simulations with exactly computed expecta-
tion values (S ! 1), dashed lines use S = 214 = 16384 shots,
while dotted lines (mostly overlapping with the dashed ones)
also use S = 214 shots, but then directly construct the “an-
alytical” classifier (Bobs, the unbiased estimator of B(2) from
Eq. (13)) from the measurement results, rather than finding
it using a support vector machine.

the lack of data, but to the lack of su�cient measure-
ment shots. This numerical analysis shows that, even for
small dimensional systems, the learner is not able to find
an observable capable of successfully discriminating sep-
arable and maximally entangled states, although such an
observable exists and is rather simple – see Eq. (5).
Therefore, in the “big-data” regime, where N is very

large, a limited number of measurement shots might be
the dominant source of errors. In some sense, this is due
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FIG. 3. (a) Performance of the learning approach, as in
Fig. 1(a), but with the swap test replaced by the shadow
overlap estimator with NU unitaries and NM . For d = 16 (not
shown) the maximum success rate is 96%, which is below the
threshold of 99%. (b) Same data of Fig. 1(a), but reshaped
to have log2(NS) in the vertical axis.

Case n = 2: there are only two index permuting opera-
tors: the identity operator P0 = 11 and the swap operator
P1 = S. Since TrP0 = d

2 and TrP1 = d we directly get

M =

✓
d
2

d

d d
2

◆
, =) M

�1 =
1

d(d2 � 1)

✓
d �1
�1 d

◆
,

and thus

T 2(A) =
dTrA� Tr [SA]

d(d2 � 1)
11+

dTr [SA]� TrA

d(d2 � 1)
S. (B6)

Asymptotics: For large d, it holds that [31]

(M�1)�⇡ = O
⇣
d
�n�b��1⇡c

⌘
, (B7)

where b�c denotes the minimal number of factors nec-
essary to write � as a product of transpositions. There-
fore, (M�1)�⇡ is approximately diagonal for large d, with
O(d�n) diagonal entries.

Appendix C: Average states

Using the twirling superoperator the average separable
and entangled states can be explicitly computed as

⇢̄
sep = E[⇢sep] = (T 1

A ⌦ T 1
B)[|00ih00|] =

11

d2
,

⇢̄
ent = E[⇢ent] = (T 1

A ⌦ T 1
B)[|�ih�|] =

11

d2
,

(C1)

showing that the average states are equal and hence not
distinguishable. However, they become distinguishable
once we consider multiple copies. For instance,

⇢̄
sep
(2) = E[(⇢sep)⌦2] = T 2[|00ih00|]⌦2 =

(11 + S)⌦2

d2(d+ 1)2
. (C2)

We must be careful about the order of the systems, since
this tells us which systems we twirl together and which we
twirl independently: here they take the order A1A2B1B2.
The computation of the average entangled state is a bit
more tedious, though straightforward

⇢̄
ent
(2) = E[(⇢ent)⌦2] = (T 2

A ⌦ T 2
B)[�A1,B1�A2,B2 ] (C3)

=
1

d2

X

ijkl

T 2[|ijihkl|]⌦2

=
X

ijkl

[(d�ik�jl � �il�jk)11 + (d�il�jk � �ik�jl)S]⌦2

d4(d2 � 1)2

=
(d2d2+d

2�2d2)(11+S
⌦2) + (d2d+d�2dd2)(SA+SB)

d4(d2 � 1)2

=
11 + S

⌦2

d2(d2 � 1)
� SA + SB

d3(d2 � 1)
,

where � = |�ih�|, A1,2 and B1,2 respectively refer to
the two copies of A or B, and SA and SB are S ⌦ 11
and 11⌦ S respectively. Although in the first line we use
the ordering A1B1A2B2 for the term inside the square
brackets, in the remaining lines we always use the system
ordering A1A2B1B2. In the fourth line we use the simple
identities

P
ijkl �ik�jk = d

2 and
P

ijkl �ik�jl�il�jk = d.
To simplify the comparison of the two average states,

it is useful to introduce the projections P± = (11 ± S)/2
onto the symmetric and antisymmetric subspaces. By
explicit calculation, those subspaces have dimension

d+ = Tr[P+] =
d(d+ 1)

2
, d� = Tr[P�] =

d(d� 1)

2
.

