Quantum Computing @ CINECA

Integrating a Quantum Accelerator into an HPC Environment

Daniele Ottaviani

Cineca Quantum Computing Lab

CENTER

Quantum Computing Teaching, Outreaching Resources and Dissemination DIWOVC The Quantum Computing Company™ **Cloud QC** CINECA PAS **European and National** projects **KHPC 1ARC** HPC QC **QUANTUM COMPUTING LAB Emulation** Fondazione EURO Centro Nazionale di Ricerca in HPC. Big Data and Quantum Computing QUANTUM Computing AND SIMULATION

JANTUM

JTING LAB

Cineca Quantum Computing Lab

CENTER

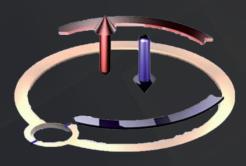
Quantum Computing Teaching, Outreaching Resources and Dissemination Cloud QC DIWOVC The Quantum Computing Company CINECA PASQAL Hybrid HPC-QC System **European and National** projects **KHPC QUANTUM COMPUTING LAB** Fondazione EURO Centro Nazionale di Ricerca in HPC Big Data and Quantum Computing QUANTUM Computing AND SIMULATION

PUTING LAB

Available emulators on Leonardo

Already available


- Cirq (Google) GPU, cuQuantum
- Ocean (D-wave)
- Qiskit (IBM) MPI, GPU, cuQuantum
- Pulser (Pasqal)
- Qibo GPU, cuQuantum
- Pennylane MPI, GPU, cuQuantum
- Quantum Matcha Tea MPI, GPU
 Work in progress:
- QuEST MPI, GPU
- Cuda Quantum MPI, GPU, cuQuantum


The EuroHPC JU has selected six sites across the European Union to host and operate the first EuroHPC quantum computers in:

EuroQHPC-I

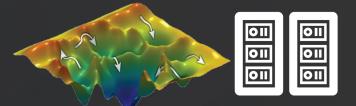
LUMI-Q

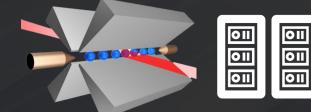
EuroQCS Spain

EuroQCS Poland

CINEC

QUANTUM COMPUTING LAB

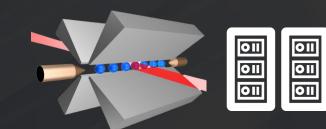

EuroQHPC-I


EuroQCS Spain

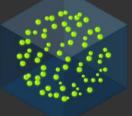
EuroQCS France

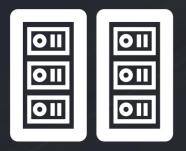
Euro-Q-Exa

EuroQCS Poland



EuroHPC Joint Undertaking



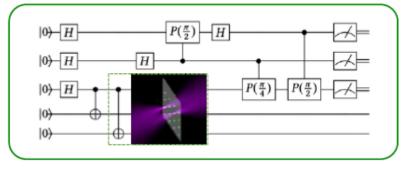


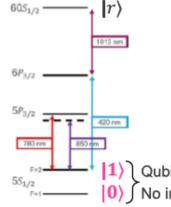
EuroQCS-Italy

Leonardo - BullSequana XH2000, Xeon Platinum 8358 32C 2.6GHz, NVIDIA A100 SXM4 64 GB, Quadrail NVIDIA HDR100 Infiniband

Rpeak 306.31 PFlop/s, Top500 Rank: 7

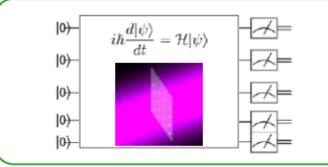
Neutral Atoms Analog Quantum Simulator 140 qubits – Q2 2025 Upgrade path: enabling partial addressability (Q3 2026)

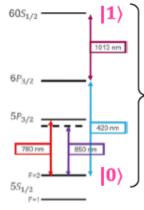

Superconducting Digital Quantum Computer 54 qubits – Q1 2025



Digital mode

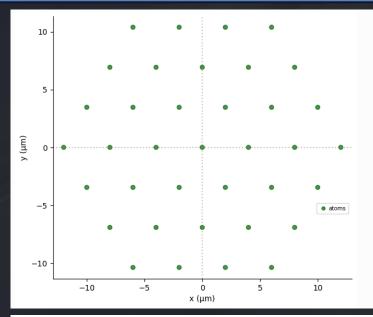
Programming a logic circuit = quantum gates


Elementary operations on individual qubits, or on several qubits at the same time \rightarrow **universal** but very **sensitive to noise**


Qubits are encoded in the hyperfine ground levels.

Analog mode

Programming a sequence of Hamiltonian evolutions


The Hamiltonian faithfully describes the dynamics of the physical system \rightarrow not universal but offers better performances with NISQ processors.

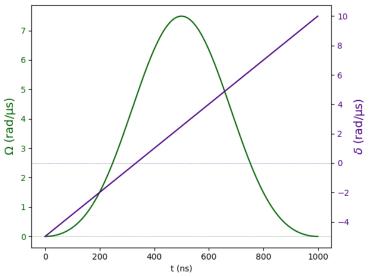
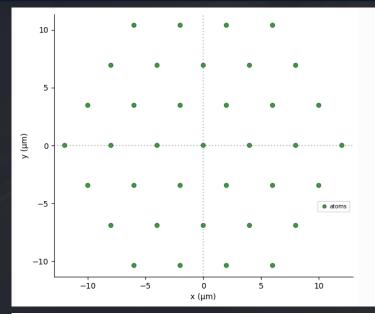
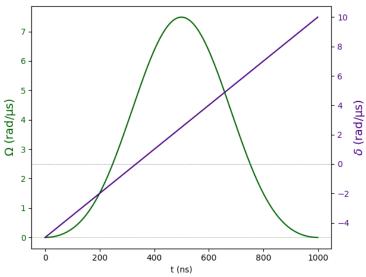

Qubits are encoded in the ground-Rydberg levels. Strong interaction, entanglement, but short lifetime.

