

LEONARDO BANCHI

QUANTIFYING THE COMPLEXITY OF LEAKNING UUANIUM FEAIUKES

UNIVERSITY OF FLORENCE (ITALY)

EASY VS COMPLEX QUANTUM LEARNING PROCESSES

- Classical input x, classical feature y
- By varying x we can explore different states
- We want to extract the feature y e.g. via measurements

EXAMPLES

- Classical machine learning or QML with classical data
- Sample complexity in supervised learning: number of training data N
- (Validation) Error

What we want to learn

(AMPLES)

- Quantum sensing / Quantum hypothesis testing
- shots) S
- Continuous y (metrology): mean sc
- Discrete y: probability of misclassification $\epsilon = 1 2^{-H_{\min}(Q|Y)} \approx e^{-\alpha S}$

$$y (x, y) \rightarrow y$$

What we want to lear

• Sample complexity is the number of copies of ρ (e.g. number of measurement

quare error
$$\epsilon = \mathcal{O}(S^{-1})$$
 or $\epsilon = \mathcal{O}(S^{-2})$

OPEN QUESTION

- for all possible *x*? Generalisation
- $\epsilon = f(N, S)$? Error:

Open question

• How many values N of x does our learning strategy need to be able to extract y

• How many copies S (e.g. measurement shots) of each $\rho(x, y)$ do we need?

WORST CASE

 $\epsilon = \mathcal{O}\left((NS)^{-1/3}\right)$

Statistical Complexity of Quantum Learning

Leonardo Banchi,* Jason Luke Pereira, Sharu Theresa Jose, and Osvaldo Simeone

$$= \mathcal{O}\left(d\left(NS\right)^{-1/2}\right)$$

with tomography

LEARNING WITH QUANTUM STATES

L BANCHI, J PEREIRA, S PIRANDOLA **PRX QUANTUM 2, 040321 (2021)**

<u>CLUSTERING IN HILBERT SPACES</u>

- Generalisation depends on both data and algorithm
- Good generalisation when the states are clustered in the Hilbert space
- Large I(Y : Q), small I(X : Q)

L BANCHI, J PEREIRA, S PIRANDOLA PRX QUANTUM 2, 040321 (2021)

LEARNING TO CLASSIFY **QUANTUM PHASES OF MATTER**

RECOGNISING QUANTUM PHASES OF MATTER IS "EASY"

- x = (h₁, h₂) is the set of classical Hamiltonian parameters (magnetic fields, couplings)
- $\rho(x, y)$ is the ground state
- y is the phase (paramagnetic, topological...)

SEE MEHRAN'S TALKS

LEARNING QUANTUM PHASES OF MATTER ?

Generalisation bound grows (linearly?) with the number of qubits

The learnt observable requires few measurements, e.g. single-qubit measurements

See arXiv:2409.05188

LEARNING TO CLASSIFY ENTANGLEMENT WITHOUT KNOWING ENTANGLEMENT THEORY

LEARNING TO CLASSIFY ENTANGLEMENT IS "HARD"

Toy problem: binary classification of separable (class 0) vs maximally entangled (class 1) states

 $|\psi_0(x)\rangle = U_A(x)|0\rangle \otimes U_B(x)|0\rangle$

Simple analytical strategy: measure the purity (~ Renyi-2 entropy) of either A or B subsystems. Outcomes 1 vs $\mathcal{O}(d^{-1})$ variance $(1 - d^{-2})/S$

The states from both classes uniformly populate the Hilbert space, the two classes are not clustered

$$\int \mathrm{d}x \, |\psi_0(x)\rangle \langle \psi_0(x)| = \int \mathrm{d}x \, |\psi_1(x)\rangle \langle \psi_1(x)| = \frac{\mathbb{I} \otimes \mathbb{I}}{d^2}$$

Linear observables cannot discriminate the two states.

$$|\psi_1(x)\rangle \propto U_A(x) \otimes U_B(x) \sum_{i=1}^d |i,i\rangle_A$$

CLASSIFICATION WITH SUPPORT VECTOR MACHINES

Banchi et al. arXiv (soon)

$$K(x, x') = |\langle \psi(x) | \psi(x') \rangle|^{4}$$
$$= \operatorname{Tr} \left[\rho(x)^{\otimes 2} \rho(x')^{\otimes 2} \right]$$
Feature space

Theorem: if we estimate kernels via the SWAP test, the optimal observable learnt from data converges to the purity measurement when $N \to \infty, S \to \infty$

Error
$$\epsilon$$
 with $N = \frac{1}{\epsilon} \left(1 + \frac{d^4}{S} \right)^2 ds$

PARAMETERS WITH ACCURACY HIGHER THAN 99%

Banchi et al. arXiv (soon)

TEMPORAL STOCHASTIC PROCESSES

EUR vs 1 SGD

What will happen in the future?

?