(C4)

Error due to from few measurements 
may be the dominant source of 
generalisation error  

In terms of overall copies, shadow 
fidelity estimator perform better than 
the swap test

Swap test

Shadow measurements

 S = 214
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In stochastic modeling, there has been a significant effort towards finding predictive models that predict
a stochastic process’ future using minimal information from its past. Meanwhile, in condensed matter
physics, matrix product states (MPS) are known as a particularly efficient representation of 1D spin chains.
In this Letter, we associate each stochastic process with a suitable quantum state of a spin chain. We then
show that the optimal predictive model for the process leads directly to an MPS representation of the
associated quantum state. Conversely, MPS methods offer a systematic construction of the best known
quantum predictive models. This connection allows an improved method for computing the quantum
memory needed for generating optimal predictions. We prove that this memory coincides with the
entanglement of the associated spin chain across the past-future bipartition.

DOI: 10.1103/PhysRevLett.121.260602

The quest for simple representations and models of the
physical world, often phrased as Occam’s famous razor,
underlies most scientific pursuits. In this spirit, computa-
tional mechanics seeks the most memory-efficient predic-
tive models for stochastic processes—models which track
relevant past information about a process, in order to
generate statistically faithful future predictions [1–4].
The classically minimal models, ε-machines, have been
used in diverse contexts from neuroscience to nonequili-
brium contextuality [5–14]. Recently, it was shown that
quantum extensions of ε-machines can further reduce their
memory [15], leading recent studies to find memory-
efficient quantum means of predictive modeling [16–26].
In condensedmatter, on the other hand, simplicity is sought

after for the description of quantum many-body systems.
Tensor networks, such as matrix product states (MPS), for
instance, provide an efficient and useful description of one-
dimensional quantumsystems—i.e., spin chains [27–29].This
has led to reliable andpowerful numericalmethods for probing
and simulating properties of multi-partite systems, whose
study would be otherwise intractable [30–33].
In this Letter, we develop a connection between

ε-machines and the MPS representation, as shown in
Fig. 1. We associate each stochastic process with a suitable
quantum state of a spin chain called q-sample, measurement
of which generates the corresponding stochastic process. We
then show that the classical ε-machineof theprocess leads to a
systematic MPS representation of the q-sample. Conversely,
applying MPS methods to this state allows us to construct a
q-simulator for the associated stochastic process—the best
known quantum model [16,20,21]. Lastly, we show that the
entanglement across the past-future bipartition of the
q-sample coincides exactly with the quantum memory

requirements of the q-simulator. These results thus provide
a direct means of using MPS methods to study the resource
requirements of quantum stochastic simulation, extending
their relevance to the field of predictive modeling.
Our approach complements other uses of tensor network

methods for the description of classical systems with sto-
chastic elements [34–40] and machine learning [41–49]. We
extend these results in introducing causal structure, adapting
MPSmethods for predictive modeling as well as the classical
spectral description of hidden Markov models [50–52].
Predictive models.—Consider a system that generates an

output xt sampled from a random variable Xt at each time t.
The outputs of the system are described by a stochastic
process with joint probability PðX⃖; X⃗Þ, which correlates

FIG. 1. This Letter connects the complexity of stochastic
processes and the representational complexity of spin chains.
These (i) link ϵ-machines, the provably optimal predictors of a
process with the MPS states of a spin chain, (ii) the memory used
to simulate a process quantum mechanically with the entangle-
ment of the spin chain, and (iii) the Hilbert space dimension of
such quantum simulators with the Schmidt rank of the spin chain.
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Abstract