Figure 454: a clear explanation of the difference between a digital gate-based mode and an analog, quantum simulation mode. Source: Pasqal. 2023.



$$\frac{\hbar}{2} \sum_{i} \Omega(t) \sigma_i^x - \frac{\hbar}{2} \sum_{i} \delta(t) \sigma_i^z + \sum_{i < j} U_{ij} n_i n_j$$

n = (1+\sigma^z)/2, U_{ij} \propto R_{ij}^{-6}



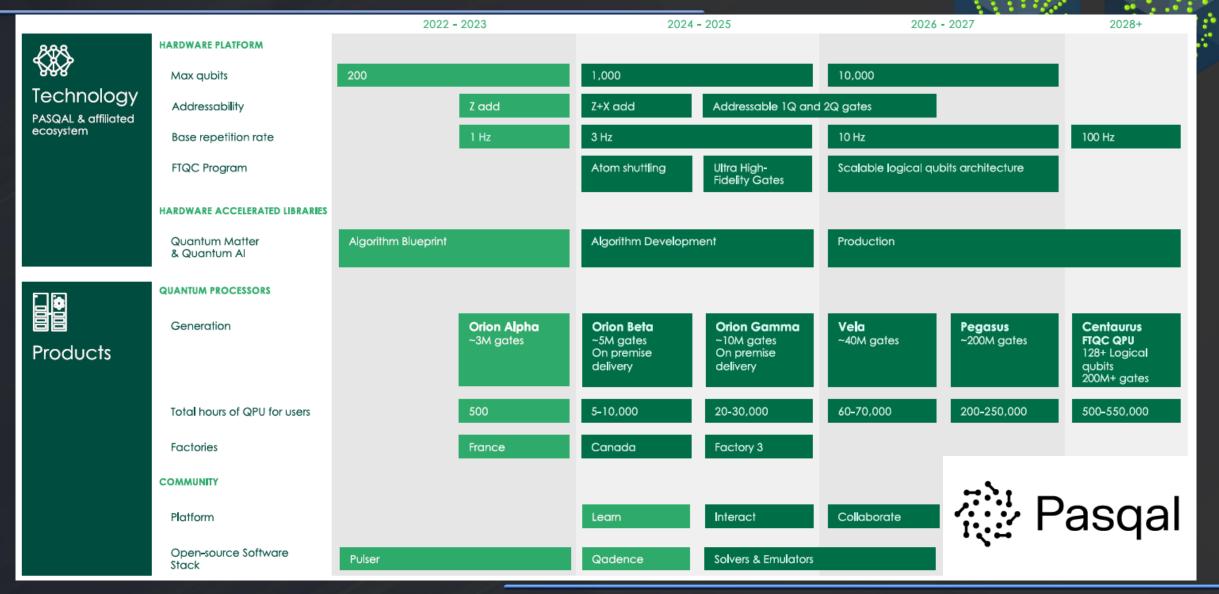
https://pulser.readthedocs.io/en/stable/review.html

$$\begin{split} \frac{\hbar}{2} \sum_{i} \Omega_{i}(t) \sigma_{i}^{x} - \frac{\hbar}{2} \sum_{i} \delta(t) \sigma_{i}^{z} + \sum_{i < j} U_{ij} n_{i} n_{j} \\ n &= (1 + \sigma^{z})/2, \qquad U_{ij} \propto R_{ij}^{-6} \end{split}$$

Partial Addressability

Understanding Quantum Technologies

Adde web bonn - Abner Sminiony - Aur Snamm - Akira Furusawa - Aldin Aspect - Aldin Ravex - Aldin Sanette - Aldin Aspurt uzik | Alastair Abbott | Albert Einstein | Alberto Bramati | Alexander Andreev | Alexander Holevo | Alexander Prokhorov lexandre Blais | Alexandre Zagoskin | Alexei Bylinskii | Alexei Grinbaum | Alexei Kitaev | Alexia Auffeves | Alfred Kastler | Alfre érot | Alonzo Church | Amir Naveh | André Luiz Barbosa | Andrea Morello | Andrea Rodriguez Blanco | Andreas Wallraff ndrew Childs | Andrew Cross | Andrew Gleason | Andrew Horsley | Andrew S. Dzurak | Andrew Steane | Andrew G. White ndy Matuschak | Anne Broadbent | Anne Canteaut | Anne Matsuura | Anthony Leverrier | Antoine Browaeys | Anton Zeilinge Aram Harrow | Arten Warshel | Arthur Holly Compton | Arthur Leonard Schawlow | Artur Ekert | Astrid Lambrecht | Audre ienfait | Axel Becke | Benjamin Huard | Benoît Valiron | Bettina Heim | Bob Wiens | Boris Podolsky | Brian Josephson | Brud Bruno Desruelle | Br nes | Charles Hermit hristophe Solomon Clauss Jonsson | Clinton Davisson | Cornelis Dorsman | Craig Gidney | Cristian Calude | Cristina Escoda | Cyril ouche | Damien Stehlé | Daniel Esteve | Daniel Gottesman | Dave Wecker | David Bohm | David Deutsch | David DiVincenzo David Hilbert I David I Thouless | David T land | Der is Dieks | Dieter eh | Dirk Bourmeester | Don Co David Hilbert I David I Thouless | David T land | Der is Dieks | Dieter eh | Dirk Bourmeester | Don Co David Hilbert I David I Thouless | David T land | Der is Dieks | Dieter eh | Dirk Bourmeester | Don Co David Hilbert I David I Thouless | David T land | Der is Dieks | Dieter eh | Dirk Bourmeester | Don Co David Hilbert I David I Thouless | David T land | Der is Dieks | Dieter eh | Dirk Bourmeester | Don Co David Hilbert I David I Thouless | David T land | Der is Dieks | Dieter eh | Dirk Bourmeester | Don Co David Hilbert I David I Thouless | Dieter eh | Dirk Bourmeester | Don Co David Hilbert I David I Thouless | Dieter eh | Dirk Bourmeester | Don Co David Hilbert I David I Thouless | Dieter eh | Dirk Bourmeester | Don Co David Hilbert I David I Thouless | Dieter eh | Dirk Bourmeester | Don Co David Hilbert | David I Thouless | Dieter eh | Dirk Bourmeester | Don Co David Hilbert | David I Thouless | Dieter eh | Dirk Bourmeester | Don Co David Hilbert | David I Thouless | Dieter eh | Dirk Bourmeester | Don Co David Hilbert | Dirk Bourmeester | Dirk Bourmeester | Don Co David Hilbert | Dirk Bourmeester | Dirk Emmy Noether | Enrico Fermi | Eric Cornell | Ernest Rutherford | Ernst Ising | Erwin Schrödinger tienne Klein | Ettore Majorana | Ewin Tang | Fabio Sciarrino | Faye Wattleton | Felix Bloch | Francesca Ferlaino | Franck Balestr Frank Wilczek | François Le Gall | Frédéric Grosshans | Frédéric Magniez | Freeman John Dyson | Friedrich Hund | Friedric Geordie Rose | George Uhlenbeck | Georges Paget Thomson | Georges Zweig | Georges-Olivier Reymond | Gerar Allburn | Gerrit Jan Flim | Gli Kalal | G 2V C 1 T All C 1 T 0 1 o T o 4 0 24 don Baym | Gordon Gould | Guang-Ca iuo | Haig Farris | Hans Albrecht Bethe | Hans Jürgen Briegel | Hantaro Nagaoka | Harald Fritzsch | Hartmut Neven | Heil amerlingh Onnes | Heinrich Hertz | Hélène Bouchiat | Hélène Perrin | Hendrik Anthony Kramers | Hendrik Casimir | Hendri orentz | Henri Polncaré | Hermann Minkowski | HeOHVIEN EZIGUVett | Hui Khoon Ng | Ilana Wisby | Ilya Mikhailovici Ifshitz | Immanuel Bloch | Iñigo Artundo | Iordanis Kerenidis | Irfan Siddigi | Isaac Chuang | Isaac Newton | Itamar Sivan acqueline Bloch | Jacques Salomon Hadamard | Jacquiline Romero | James Chadwick | James Clarke | James Clerk Maxwell ames Park | Jared Cole | Jason Alicea | Jay Gambetta | Jean Dalibard | Jean Michel Raimond | Jean-François Roch | Jean-Miche Gérard | Jean-Philip Piquemal | Jian-Wei Pan | Jelena Vučković | Jelena Vucokic | Jeremy O'Brien | Joannes van der Waals | Jo D'Gorman | Johann Balmer | Johannes Pollanen | Johannes Bydherg | John Bardeen | John Clauser | John Frank Allen | John



