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Quantum many-body scarring (QMBS) is an intriguing mechanism of ergodicity breaking that
has recently spurred significant attention. Particularly prominent in Abelian lattice gauge theories
(LGTs), an open question is whether QMBS nontrivially arises in non-Abelian LGTs. Here, we
present evidence of robust QMBS in a non-Abelian SU(2) LGT with dynamical matter. Starting
in product states that require little experimental overhead, we show that prominent QMBS arises
for certain quenches, facilitated through meson and baryon-antibaryon excitations, highlighting its
non-Abelian nature. The uncovered scarred dynamics manifests as long-lived coherent oscillations
in experimentally accessible local observables as well as prominent revivals in the state fidelity.
Our findings bring QMBS to the realm of non-Abelian LGTs, highlighting the intimate connection
between scarring and gauge symmetry, and are amenable for observation in a recently proposed
trapped-ion qudit quantum computer.

Introduction.—The nature of equilibration in an iso-
lated interacting quantum many-body system is a funda-
mental question in physics [1]. Whereas open quantum
systems are expected to thermalize due to exchanging
energy with a bath [2], the conditions under which an
isolated quantum many-body system thermalizes are stip-
ulated within the Eigenstate Thermalization Hypothesis
(ETH) [3–6]. An ergodic Hamiltonian is expected to lead
to quantum thermalization for generic initial states, where
the information of the initial state is locally erased [7].
In recent years, a new paradigm of ergodicity break-

ing has emerged that violates the ETH. In certain er-
godic Hamiltonians, there is a polynomial (in system size)
number of special non-thermal scar eigenstates, that are
roughly equally spaced in energy over the whole spec-
trum [8–10], and that exhibit anomalously low bipartite
entanglement entropy [11]. Upon initializing the system
in an initial state with a high overlap with these scar
eigenstates, the subsequent quench dynamics give rise to
quantum many-body scarring (QMBS), which manifests
as prominent oscillations in local observables and persis-
tent revivals in the (local and global) Loschmidt fidelity
that last longer than all relevant timescales, thereby cir-
cumventing expected thermalization [12–18]. QMBS has
received a lot of attention since its initial discovery in
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[12], and has since been the subject of many quantum
simulation experiments [19–23].
After the discovery of QMBS, it has been shown that

the effective model quantum-simulated in [12] is a spin-1/2
U(1) lattice gauge theory (LGT), where the electric field
is represented by a spin-1/2 z-operator [24]. The ro-
bustness of QMBS also depends on the stability of the
underlying gauge symmetry in this model [25]. QMBS
also arises in spin-S U(1) LGTs [26, 27], in LGTs with
other Abelian gauge groups [28–30], and in 2 + 1D LGTs
[31–36]. However, all of these works involve Abelian
gauge groups except the recent Ref. [33], which considers
a pure (without dynamical matter) SU(2) LGT. Looking
at the bipartite entanglement entropy, they identify a few
scar-eigenstate candidates in a certain parameter regime.
However, no experimentally feasible scarred initial states
have been proposed, and the type of scarring exhibited
vanishes beyond the crudest truncation of the electric
field basis.
Given the intimate connection between QMBS and

LGTs, and the current large effort to quantum simulate
the latter [37–47], it is important to investigate the origin
of QMBS in connection to gauge symmetry by exploring
its possible occurrence in non-Abelian LGTs with dynam-
ical matter. In particular, to faithfully investigate a high-
energy context of QMBS, including dynamical matter is
crucial, since nature hosts dynamical matter fields. In this
Letter, we provide exact diagonalization (ED) and matrix
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are no general theoretical arguments supporting the ETH, some
results do exist for restricted classes of systems. For instance, the
ETH holds12 in the case of an integrable hamiltonian weakly per-
turbed by a single matrix taken from a random gaussian ensemble.
Furthermore, nuclear shell model calculations have shown that
individual wavefunctions reproduce thermodynamic predictions20.
There are also rigorous proofs that some quantum systems, whose
classical counterparts are chaotic, satisfy the ETH in the semiclassical
limit21–24. More generally, for low-density billiards in the semi-
classical regime, the ETH follows from Berry’s conjecture13,25, which
in turn is believed to hold in semiclassical classically chaotic sys-
tems26. Finally, at the other end of the chaos–integrability spectrum,
in systems solvable by Bethe ansatz, observables are smooth functions
of the integrals of motion. This allows for the construction of indi-
vidual energy eigenstates that reproduce thermal predictions27.