Tensor-network techniques have recently proven useful in machine learning, both
as a tool for the formulation of new learning algorithms and for enhancing the
mathematical understanding of existing methods. Inspired by these developments,
and the natural correspondence between tensor networks and probabilistic graphical
models, we provide a rigorous analysis of the expressive power of various tensor-
network factorizations of discrete multivariate probability distributions. These
factorizations include non-negative tensor-trains/MPS, which are in correspon-
dence with hidden Markov models, and Born machines, which are naturally related
to the probabilistic interpretation of quantum circuits. When used to model proba-
bility distributions, they exhibit tractable likelihoods and admit efficient learning
algorithms. Interestingly, we prove that there exist probability distributions for
which there are unbounded separations between the resource requirements of some
of these tensor-network factorizations. Of particular interest, using complex instead
of real tensors can lead to an arbitrarily large reduction in the number of parameters
of the network. Additionally, we introduce locally purified states (LPS), a new
factorization inspired by techniques for the simulation of quantum systems, with
provably better expressive power than all other representations considered. The
ramifications of this result are explored through numerical experiments.

1 Introduction

Many problems in diverse areas of computer science and physics involve constructing efficient
representations of high-dimensional functions. Neural networks are a particular example of such
representations that have enjoyed great empirical success, and much effort has been dedicated to
understanding their expressive power - i.e. the set of functions that they can efficiently represent.
Analogously, tensor networks are a class of powerful representations of high-dimensional arrays
(tensors), for which a variety of algorithms and methods have been developed. Examples of such
tensor networks are tensor trains/matrix product states (MPS) [1, 2] or the hierarchical Tucker
decomposition [3, 4], which have found application in data compression [5–7], the simulation of
physical systems [8–10] and the design of machine learning algorithms [11–16]. In addition to
their use in numerical algorithms, tensor networks enjoy a rich analytical understanding which has
facilitated their use as a tool for obtaining rigorous results on the expressive power of deep learning
models [17–22], and fundamental insights into the structure of quantum mechanical systems [23].

In the context of probabilistic modeling, tensor networks have been shown to be in natural corre-
spondence with probabilistic graphical models [24–29], as well as with Sum-Product Networks and

⇤Corresponding author, ivan.glasser@mpq.mpg.de

33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada.
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In some cases ( -machines) the quantum 
model uses less memory

PK(x1, …, xL) = ∥KxL…Kx1 |ϕ⟩∥2

PT(x1, …, xL) = ∑
α

(TxL⋯Tx1pi)α

ε

scales as OðlogNÞ [23]. In fact, unbounded memory
advantage for C0

q can also occur [68].
The internal quantum states and the unitary operator U

are straightforward to obtain, by virtue of Theorem 3 (see
Supplemental Material F [57]).
Conclusion.—We have connected two previously dis-

tinct notions of complexity: the memory cost of prediction
and the representational complexity of spin chains—
allowing results in one field to catalyze new insights in
the other. By associating each stochastic process with a
suitable quantum state of a spin chain, we demonstrated
that predictive models constructed in complexity science
lead directly to the MPS representation of a general classical
stochastic process. Based on this, optimization using stan-
dard MPS techniques allows systematic construction of
q-simulators—the current state of the art for predictive
modeling. Moreover, we established that the memory
requirement of such q-simulators exactly coincides with
the bipartite entanglement in the associated spin chain state.
These results open a number of promising avenues for

future research. From a foundational perspective, the
memory requirements of a q-simulator describe a task that
involves a clear temporal direction—using past information
to generate future predictions. In the classical setting, this
resource cost can vary drastically when time is reversed
[69], such that costs of prediction and retrodiction differ.
Meanwhile, this research indicates this asymmetry is
drastically reduced when quantum models are allowed.
The connection to entanglement provides a new perspective
to understand this divergence [68]. Moreover, noting that
entanglement is calculated rather differently from complex-
ity, the proven equivalence between the two opens the door
to identifying more efficient numerical methods for com-
puting the latter.
In addition, tensor networks offer sophisticated techniques