QUANTUM

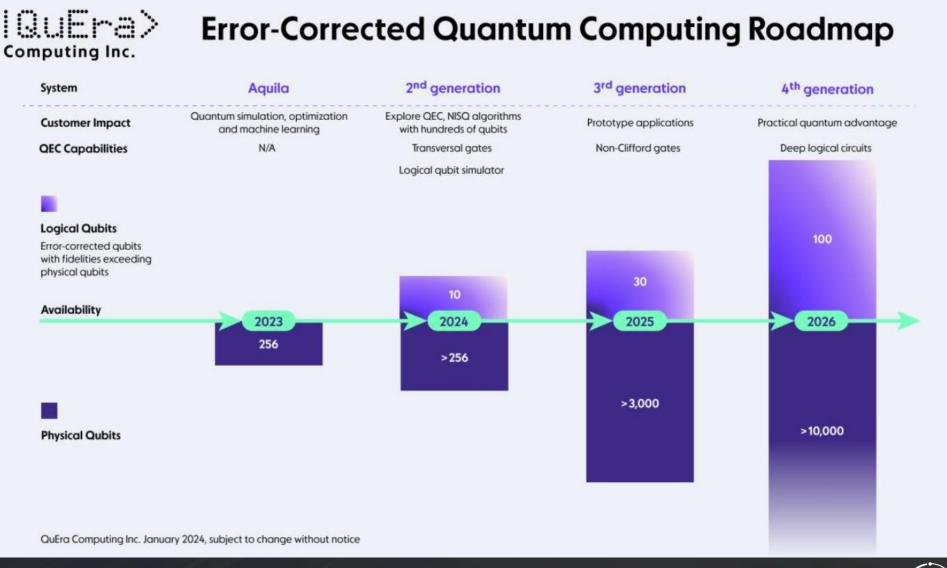
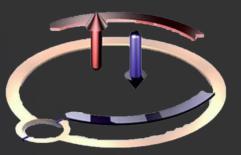

neutral atoms que	pits key takeaways
highlights	challenges
operational systems with 100-300 atoms in simulation mode and not far from a provable quantum advantage.	 crosstalk between qubits: can be mitigated with two-elements atom architectures.
long qubit coherence time and fast gates.	slow operations: 1 Hz simulation cycle.
identical atoms, that are controlled with the same laser and micro- wave frequencies.	 harder to implement with gate-based model: need a stable universal gate set with support for error correction.
 first logical qubits thanks to movable atoms. works in both simulation and gate-based paradigms. no need for specific integrated circuits. 	 need to move atoms around: to enable many-to-many two-qubit gates and reducing QEC overhead, enabling qLDPC, but with risk of losing the atoms on the way.
uses standard apparatus: lasers, optics, controls, cryogenics.	 implement full QND measurement: needed for error correction.
low energy consumption.	 losing atoms during computing while disconnecting the tweezers.
variations	path to scalability
dual species qubits: to improve QND measurement. nucleus spin qubits: with longer coherence times, in seconds.	 powerful lasers: needed to control >300 atoms, with stabilized power, fiber lasers.
circular Rydberg atoms: more stable.	 atoms positioning: large scale SLM+AOD to trap up to 10K atoms.
fermionic computing: better for chemical simulations.	 QND measurement: using dual species and/or atoms shuttling.
bosonic codes (cat-codes, GKP) with atom qubits: better QEC. hybrid gate-based and analog: for specific case studies.	 faster operations and duty cycle: better and more powerful lasers, fast classical controls (FPGA, ASIC).
atoms trapped on nanophotonic circuits: enabling interactions.	• implement full universal gate set: T gate & magic state distillation.
hybrid neutral atoms and ions: getting the best of both worlds.	 QPU interconnect: photon based, including for memories, can also use nanophotonic circuit traps.

Figure 441: pros and cons of cold atoms quantum computers and simulators. (cc) Olivier Ezratty, 2022-2024.

