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Theoretical challenge

• Non-zero chemical potential (QCD phase diagram) 

• Real time dynamics 

→ heavy ion collisions, scattering quenches 

From: 10.1051/epjconf/20159700025

Cartoon of the time evolution of an ultra-relativistic heavy-ion collision

Motivation

http://dx.doi.org/10.1051/epjconf/20159700025
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Theoretical challenge

• Non-zero chemical potential 

• Real time dynamics 

→ heavy ion collisions, scattering quenches 

From: 10.1051/epjconf/20159700025

Cartoon of the time evolution of an ultra-relativistic heavy-ion collision

Motivation

Computing challenge for High-Lumi LHC 

• Simulation and analysis

→ need: new technology, algorithms and methods 

From HL-LHC Projections - ATLAS Software and Computing HL-LHC Roadmap

http://dx.doi.org/10.1051/epjconf/20159700025
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Are there other indication 
towards a quantum approach?
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Fundamental motivation

Utilise information and correlations inherent in HEP data.

Exploit “quantum remnants” in data.

entanglement [1703.02989] spin correlations [1907.03729]

interference [2110.10112] Bell inequalities [2102.11883, 2203.05582]
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CERN QTI Phase 2
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HYBRID QUANTUM 

COMPUTING AND 

ALGORITHMS

QUANTUM 

NETWORKS AND 

COMMUNICATIONS

COLLABORATION 

FOR IMPACT

CERN QUANTUM 

TECHNOLOGY 

PLATFORMS

Launched  January 2024

A 5 years research plan
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From ML to QML: easy?

Classical Neural Network Parametrized Quantum Circuit 

information

Training (FF)

Input at different stage of computation

Unitary operations
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Quantum Machine Learning (QML) 
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Quantum Circuits for QML

Classical Data
Quantum Data

Signal/Background

Paramagnetic/Ferromagnetic

training

prediction
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Variational Quantum Algorithms – the Challenge

1. Efficient data handling and data embedding

2. Ansatz choice 

Can we find the most suitable ansatz for the given problem? 
How well can we survey the Hilbert space (SYMMETRY?!)?

3. Trainability

Can the parameters be updated? 

4. Classical Simulability

Are the quantum simulations classically simulable? 
No need for a quantum computer!?

Just because we can simulate a loss, does not mean it is practical to do so!
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What about noise? Non-unitary QML

Single qubit unitary operation
Entangling operation Single qubit unitary operation

Generic quantum channel, which includes 

both entangling operations and noise 

Add noise 

The presence of noise is often overlooked in such analyses 

→ Symmetry breaking in geometric quantum machine learning in the presence of noise 

[MG et al. PRX Quantum 5, 030314]

→ Estimates of loss function concentration in noisy parametrized quantum circuits
[G. Crognaletti., GM, et al – arXiv:2410.01893]
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https://arxiv.org/abs/2402.09524v1
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Theory

Data 
Generation

Feature 
Extraction

Data 
Analysis
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HEP Pipeline
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Theory

Data 
acquisition

Feature 
extraction

Data 
Analysis

phase-space cuts 

Agliardi, Grossi, Pellen, Prati "Quantum integration of elementary 
particle processes."  https://doi.org/10.1016/j.physletb.2022.137228

𝜎 =
1

𝐹
න𝑑Φ 𝑀 2Θ Φ − Φ𝑐

probability distributions/

matrix element 

integrandphase-space factor

https://doi.org/10.1016/j.physletb.2022.137228
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Theory

Data 
acquisition

Feature 
extraction

Data 
Analysis

PhysRevD.110.074031

Loop Feynman integral (Bubble)

Good result (1% error) on HW

PhysRevD.110.074031 - Martinez de Lejarza, GM., et al.