to reduce the bond dimension of represented processes at
the cost of introducing small inaccuracies. Such methods
can now be adapted to quantum modeling—allowing the
construction of approximate models with drastically reduced
dimensional requirements. Meanwhile, there has been grow-
ing interest in generalizing computational mechanics to

higher dimensions [70]. It would indeed be interesting to
relate such works to higher dimensional variants of tensor
networks, such as MERA [71] and PEPS [72].
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Abstract
Many inference scenarios rely on extracting relevant information from known data in order to
make future predictions. When the underlying stochastic process satisfies certain assumptions,
there is a direct mapping between its exact classical and quantum simulators, with the latter
asymptotically using less memory. Here we focus on studying whether such quantum advantage
persists when those assumptions are not satisfied, and the model is doomed to have imperfect
accuracy. By studying the trade-off between accuracy and memory requirements, we show that
quantum models can reach the same accuracy with less memory, or alternatively, better accuracy
with the same memory. Finally, we discuss the implications of this result for learning tasks.

1. Introduction

The ability to learn from experience and to make predictions about possible future outcomes is crucial in all
quantitative sciences. Since humans and machines have a limited amount of memory, learning complex
processes requires distilling and storing only the relevant information from the training data that is useful for
making predictions. For temporal data, the current state-of-the-art in classical machine learning is based on
the transformers architecture [1], which uses the self-attention mechanism to dynamically focus on what is
relevant in the data stream. Such an architecture culminates a series of tweaks performed by the machine
learning community over the last decades to solve practical problems, making it difficult to extract the
underlying mathematical principles, in spite of some progresses [2]. On the other hand, stochastic processes
called ε-machines have been developed on rigorous mathematical grounds, to formally define what past
information a learner needs to store for predicting future outcomes [3–5]. However, numerically fitting the
model from data is more complicated [6].

From a quantum information perspective, whenever a stochastic process can be exactly expressed as an
ε-machine with a finite amount of memory, it has been shown that a unitary quantum simulator is capable
of exactly simulating the same process, asymptotically storing less memory [7–10]. In other terms, quantum
advantage in memory use can be achieved by using quantum states and probability amplitudes, which
provide other sources of stochasticity when the memory states are not orthogonal. Moreover, this advantage
has also been observed in tensor network simulations [11–13].

In this work we study whether the quantum advantage persists when we relax the requirement of exact
simulation. Real-world datasets, in general, cannot be exactly modelled as an ε-machine with a given amount
of memory. Therefore, it is unclear whether we can formally expect quantum advantage with them.
Nonetheless, starting from a generic stochastic process, it is reasonable to assume that there exists a larger
ε-machine, possibly with infinite memory, capable of exactly modelling the data. The latter can be exactly
expressed as a unitary quantum simulator, which typically shows memory advantage and never requires
more memory [9]. Does the advantage persist in constrained memory scenarios? If this were the case,
quantum simulators of real-world stochastic processes could reach the same accuracy of classical ones with
less memory, or, alternatively, achieve better accuracies with the same amount of memory. Moreover, since
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EXAMPLE: STOCHASTIC CLOCK

Theorem 2: The entanglement across any bipartition of
a stochastic process’ q-sample equals the quantum machine
complexity Cq. Its Schmidt rank is equal to the dimension
of the memory Hilbert space.
Proof.—First, the leading left and right eigenvectors can

always be decomposed as Vl ¼ W†
l Wl and Vr ¼ WrW

†
r .