TEMPORAL STOCHASTIC PROCESSES

Not all hidden variables are relevant to predict future observations

all the relevant information to predict future outcomes

Replace the huge hidden states with a finite memory, which contains

QUANTUM SIMULATORS

K are Kraus operators

Expressive power of tensor-network factorizations for probabilistic modeling

Ivan Glasser^{1,2}*, Ryan Sweke³, Nicola Pancotti^{1,2}, Jens Eisert^{3,4}, J. Ignacio Cirac^{1,2} ¹Max-Planck-Institut für Quantenoptik, D-85748 Garching ²Munich Center for Quantum Science and Technology (MCQST), D-80799 München ³Dahlem Center for Complex Quantum Systems, Freie Universität Berlin, D-14195 Berlin ⁴Department of Mathematics and Computer Science, Freie Universität Berlin, D-14195 Berlin

PHYSICAL REVIEW LETTERS 121, 260602 (2018)

Matrix Product States for Quantum Stochastic Modeling

Chengran Yang,^{1,2,*} Felix C. Binder,^{1,2,†} Varun Narasimhachar,^{1,2} and Mile Gu^{1,2,3,‡} ¹School of Physical and Mathematical Sciences, Nanyang Technological University, 637371 Singapore, Singapore ²Complexity institute, Nanyang Technological University, 639798 Singapore, Singapore ³Centre for Quantum Technologies, National University of Singapore, 3 Science Drive 2, 117543 Singapore, Singapore

ANTUM SIMULATORS

In general

Quantum: Classical:

In some cases (ε -machines) the quantum model uses less memory

LEARNING FRAMEWORK

- x: vector of past observations
- y: vector of future observations

- The quantum model better compresses past observations into a quantum memory
- Does the quantum model display an advantage in generalisation?

Mach. Learn.: Sci. Technol. 5 (2024) 025036

OPEN ACCESS

PAPER

MACHINE

RNING

Science and Technology

Accuracy vs memory advantage in the quantum simulation of stochastic processes

Leonardo Banchi

Department of Physics and Astronomy, University of Florence, via G. Sansone 1, I-50019 Sesto Fiorentino, (FI), Italy INFN Sezione di Firenze, via G. Sansone 1, I-50019 Sesto Fiorentino, (FI), Italy

E-mail: leonardo.banchi@unifi.it

(cc) $I(X: Q_{\text{quantum men}}) \leq I(X: Q_{\text{classical memory}})$

EXAMPLE: STOCHASTIC CLOCK

EXAMPLE: STOCHASTIC CLOCK

 $N = 2 \pmod{10}$ 0.8380.050 $N = 2 \pmod{10}$ 0.8420.652Probability of observing the last ten outcomes in
the Lymphography dataset, given the previous
observations

Each entry shows the best value over 100 repetitions of the fitting procedure for random initial configurations, and the median in parenthesis.

D	Quantum	Classical
16	0.037 (0.025)	0.023 (0.0039)
32	0.134 (0.098)	0.051 (0.0002)
64	0.330 (0.261)	0.002 (0.0002)

$N = 4 \text{ (fit)} 0.969 \text{ DATA}_{0.630} \text{ HOBRAPHY}$

bl. of block bl. of by lymphatics extra lymph. lymph. of pass affere S С 4 1 3 3 3 3 3 2 2 2 2

X = lymphography["data"]["features"]

148 rows × 19 columns

iva	sa	te	s

LEARNING WITH QUANTUM DATA

nature reviews physics

Nature Reviews Physics 5, 141–156 (2023)

Learning quantum systems

Valentin Gebhart^{1,2}, Raffaele Santagati³, Antonio Andrea Gentile⁴, Erik M. Gauger \mathbf{O}^5 , David Craig⁶, Natalia Ares⁷, Leonardo Banchi $\mathbf{O}^{8,9}$, Florian Marquardt^{10,11}, Luca Pezzè^{1,2} \mathbf{w} & Cristian Bonato \mathbf{O}^5 \mathbf{w}

EXAMPLE: PARAMETRIC QUANTUM CIRCUIT EMBED

(a) Data distribution

•

 $|0\rangle$

class/label c ='"cat"

(b) Quantum classifier $|0\rangle$ $|0\rangle$ Π_c $|U_L(x)||V_L$ $U_1(x)$ $V_1 \| U_2(x) \|$

predicted class c of x

embedding circuit $x \mapsto \rho(x)$ decision via POVM Π_c

Dilated measurements (C)

optimization of POVM Π_c

 optimization of unitary $U_{\mathcal{M}}$ The embedded input can be expressed as a Fourier-like series

$$|\psi(x)\rangle = \frac{1}{\sqrt{|\Omega|}} \sum_{\omega \in \Omega} e^{i\omega x} |\phi_{\omega}\rangle$$

Generalisation error from the Fourier $e^{ix_n(\omega-\omega')}$ matrix n =

with spectrum f

 $2^{I_{1/2}(X:Q)} < 2^{H_{1/2}(f)} \leq |\Omega|$

See also Caro et al. Quantum (2021)

QUANTUM BARCODES AND PATTERN RECOGNITION

- Barcode classification must identify each pixel correctly
- Handwriting classification is easier as errors are tolerated!

error $\simeq F(\rho_{\text{black}}, \rho_{\text{white}})^{\text{Hamming}_{4\leftrightarrow 9}}$

- L. Banchi, Q. Zhuang, S. Pirandola,
 Phys. Rev. Applied 14, 064026 (2020)
- C Harney, L Banchi, S Pirandola, Phys. Rev. A 103, 052406 (2021)
- JL Pereira, L Banchi, Q Zhuang, S Pirandola, Phys. Rev. A 103, 042614 (2021)

CONCLUSION

- for predicting the output
- Few measurement shots may be a dominant source of generalisation error
- Quantitative data-dependent bounds. Greater physical insight.
- Different applications:
 - Quantum pattern recognition with entanglement-enhanced quantum sensor
 - Classification of quantum states and phases of matter
 - Quantum machine learning of classical data

Generalisation favoured by discarding information about the input that is irrelevant Quantum compression?

STATISTICAL LEARNING THEORY