Superconducting Qubits

superconducting qubits key takeaways


highlights

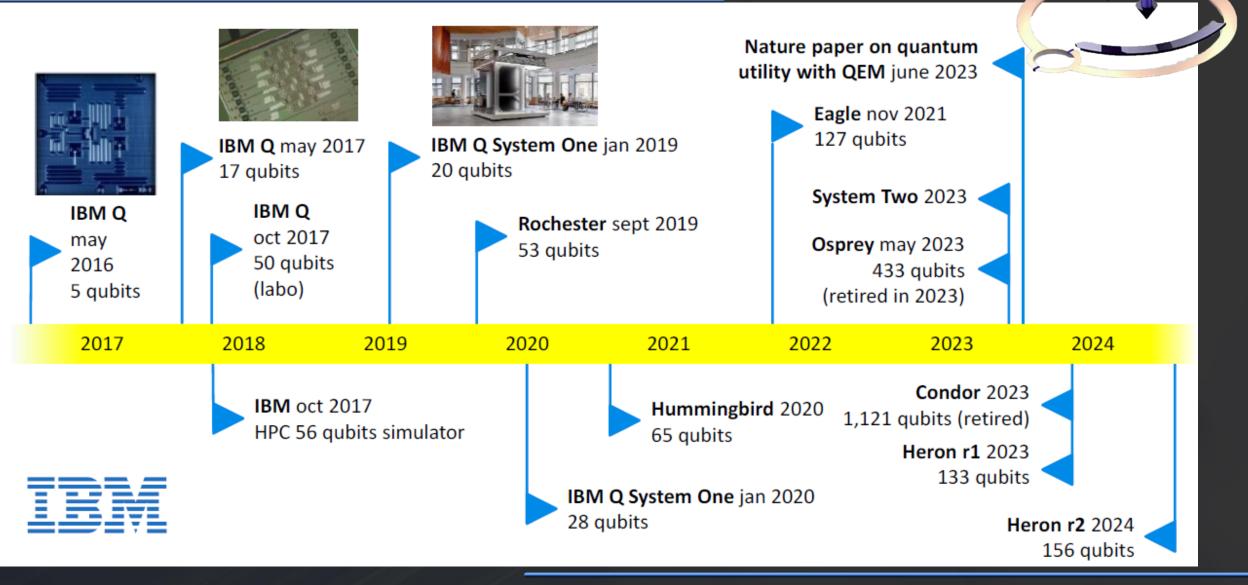
- key technology in the academic world and with the largest and well funded commercial vendors community including large players like IBM, Google, IQM and Rigetti.
- record of 156 programmable qubits with 99.7% two qubit gates fidelities (IBM Heron r2, 2024).
- noise reduction constant progress in regular transmons with tunable couplers and with bosonic qubits which could enable a record low ratio of physical/logical qubits.
- first break-even logical qubits: Google in August 2023.
- enabling technologies are abundant with cryostats, cabling, analog electronics, amplifiers, and sensors.
- quantum error mitigation and quantum error correction known techniques to enable NISQ applications and future FTQC designs.

variations

- **bosonic qubits**: cat-qubits, GKP, dual rail with self-correction and lower QEC overhead. They are less mature but promising.
- fluxonium qubits: with better fidelities but a more complicated designs and few involved vendors.
- qutrits: with larger Hilbert space, which are exotic in the commercial world.
- Andreev spin qubits: localized excitation of the BCS condensate that natively has only two levels, using a nanowire.
- hybrid quantum analog-digital architectures: to solve specific problems, not generic.

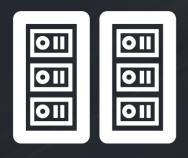
challenges

- qubits variability: requires calibration and complex micro-wave frequency maps and need to contain crosstalk.
 qubit connectivity: limited to neighbor qubits in 2D structures.
- **qubit coherence time**: usually < 300 µs with some lab records >1ms.
- cryogeny: constrained technology at <15 mK, but not a scientific obstacle per se, more an engineering one. Yield can be improved.
- **logical qubits**: are not yet under break even. They are currently worse than physical qubits in most experiments.
- cabling clutter: complexity and many passive and active electronic components to control qubits with micro-waves and other signals.
- **qubits size:** uneasy miniaturization limits qubit # per chips and requires QPU interconnect solutions.
- qubit fidelities: have a hard time reaching 99.9%, needed for QEC.


path to scalability

- materials: improve elements purity, identify other promising ones.
- EDA: full stack electronic design automation tools.
- manufacturing: industrialization, 300 mm wafers epixaxial deposition.
- qubit mid-range coupling: to enable lower overhead qLDPC QEC.
- interconnect: using transduction and photonic gate teleportation.
- signals multiplexing or SFQ control electronics: to reduce cabling overhead and cryogenic requirements.
- QEC syndrome detection speed improvements using ASICs.
- cryostats: larger and more efficient.

Figure 301: superconducting qubits highlights, challenges, variations and path to scalability. (cc) Olivier Ezratty, 2021-2024.



Superconducting Qubits

EuroQCS-France

JOLIOT-CURIE ROME - Bull Sequana XH2000 , AMD Rome 7H12 64C 2.6GHz, Mellanox HDR100

Rpeak 12.04 PFlop/s, Top500 Rank: 132

Neutral Atoms Analog Quantum Simulator 100 qubits – Q1 2025 < HPC ØS>

Photonic Quantum Computer 12 qubits – Q3 2025 Upgrade path: 24+ qubits Q3 2026

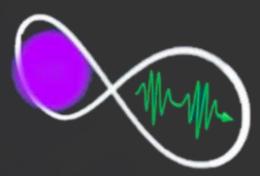
Photonic Quantum Computers

photon	qubits l	key ta	keaways
--------	----------	--------	---------

highlights

- stable qubits with absence of decoherence.
- ambient temperature for processing.
- emerging nano-photonic manufacturing techniques enabling scalability.
- easier to scale-out with inter-qubits communications and quantum telecommunications.
- MBQC/FBQC circumventing the fixed gates depth computing capacity and difficulty to create multiple qubit gates.
- boson sampling-based quantum advantage: starts to being programmable but a practical quantum advantage remains to be proven.