The Schmidt coefficients are the positive square roots of
the eigenvalues of the density matrix ρ ¼ WlWrW

†
rW†

l ¼
WlVrW

†
l (see Supplemental Material A [57]). In line with

Eq. (13) we choose Wl ¼
P

k
ffiffiffiffiffi
πk

p jkihkj. Then we con-
struct a quantum state

jψABi ¼
X

k

ffiffiffiffiffi
πk

p jkiAjσki"B; ð15Þ

where jσki" is the complex conjugate of jσki. Partial trace
over system B yields

ρA ¼
X

k;j

ffiffiffiffiffiffiffiffiffi
πkπj

p hσkjσjijkihjj ¼ WlVrW
†
l : ð16Þ

Thus, the Schmidt coefficients of the q-sample are the
square roots of the density matrix ρA’s eigenvalues (see
Supplemental Material A [57]). On the other hand, partial
trace over system A gives

ρB ¼
X

k

πkjσki"hσkj": ð17Þ

Note that the complex conjugate of ρB is equal to ϕ
[Eq. (3)]. Hence, since ρA and ρB must have the same
spectrum, ρA also has the same spectrum as ϕ. Thus, the
Schmidt coefficients are the square roots of the eigenvalues
of ϕ.
This implies that any Renyi entropy of the squared

Schmidt coefficients and the corresponding entropy of ϕ
are also equal

Hαðc2kÞ ¼ HαðϕÞ: ð18Þ

For the special cases α ¼ 1 and α ¼ 0, we obtain
Theorem 2. ▪
This connection illustrates an interesting link between

the resource costs of generating a time sequence—a
property with a temporal direction, with quantum correla-
tions between spatial systems—a property without tempo-
ral direction.
Our final result presents a systematic means of con-

structing a stochastic process’ q-simulator from the iMPS
of its q-sample.
Theorem 3: The q-simulator for a stochastic process

[21] can be systematically constructed from its iMPS
representation according to Theorem 1: 1. The internal
quantum states of the q-simulator are

jσji ≔ W†
r jji; ð19Þ

where Wr is a decomposition WrW
†
r ¼ Vr such that the

image ofW†
r is the same as the image of Vr. 2. The stepwise

unitary interaction of the q-simulator is given by

hxjUj0i ≔ ðW−1
r AxWrÞ†; ð20Þ

whereW−1
r is defined to be the inverse matrix ofWr on the

memory Hilbert space Hm ¼ spanfjσkig.
The approach makes use of existing results in MPS

literature. There, it was found that each MPS representation
of a quantum state gives rise to a means of synthesizing
the state through a unitary quantum circuit [32,66]. In
Supplemental Material E [57], we adapt these method-
ologies for the specific class of iMPS in Eq. (10) such that
the resulting quantum circuits are also valid predictive
models. That is, the resulting circuit allows a systematic
means to encode any given past x⃖ into a suitable quantum
state jσki. A prescription for the exact circuit on jσki then
allows generation of correct conditional future statistics
PðX⃗jx⃖Þ. In addition, such models feature smaller memory
dimension whenever Vr is not full rank.
Discrete renewal process.—We illustrate these results

using the discrete renewal process with uniform emission
probability [23,67], as defined by its ε-machine in Fig. 4.
Consider the renewal process’ statistics PðX⃖; X⃗Þ and its

q-sample jψi. Our results allow (i) direct construction of an
MPS representation for jψi, (ii) the use of MPS methods to
find the q-simulator for the renewal process, and (iii) evalu-
ation of the corresponding quantum advantage of simulat-
ing such a process quantum mechanically. First, according
to Theorem 1, the iMPS site matrix for jψi is given by

A0
k;kþ1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N − k − 1

N − k

r
; A1

k;0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
1

N − k

r
: ð21Þ

With Theorem 2, we can compute the quantum memory
Cq by using the MPS to quantify the entanglement in jψi.
In Fig. 5, we see that the q-simulator requires only a
bounded memory while the classical optimal memory

FIG. 4. The ε-machine of the discrete renewal process. An edge
labeled xjp indicates that the transition from causal state si to sj
generates output x with probability p. The renewal process either
emits 1 and returns to s0 or 0 and evolves further.
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⋯⋯sN−1

Reset and emit 1

The distance between two ticks is uniformly distributed 
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Figure 5. Distribution of the distance between consecutive ones in the exact and fitted classical (c-fit) and quantum (q-fit)
simulators, and in the compressed classical (c-comp) and quantum (q-comp) simulators. The exact simulation uses N= 4, while
the fitted ones either N= 4 (a) or N= 2 (b). Fitting is done using a training sequence of L= 104 observations, while the
histogram is generated using 100 million samples. Table (c) shows the Bhattacharyya coefficients of the resulting quantum and
classical simulators, either fitted from data or compressed from the exact ones, in predicting the next ten future observations.