In Fig. 3a–c we demonstrate that the ETH is in fact the mechanism
responsible for thermal behaviour in our non-integrable system.
Figure 3c additionally shows that the second scenario mentioned
above does not occur, because the fluctuations in the EONs jCaj2
are large. Thermal behaviour also requires that both the diagonal
and the chosen thermal ensemble have sufficiently narrow energy
distributions r(E) (the product of the probability distribution and
the density of states), meaning that in the energy region where the
energy distributions r(E) are appreciable, the slope of the curve of the
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Figure 2 | Thermalization in classical versus quantum mechanics. a, In
classical mechanics, time evolution constructs the thermal state from an
initial state that generally bears no resemblance to the former. b, In quantum
mechanics, according to the ETH, every eigenstate of the hamiltonian always
implicitly contains a thermal state. The coherence between the eigenstates
initially hides it, but time dynamics reveals it through dephasing.
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Figure 3 | Eigenstate thermalization hypothesis. a, In our non-integrable
system, the momentum distribution n(kx) for two typical eigenstates with
energies close to E0 is identical to the microcanonical result, in accordance
with the ETH. b, Upper panel: the EEV n(kx 5 0), considered as a function of
the eigenstate energy resembles a smooth curve. Lower panel: the energy
distributions r(E) (in units of J21) of the three ensembles we consider here.
c, Detailed view of n(kx 5 0) (left-hand scale) and | Ca | 2 (right-hand scale)
for 20 eigenstates around E0. d, In the integrable system, the values of n(kx)
for two eigenstates, a and b, with energies close to E0 and for the

microcanonical and diagonal ensembles are very different from each other;
that is, the ETH fails. e, Upper panel: the EEV n(kx 5 0), considered as a
function of the eigenstate energy gives a thick cloud of points rather than
resembling a smooth curve. Lower panel: the energy distributions in the
integrable system are similar to the non-integrable ones depicted in b. f,
Correlation between n(kx 5 0) and | Ca | 2 for 20 eigenstates around E0. This
correlation explains why in d the microcanonical prediction for n(kx 5 0) is
larger than the diagonal one.
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system, the momentum distribution n(kx) for two typical eigenstates with
energies close to E0 is identical to the microcanonical result, in accordance
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function of the eigenstate energy gives a thick cloud of points rather than
resembling a smooth curve. Lower panel: the energy distributions in the
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FIG. 3. (a) Example of Sinai billiards: Two hard core spheres
move in free space with periodic boundary conditions. (b)
Bunimovich Stadium. A point particle moves in free space
confined to a stadium with hard walls. The stadium has semi-
circular sides and a straight mid-section.

then say [21]

⟨O⟩t =
∫S O(Γ)dΓ
∫S dΓ

(1)

where we are integrating over a surface S of constant en-
ergy. And this is precisely how averages are described
in the classical “microcanonical ensemble”. It is also im-
portant to note that there other invariants, for example
total system momentum, that might also be conserved.
In these cases, the surface must also include these other
invariants.
In order for this to work, it would seem as if the sys-

tem should be ergodic or at least close to it. There have

been a few examples where it has been possible to prove
ergodicity, most notably, a gas of an arbitrary number of
hard spheres in some volume [22–25], often called “Sinai
Billiards” as illustrated in Fig. 3(a). The proofs are
quite involved1, but the result tells us that time aver-
ages are calculable through the microcanonical ensemble
formula. Another such system that has been proved to
be ergodic [26] is the “Bunimovich Stadium”, which de-
scribes the motion of a free particle inside a stadium with
hard walls that are circular on the sides, and straight in
the middle, see Fig. 3(b).
But there are also other systems, the are “integrable”

where there are N other invariants, meaning that these
are constants of motion. Such a closed trajectory is
schematically represented by the red curve in Fig. 2. Ref-
erencing our phonon example, the fact that the crystal
does not thermalize is because of these extra invariants.
In that case, each of these invariants is the energy of a sin-
gle normal mode. A typical trajectory of such a system
is therefore described by the combined motion of the nor-
mal modes, and will in general be quasi-periodic. How-
ever, integrable systems are unusual, and not expected
generically. For example, any anharmonic term added,
will make this problem non-integrable, or “generic”.
But in general, we do not expect that a generic classi-