variations


- encoding: direct variables qubits (DV), continous variables (CV) qubits, multimode photon encoding.
- MBQC (measurement based quantum computing) and FBQC (fusion-based quantum computing).
- **BS/GBS**: programmable Boson sampling and Gaussian boson sampling.
- hybrid approaches: spin-optical quantum computing (SPOQC) with quantum dots spin qubits (Quandela), hybrid atom-photon qubits.
- classical photonic models: coherent Ising models, photonic waveguide arrays and interferometric systems.

	need to cool photon sources and detectors: but at relatively reasonable temperatures between 2K and 10K, requiring lighweight cryogenic systems (unless also cooling the whole photonic circuit). not yet scalable in number of operations: due to probabilistic character of quantum gates and the efficiency of photon sources in most paradigms. non-deterministic cluster states and two-photon interactions.
	needs delay lines and optical switches.
	heat generated by phasers: increasing cooling budget.
	photon detectors efficiency is too low, at 89% with PsiQuantum.
	photon losses must be contained in nanophotonic circuits.
	path to scalability
	path to scalability efficiency: improve photon sources efficiency, determinism and indistinguishability, improve photon detectors efficiency (SNSPD and PNRD).
•	efficiency: improve photon sources efficiency, determinism and indistinguishability, improve photon detectors efficiency (SNSPD and
	efficiency: improve photon sources efficiency, determinism and indistinguishability, improve photon detectors efficiency (SNSPD and PNRD).
•	efficiency: improve photon sources efficiency, determinism and indistinguishability, improve photon detectors efficiency (SNSPD and PNRD). cluster states: generate large cluster states, with or without heralding.

challenges

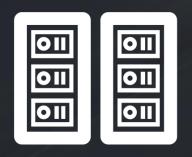

- energy: create low-heating phasers to minimize power consumption.
- nanophotonics: heterogeneous nanophotonic circuits (III-V + silicon).
- classical control speed: particularly with FBQC models.

Figure 465: highlights, challenges, variations and path to scalability of photon qubits. (cc) Olivier Ezratty, 2022-2024.

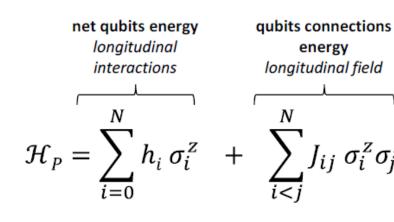
CINE

EuroQCS-Spain

MareNostrum 5 ACC - BullSequana XH3000, Xeon Platinum 8460Y+ 32C 2.3GHz, NVIDIA H100 64GB, Infiniband NDR

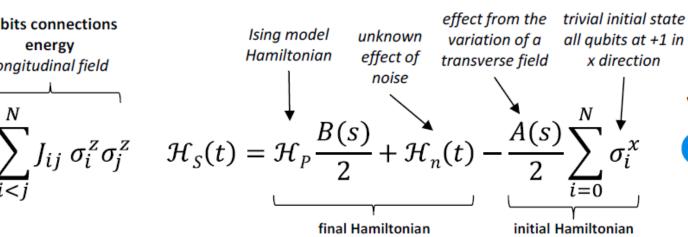
Rpeak 249.44 PFlop/s, Top500 Rank: 8

Superconducting qubits Coherent Quantum Annealer 10 qubits – Q3 2025 Upgrade path: two different upgrades First one Q3 2026 Second one Q3 2027



Quantum Annealing

2-local Ising Hamiltonian initialization defines h_i and J_{ij} and set all σ_i^z at +1



problem variables

- *h_i* linear coefficient (bias) on qubit usually discretized
- J_{ij} coupling between vertices V_i and V_j
 discretized and implemented with couplers
 non zero values limited by coupling topology

problem unknowns

 σ_i^z qubits values : +1 or -1 (« spin orientation ») σ_i^z and σ_i^x are Pauli operators quantum annealing process increases B(s) and decreases A(s) gradually

annealing time operators

time

ŧ,

S

- total annealing time, about 5μs
- fraction of annealing time=t/ t_f
- A(s) tunneling energy at anneal fraction s reduced over time as a $\Gamma(t)$ transverse magnetic field applied to all qubits is reduced
- B(s) problem Hamiltonian energy at anneal fraction s increases over time during annealing

qubits topology

coefficier

- V_i vertices containing qubit i
- E_{ij} edge connecting qubits i and j

system energy

 $\begin{array}{ll} \mathcal{H}_{P} & \mbox{initial system Hamiltonian} \\ \mathcal{H}_{n}(t) & \mbox{system noise Hamiltonian} \\ \mathcal{H}_{S}(t) & \mbox{total Hamiltonian} \end{array}$

Quantum Annealing

quantum annealing key takeaways

highlights

- mature development tools offering: D-Wave hybrid solver.
- large number of software startups: particularly in Japan and Canada.
- cloud availability: quantum annealers are available in the cloud by D-Wave and Amazon Web Services.
- case studies: greatest number of well documented case studies in many industries although still at the proof-of-concept stage.
- near quantum advantage: in some situations.
- highly integrated DC qubit control integrated in the chip (SFQ).

challenges

- only one operational commercial vendor, D-Wave.
- computing high error rate.
- most commercial applications are still at the pilot stage and not production-grade scale, but they are closer than gate-based use cases.
- no generic operational proof of quantum advantage.
- need to improve qubit connectivity to improve embeddings.

variations

- hybrid quantum analog-digital architectures: to solve specific problems, not generic.
- digital annealing ala Fujitsu.
- photonic coherent Ising machines.

path to scalability

- better qubit connectivity.
- noise reduction.
- error mitigation.