Loop Feynman integration on a quantum computer



M. Grossi - CERN QTI 22

Theory
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Feature 
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𝜎 =
1

𝐹
න𝑑Φ 𝑀 2Θ Φ − Φ𝑐

matrix element

phase-space factor

phase-

space cuts 

s-channel
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Theory

Data 
acquisition

Feature 
extraction

Data 
Analysis

𝜎 =
1

𝐹
න𝑑Φ 𝑀 2Θ Φ − Φ𝑐

matrix element

phase-space factor

phase-

space cuts 

t-channel

• Build a quantum supervised model that can 

distinguish (C) and compute (R) the scattering 

amplitude squared for related Feynman diagrams

LO QED process

• Topology encoded in the adjacency matrix of the 
graph

• Particles (m,Q,S) encoded in the edges 

• Time flow (initial state, interaction vertex, final 

state) encoded in the vertices
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Theory

Data 
acquisition

Feature 
extraction

Data 
Analysis

𝜎 =
1

𝐹
න𝑑Φ 𝑀 2Θ Φ − Φ𝑐

matrix element

phase-space factor

phase-

space cuts 

Successful training:

- Is able to learn several diagrams at the same time

- Can learn diagrams with same topology but 

different particles

- Task difficult with classic approaches
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Theory

Data 
Generation

Feature 
extraction

Data 
Analysis

v

MG, Y. Haddad, V. Croft, C. Tusyz in preparation

Style-based Hybrid QGAN
The Quantum GAN trained on Z+jets events generated by Pythia8.

The Quantum GAN captures the distributions of the first and second 

emissions, reproduce their dependence with the jet scale 
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Theory

Data 
acquisition

Feature 
extraction

Data 
Analysis

Where is NEW PHYSICS?
Are we using the right data?
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Theory
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acquisition

Feature 
extraction

Data 
Analysis

Quantum Anomaly Detection
Belis V., GM, et al – COMMSPHYS-23-1149C

https://arxiv.org/abs/2402.09524v1
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Quantum Anomaly Detection
Belis V., GM, et al – COMMSPHYS-23-1149C

https://arxiv.org/abs/2402.09524v1
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QC research directions in HEP

30

Concrete challenges

• What are the most promising applications?

• How to define performance metrics and validate results? 

Experimental data has high dimensionality

• Can we train Quantum Machine Learning algorithms  

effectively?

Experimental data is shaped by physics laws

• Can we leverage them to build better algorithms? 

• Can we train the loss on a classical device, and sample on 

quantum (GENERATIVE MODELs)

• Quantum Error Mitigation is the way, waiting for scalable 

ERROR CORRECTION

QC4HEP working group
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Variational Quantum Algorithms – Summary

Perspective: Challenges and opportunities in quantum machine learning, M. Cerezo, et al., Nature Comp. Sc., 2, 567 (2022).

• VQA can’t be trusted any more than classical machine learning

• VQA requires linear algebra and python

• Some success has been achieved for small problem sizes (N< 30 qubits)

• We do not yet have the hardware required to test these algorithms at scale
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Quantum Algorithms – Summary

Conventional quantum algorithms 

 → come with provable guarantees

 → require significant knowledge of quantum information, group theory, physics, etc.
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Conclusion

• Complexity & learning theory mostly gives us insights into worst-case behavior

→ ML: Learning theory predicted deep neural networks to not be trainable

→ Optimization: The travelling salesperson problem is NP-complete. An instance with 85900 cities was solved in 

2006. Exponential complexity does not imply infeasibility

• Benchmarking can help us to understand the behavior on specific instances

• We need to make a comparison of computational cost - may lead to poly advantages!

• Change the goal: quantum advantage will be unlikely in many cases BUT we can identify promising paths for 

hybrid computational advantages

• We can train the loss on a classical device, and sample on quantum (GENERATIVE MODELs)

→ larger devices for high-quality data?

• What’s the role of data?

• Community goal is bridging the gap between near-term and fault-tolerant quantum machine learning
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QT4HEP 2025 -  save the date

34M. Grossi - CERN QTI
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