cal system, for example a gas with Van-der Waals inter-
actions, or a model of phonons with anharmonic terms,
will be, strictly speaking, ergodic. For finite N , there
has been a great deal of work on what happens in such
systems. The Kolmogorov - Arnold - Moser (KAM) the-
orem tells us that for a weak anharmonic perturbation of
order ϵ, most phase space trajectories will continue to be
quasi-periodic as in the integrable case. However as the
strength of the anharmonicity is increased, the fraction
of such quasiperiodic trajectories is expected to decrease.
In real situations however we do not necessarily have very
strong nonlinear terms in the Hamiltonian, so why does
statistical mechanics work in these cases?
What is generally believed is that as N →∞, the range

of ϵ’s where a significant fraction of quasiperiodic orbits
survives becomes vanishingly small [27]. Thus for an iso-
lated system, for statistical mechanics to work, one needs
to have large N . In most experimental situations this
is usually not an problem, because N is normally very
large and therefore there will be a vanishingly small sets
of initial condition where the trajectories are quasiperi-
odic, and therefore the system can be considered to be
ergodic.
Related to ergodicity, is the idea of chaos. The idea is

that two systems with slightly different initial conditions
will evolve into systems that are have very different co-
ordinates, Γ1(t) and Γ2(t). The rate of divergence can

1 To be more precise, ergodicity has only been proven rigorously
in some special cases that limit the number of spheres, or for
systems where all of the masses are arbitrary, and then with the
caveat that the proof will not hold for a zero measure set of mass
ratios[23–25].
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Bunimovich Stadium. A point particle moves in free space
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circular sides and a straight mid-section.

then say [21]
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∫S O(Γ)dΓ
∫S dΓ

(1)

where we are integrating over a surface S of constant en-
ergy. And this is precisely how averages are described
in the classical “microcanonical ensemble”. It is also im-
portant to note that there other invariants, for example
total system momentum, that might also be conserved.
In these cases, the surface must also include these other
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In order for this to work, it would seem as if the sys-
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been a few examples where it has been possible to prove
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Billiards” as illustrated in Fig. 3(a). The proofs are
quite involved1, but the result tells us that time aver-
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formula. Another such system that has been proved to
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scribes the motion of a free particle inside a stadium with
hard walls that are circular on the sides, and straight in
the middle, see Fig. 3(b).
But there are also other systems, the are “integrable”
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erencing our phonon example, the fact that the crystal
does not thermalize is because of these extra invariants.
In that case, each of these invariants is the energy of a sin-
gle normal mode. A typical trajectory of such a system
is therefore described by the combined motion of the nor-
mal modes, and will in general be quasi-periodic. How-
ever, integrable systems are unusual, and not expected
generically. For example, any anharmonic term added,
will make this problem non-integrable, or “generic”.
But in general, we do not expect that a generic classi-

cal system, for example a gas with Van-der Waals inter-
actions, or a model of phonons with anharmonic terms,
will be, strictly speaking, ergodic. For finite N , there
has been a great deal of work on what happens in such
systems. The Kolmogorov - Arnold - Moser (KAM) the-
orem tells us that for a weak anharmonic perturbation of
order ϵ, most phase space trajectories will continue to be
quasi-periodic as in the integrable case. However as the
strength of the anharmonicity is increased, the fraction
of such quasiperiodic trajectories is expected to decrease.
In real situations however we do not necessarily have very
strong nonlinear terms in the Hamiltonian, so why does
statistical mechanics work in these cases?
What is generally believed is that as N →∞, the range

of ϵ’s where a significant fraction of quasiperiodic orbits
survives becomes vanishingly small [27]. Thus for an iso-
lated system, for statistical mechanics to work, one needs
to have large N . In most experimental situations this
is usually not an problem, because N is normally very
large and therefore there will be a vanishingly small sets
of initial condition where the trajectories are quasiperi-
odic, and therefore the system can be considered to be
ergodic.
Related to ergodicity, is the idea of chaos. The idea is

that two systems with slightly different initial conditions
will evolve into systems that are have very different co-
ordinates, Γ1(t) and Γ2(t). The rate of divergence can

1 To be more precise, ergodicity has only been proven rigorously
in some special cases that limit the number of spheres, or for
systems where all of the masses are arbitrary, and then with the
caveat that the proof will not hold for a zero measure set of mass
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then say [21]