EuroQCS-Poland

Altair - CH121L V5 Liquid-Cooled, Xeon Platinum 8268 24C 2.9GHz, Infiniband EDR

Rpeak 5.88 PFlop/s, Top500 Rank: 250

Trapped Ions digital quantum computer 20 qubits Q3 2025

Trapped Ions Quantum Computers

trapped ions qubits key takeaways

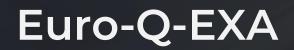
highlights

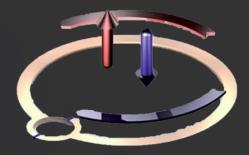
- first two-qubit gate fidelities reaching 99.9% (Quantinuum, Oxford Ionics).
- first logical qubits above break-even.
- high ratio between coherence time and gate time: supports deep algorithms in number of gate cycles.
- low qubits variability given the ions are all the same.
- **entanglement** possible between all qubits on 1D architecture which speeds up computing, avoiding SWAP gates.
- requires some cryogeny at **4K to 10K**.
- **QPU interconnect** can directly use photon entangled resources.

variations

- microwave/DC drive instead of laser drive.
- **connectivity**: many-to-many within zones and ions shuttling between zones.
- **dual species** like ytterbium + barium for computing and cooling.
- Rydberg ion qubits for avoiding phonon and heating effect.
- hybrid neutral atoms-ions platforms.

challenges


- unproven scalability options beyond 60 qubits (ions shuttling, 2D architectures, photon interconnect, micro-Penning traps).
- **slow computing**: due to long quantum gate times and ions shuttling which may be problematic for deep algorithms in a FTQC regime despite better qubit many-to-many connectivity at small scale.
- two-qubit gate times increase with ion distance in some laser-driven 1D and 2D settings.
- many-to-many connectivity works only at small scale.
- control signals variability: microwave, lasers, etc.
- ions heating phenomenon: it is not yet explained yet and really contained.


path to scalability

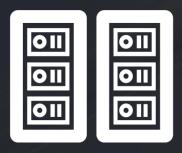

- 2D QCCD and ions shuttling.
- QCCD tiling (Universal Quantum).
- multi modules ion traps with intermodules ions shuttling.
- **multi-layer ion traps** to enable long-range microwave based entanglement.
- photonic interconnect to entangle qubits from different QPUs.

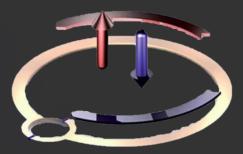
Figure 408: highlights, challenges, variations, and path to scalability of trapped ions qubits. (cc) Olivier Ezratty, 2022-2024.

SuperMUC-NG - ThinkSystem SD650, Xeon Platinum 8174 24C 3.1GHz, Intel Omni-Path

Rpeak 26.87 PFlop/s, Top500 Rank: 50

Superconducting Digital Quantum Computer 54 qubits – Q3 2025 Upgrade path: 150 qubits Q4 2026

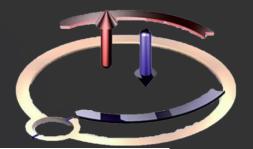
Selected IQM Radiance Machine https://www.meetiqm.com/products/iqm-radiance

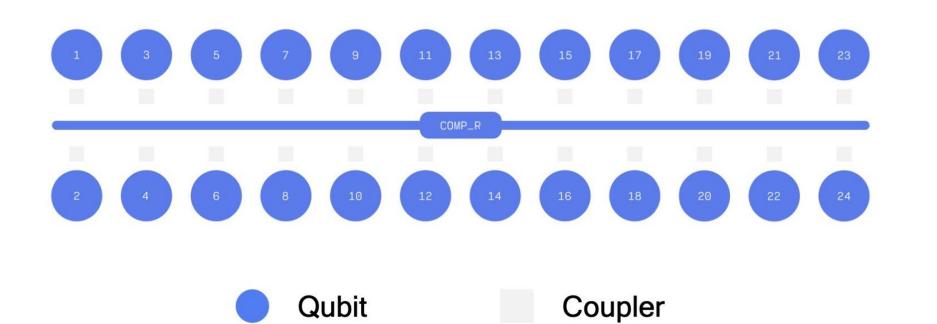


Karolina, GPU partition - Apollo 6500, AMD EPYC 7763 64C 2.45GHz, NVIDIA A100 SXM4 40 GB, Infiniband HDR200

Rpeak 9.08 PFlop/s, Top500 Rank: 135

Superconducting Digital Quantum Computer with unique star topology 24 qubits – Q3 2025


Selected IQM Custom («Radiance Star») Machine



QM

Radiance Star Topology

IQM Star 24

Integrating HPC and QC

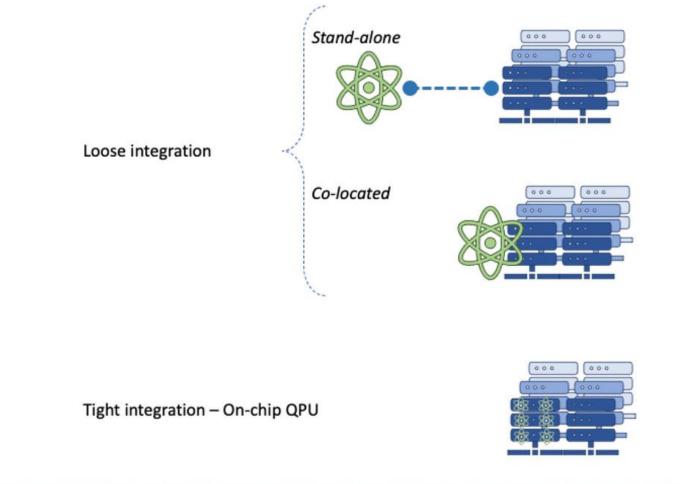


Figure 2. Representation of different levels of integration of QC systems with classical systems (tight or loosely coupled)

ETP4HPC White Paper: < QC | HPC > Quantum for HPC \rightarrow https://www.etp4hpc.eu/white-papers.html#quantum