Table 1. Probability of observing the last ten outcomes in the Lymphography dataset [36], given the previous observations, for fitted
quantum and classical models. Each table entry shows the best value over 100 repetitions of the fitting procedure for random initial
configurations, and the mendian in paranthesis.

D Quantum Classical

16 0.037 (0.025) 0.023 (0.0039)
32 0.134 (0.098) 0.051 (0.0002)
64 0.330 (0.261) 0.002 (0.0002)

5. Conclusions

We have studied whether the quantum advantage in the simulation of classical stochastic processes persists
even when we relax the assumption of exact simulation, which is unlikely to be reachable with real-world
datasets.

We focused on the trade-off between accuracy and asymptotic memory storage. We introduced different
compression algorithms for classical and quantum simulators of one-dimensional (e.g. temporal) stochastic
processes, inspired by tensor network techniques, and analyzed different figures of merit to assess how the
compressed model deviates from the ideal one when trying to make predictions. We found that quantum
simulators can display a higher accuracy, in the prediction, for a given memory, or that, alternatively, can
achieve the same accuracy by retaining less information from the training sequence.

As for future prospects, given that the information available in the training data bounds the
generalization error [14], it is tempting to expect that quantum simulators may be able to learn a model with

13
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EXAMPLE: REAL-WORLD DATA ( LYMPHOGRAPHY)
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the fitted ones either N= 4 (a) or N= 2 (b). Fitting is done using a training sequence of L= 104 observations, while the
histogram is generated using 100 million samples. Table (c) shows the Bhattacharyya coefficients of the resulting quantum and
classical simulators, either fitted from data or compressed from the exact ones, in predicting the next ten future observations.

Table 1. Probability of observing the last ten outcomes in the Lymphography dataset [36], given the previous observations, for fitted
quantum and classical models. Each table entry shows the best value over 100 repetitions of the fitting procedure for random initial
configurations, and the mendian in paranthesis.

D Quantum Classical

16 0.037 (0.025) 0.023 (0.0039)
32 0.134 (0.098) 0.051 (0.0002)
64 0.330 (0.261) 0.002 (0.0002)

5. Conclusions

We have studied whether the quantum advantage in the simulation of classical stochastic processes persists
even when we relax the assumption of exact simulation, which is unlikely to be reachable with real-world
datasets.

We focused on the trade-off between accuracy and asymptotic memory storage. We introduced different
compression algorithms for classical and quantum simulators of one-dimensional (e.g. temporal) stochastic
processes, inspired by tensor network techniques, and analyzed different figures of merit to assess how the
compressed model deviates from the ideal one when trying to make predictions. We found that quantum
simulators can display a higher accuracy, in the prediction, for a given memory, or that, alternatively, can
achieve the same accuracy by retaining less information from the training sequence.

As for future prospects, given that the information available in the training data bounds the
generalization error [14], it is tempting to expect that quantum simulators may be able to learn a model with

13

Probability of observing the last ten outcomes in 
the Lymphography dataset, given the previous 
observations 

Each entry shows the best value over 100 
repetitions of the fitting procedure for random 
initial configurations, and the median in 
parenthesis.