Integrating HPC and QC

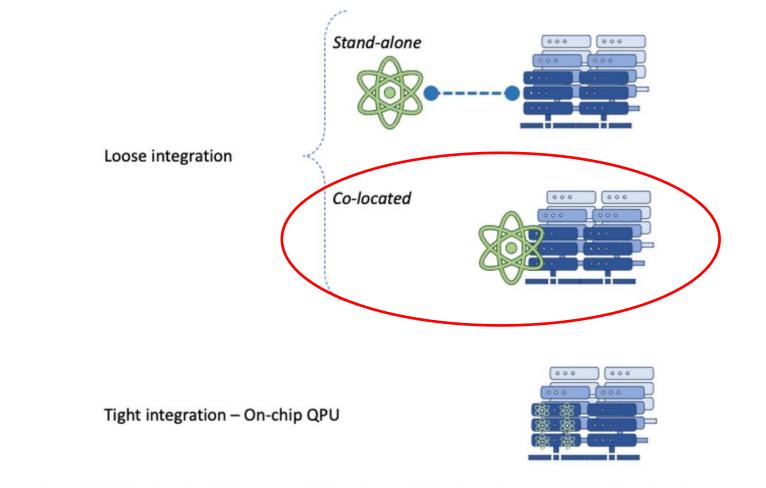
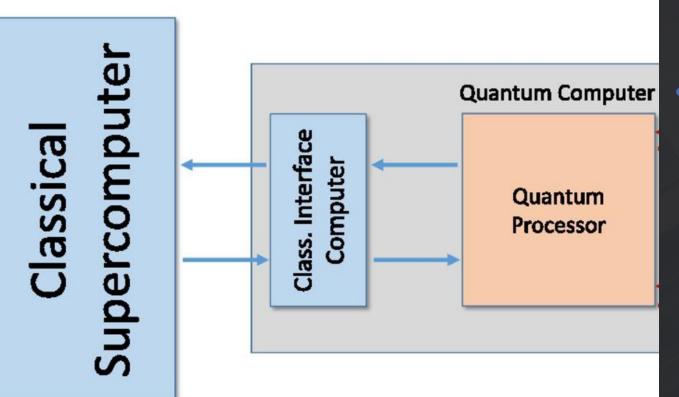


Figure 2.Representation of different levels of integration of QC systems with classical systems (tight or loosely coupled)

ETP4HPC White Paper: < QC | HPC > Quantum for HPC \rightarrow https://www.etp4hpc.eu/white-papers.html#quantum

Integrating HPC and QC

The Hardware part



- Beginners: Connecting the qc to a node
 - A commercial qc usually is set up to be connected to a classic computer via an Ethernet cable – easy part!

CIN

JANTUM OMPUTING LAB

The Hardware part

Beginners: Connecting the qc to a node


A commercial qc usually is set up to be connected to a classic computer via an Ethernet cable – easy part!

• Advanced: Hijack the connection

 To achieve a tighter connection and eliminate unnecessary latencies, one could also consider connecting the HPC node directly to the QPU (without going through the control computer present in the QC)

The Hardware part

- Beginners: Connecting the qc to a node
 - A commercial qc usually is set up to be connected to a classic computer via an Ethernet cable – easy part!

• Advanced: Hijack the connection

- To achieve a tighter connection and eliminate unnecessary latencies, one could also consider connecting the HPC node directly to the QPU (without going through the control computer present in the QC)
- This means installing firmware and operating systems for the QC on the HPC node, making it a de facto control system for the QPU

The Software part

Beginners: Use the QC without HPC

CIN

- Usually the vendors that produce QC also develop SDKs that can talk to the control computer and consequently to the QPU
- Installing and using such software is step 0 for integration

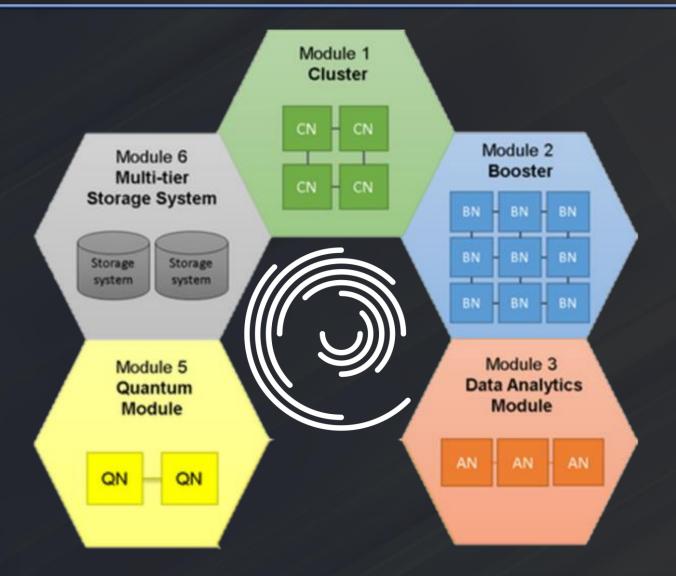
The Software part

- Beginners: Use the QC without HPC
 - Usually the vendors that produce QC also develop SDKs that can talk to the control computer and consequently to the QPU
 - Installing and using such software is step 0 for integration
- Advanced: Use the QC as a part of an HPC job
 - SDKs provided by vendors often do not include the use of MPI and/or CUDA to take advantage of HPC
 - One solution might be to explore existing software (Nvidia CUDA Quantum, Eviden Qaptiva)
 - Or work with the vendor to write a custom SDK


```
#!/bin/bash
#SBATCH -A <account_name>
#SBATCH -p quantum_module
#SBATCH --time 00:10:00
#SBATCH -N 1
#SBATCH --gres=qpu
#SBATCH --job-name=my_batch_job
```

srun ./my_quantum_executable.x

- Beginners: Exclusive allocation
 - Exclusive usage of the QPU other jobs have to wait
 - Control over the whole computation, not single shots (good for VQA, not for Error Mitigation)




```
#!/bin/bash
#SBATCH -A <account_name>
#SBATCH -p quantum_module
#SBATCH --time 24:00:00
#SBATCH -N 10
#SBATCH --gres=qpu
#SBATCH --gres=qpu:4
#SBATCH --job-name=my_batch_job
```

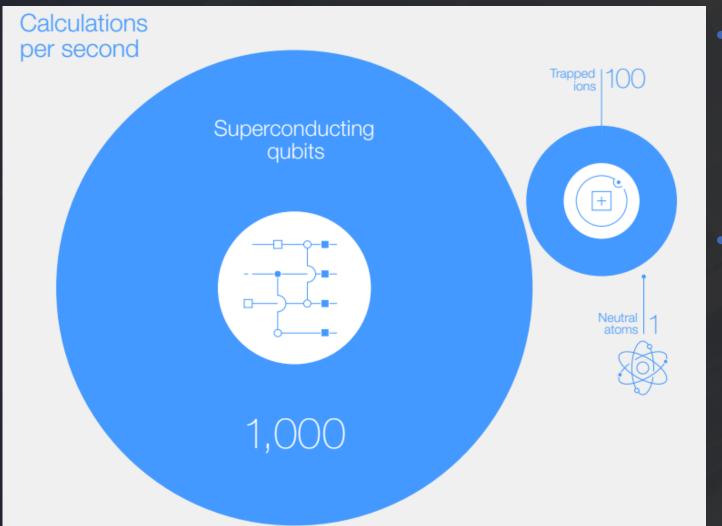
mpirun -np 10 ./my_hybrid_executable.x

- Beginners: Exclusive allocation
 - Exclusive usage of the QPU other jobs have to wait
 - Control over the whole computation, not single shots (good for VQA, not for Error Mitigation)