OTHER APPLICATIONS



LEARNING WITH QUANTUM DATA

Nature Reviews Physics | Volume 5 | March 2023 | 141–156 141

nature reviews physics https://doi.org/10.1038/s42254-022-00552-1

Review article Check for updates

Learning quantum systems
Valentin Gebhart1,2, Raffaele Santagati3, Antonio Andrea Gentile4, Erik M. Gauger    5, David Craig6, Natalia Ares7, 
Leonardo Banchi    8,9, Florian Marquardt10,11, Luca Pezzè1,2   & Cristian Bonato    5 

Abstract

The future development of quantum technologies relies on creating 
and manipulating quantum systems of increasing complexity, with 
key applications in computation, simulation and sensing. This poses 
severe challenges in the e"cient control, calibration and validation of 
quantum states and their dynamics. Although the full simulation 
of large-scale quantum systems may only be possible on a quantum 
computer, classical characterization and optimization methods still 
play an important role. Here, we review di#erent approaches that use 
classical post-processing techniques, possibly combined with adaptive 
optimization, to learn quantum systems, their correlation properties, 
dynamics and interaction with the environment. We discuss theoretical 
proposals and successful implementations across di#erent multiple-
qubit architectures such as spin qubits, trapped ions, photonic and 
atomic systems, and superconducting circuits. This Review provides 
a brief background of key concepts recurring across many of these 
approaches with special emphasis on the Bayesian formalism and 
neural networks.
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Figure 1. Learning quantum states, dynamics and measurements. (a) In this review, we divide the task of learning
quantum systems into the sub-tasks of learning quantum states (Sec. 2), quantum dynamics (Sec. 3), quantum measurements
(Sec. 5), and optimisation techniques (Sec. 6). (b) A list of widely-used methods for learning quantum states (top), dynamics
(centre), and measurements (bottom), indicating the number of qubits N each method has been applied to for experimental and
simulated data. The compared methods are (Maximum-likelihood49; MaxLik), (compressed sensing44; CS),
(permutationally-invariant QST276; PI-QST), (tensor-network QST55, 57; TN-QST), (restricted Boltzmann machines59, 63;
RBM), and (classical shadows71, 88; Shadow) for quantum states, (standard QPT110, 117, 122; SQPT), (randomised
benchmarking277; RB), (compressed sensing117, 120; CS), (tensor-network QPT122; TN-QPT), (quantum Hamiltonian
learning140, 142; QHL), (quantum model learning agent143; QMLA), (eigenstate-driven hamiltonian learning158; EdHL),
(Lindblad tomography167; LT), and (process tensor tomography176; PTT) for quantum dynamics, and (quantum detector
tomography229; QDT), (joint quantum-state and measurement tomography232, 233; JQSMT), and (gradient descend methods223;
GD) for quantum measurements.
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The embedded input can be expressed 
as a Fourier-like series 

  

Generalisation error from the Fourier 

matrix                               

with spectrum   

  

See also Caro et al. Quantum (2021)
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QUANTUM BARCODES AND PATTERN RECOGNITION

▸ Barcode classification must identify each 
pixel correctly 

▸ Handwriting classification is easier as errors 
are tolerated!  

▸               

‣ L. Banchi, Q. Zhuang, S. Pirandola,                                  
Phys. Rev. Applied 14, 064026 (2020) 

‣ C Harney, L Banchi, S Pirandola,                                       
Phys. Rev. A 103, 052406 (2021) 

‣ JL Pereira, L Banchi, Q Zhuang, S Pirandola,                 
Phys. Rev. A 103, 042614 (2021)
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EW
EW

EB
EW

EB

EB
EB

EW
EB

EW

EW
EB

EW
EW

EW

EW
EW

EW
EW

EB

EB
EB

EW
EB

EB

de
te
ct
or

c)

a) b)

d)

TMSV

TMSV

TMSV
Ei1

Ei2

Ei3

O
p
t
ic
a
l

C
ir
c
u
it

POVM

Classical

postprocessing



CONCLUSION

▸ Generalisation favoured by discarding information about the input that is irrelevant 
for predicting the output                                                                Quantum compression?  

▸ Few measurement shots may be a dominant source of generalisation error  

▸ Quantitative data-dependent bounds.  Greater physical insight. 

▸ Different applications:  

▸ Quantum pattern recognition with entanglement-enhanced quantum sensor 

▸ Classification of quantum states and phases of matter 

▸ Quantum machine learning of classical data



STATISTICAL LEARNING THEORY

?