- Beginners: Exclusive allocation
 - Exclusive usage of the QPU other jobs have to wait
 - Control over the whole computation, not single shots (good for VQA, not for Error Mitigation)

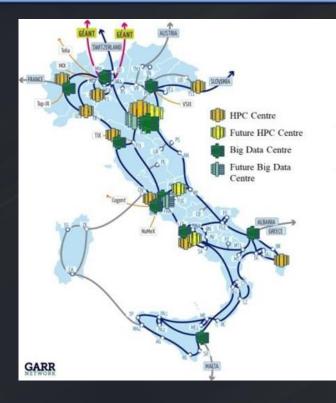
QUANTUM


COMPUTING LAB

- Exclusive usage of the QPU other jobs have to wait
- Control over the whole computation, not single shots (good for VQA, not for Error Mitigation)
- Advanced: Efficient allocation
 - Non-exclusive usage merging jobs

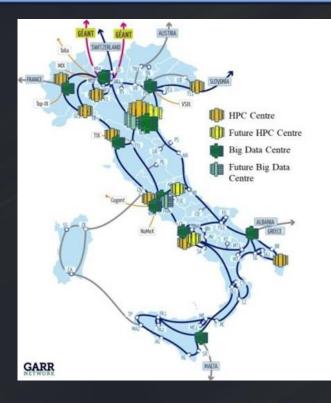
QUANTUM COMPUTING WITH NEUTRAL ATOMS Loïc Henriet, Lucas Beguin, Adrien Signoles, Thierry Lahaye, Antoine Browaeys, Georges-Olivier Reymond and Christophe Jurczak

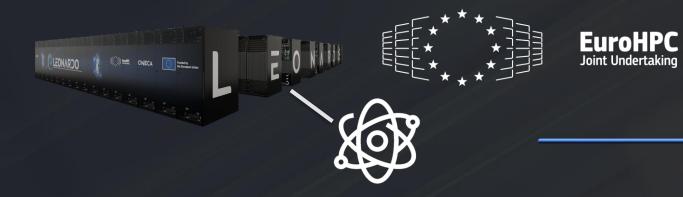
Beginners: Exclusive allocation

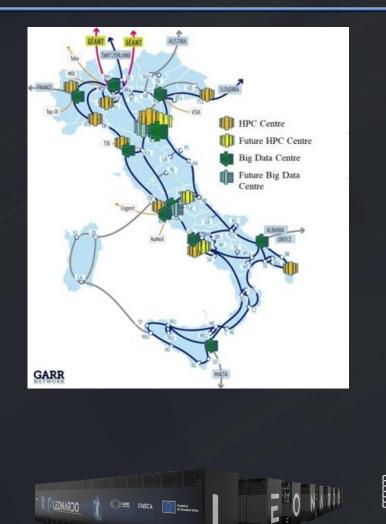

- Exclusive usage of the QPU other jobs have to wait
- Control over the whole computation, not single shots (good for VQA, not for Error Mitigation)

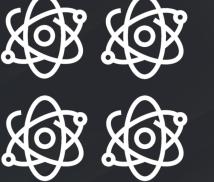
Advanced: Efficient allocation

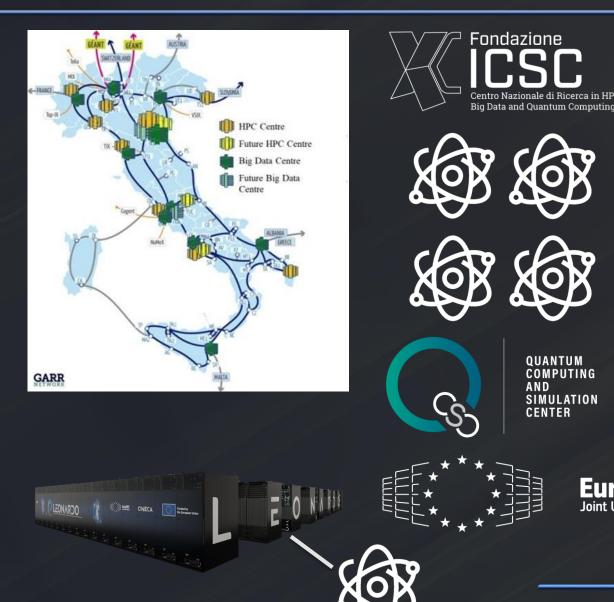
- Non-exclusive usage merging jobs
- Control over the single shots
- Shots frequency very low (neutral atoms, trapped ions) – Free the HPC resources during the QPU computation
- Shots frequency very high (superconducting QC) – Be sure that your scheduler is able to catch the shots!


https://www3.weforum.org/docs/WEF_State_of_Quantum_Computing_2022.pdf

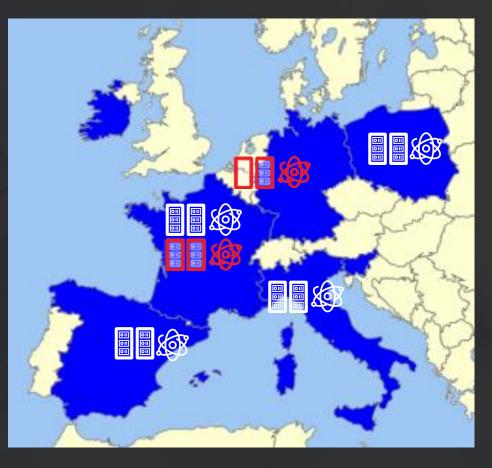








QUANTUM COMPUTING AND SIMULATION CENTER


> EuroHPC Joint Undertaking

EuroHPC Joint Undertaking

(HPC ØS) EuroQCS

LAB