⟨O⟩t =
∫S O(Γ)dΓ
∫S dΓ

(1)

where we are integrating over a surface S of constant en-
ergy. And this is precisely how averages are described
in the classical “microcanonical ensemble”. It is also im-
portant to note that there other invariants, for example
total system momentum, that might also be conserved.
In these cases, the surface must also include these other
invariants.
In order for this to work, it would seem as if the sys-

tem should be ergodic or at least close to it. There have

been a few examples where it has been possible to prove
ergodicity, most notably, a gas of an arbitrary number of
hard spheres in some volume [22–25], often called “Sinai
Billiards” as illustrated in Fig. 3(a). The proofs are
quite involved1, but the result tells us that time aver-
ages are calculable through the microcanonical ensemble
formula. Another such system that has been proved to
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scribes the motion of a free particle inside a stadium with
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In that case, each of these invariants is the energy of a sin-
gle normal mode. A typical trajectory of such a system
is therefore described by the combined motion of the nor-
mal modes, and will in general be quasi-periodic. How-
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But in general, we do not expect that a generic classi-
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will be, strictly speaking, ergodic. For finite N , there
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orem tells us that for a weak anharmonic perturbation of
order ϵ, most phase space trajectories will continue to be
quasi-periodic as in the integrable case. However as the
strength of the anharmonicity is increased, the fraction
of such quasiperiodic trajectories is expected to decrease.
In real situations however we do not necessarily have very
strong nonlinear terms in the Hamiltonian, so why does
statistical mechanics work in these cases?
What is generally believed is that as N →∞, the range

of ϵ’s where a significant fraction of quasiperiodic orbits
survives becomes vanishingly small [27]. Thus for an iso-
lated system, for statistical mechanics to work, one needs
to have large N . In most experimental situations this
is usually not an problem, because N is normally very
large and therefore there will be a vanishingly small sets
of initial condition where the trajectories are quasiperi-
odic, and therefore the system can be considered to be
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will evolve into systems that are have very different co-
ordinates, Γ1(t) and Γ2(t). The rate of divergence can

1 To be more precise, ergodicity has only been proven rigorously
in some special cases that limit the number of spheres, or for
systems where all of the masses are arbitrary, and then with the
caveat that the proof will not hold for a zero measure set of mass
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= ∑
α,β

C*α Cβ⟨Φα | Ô |Φβ⟩ lim
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|ψ(t)⟩ = ∑
α

Cαe−iEαt |Φα⟩

HYPOTHESIS I



EIGENSTATE THERMALIZATION HYPOTHESIS

5

INTRODUCTION

IDEA: INDIVIDUAL ENERGY EIGENSTATES 
BEHAVE LIKE THERMAL STATES

N BODY SYSTEM WITH  
NON-DEGENERATE SPECTRUM

H = ∑
α

Eα |Φα⟩

⟨H⟩ = Ē
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are no general theoretical arguments supporting the ETH, some
results do exist for restricted classes of systems. For instance, the
ETH holds12 in the case of an integrable hamiltonian weakly per-
turbed by a single matrix taken from a random gaussian ensemble.
Furthermore, nuclear shell model calculations have shown that
individual wavefunctions reproduce thermodynamic predictions20.
There are also rigorous proofs that some quantum systems, whose
classical counterparts are chaotic, satisfy the ETH in the semiclassical
limit21–24. More generally, for low-density billiards in the semi-
classical regime, the ETH follows from Berry’s conjecture13,25, which
in turn is believed to hold in semiclassical classically chaotic sys-
tems26. Finally, at the other end of the chaos–integrability spectrum,
in systems solvable by Bethe ansatz, observables are smooth functions
of the integrals of motion. This allows for the construction of indi-
vidual energy eigenstates that reproduce thermal predictions27.

In Fig. 3a–c we demonstrate that the ETH is in fact the mechanism
responsible for thermal behaviour in our non-integrable system.
Figure 3c additionally shows that the second scenario mentioned
above does not occur, because the fluctuations in the EONs jCaj2
are large. Thermal behaviour also requires that both the diagonal
and the chosen thermal ensemble have sufficiently narrow energy
distributions r(E) (the product of the probability distribution and
the density of states), meaning that in the energy region where the
energy distributions r(E) are appreciable, the slope of the curve of the
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system, the momentum distribution n(kx) for two typical eigenstates with
energies close to E0 is identical to the microcanonical result, in accordance
with the ETH. b, Upper panel: the EEV n(kx 5 0), considered as a function of
the eigenstate energy resembles a smooth curve. Lower panel: the energy
distributions r(E) (in units of J21) of the three ensembles we consider here.
c, Detailed view of n(kx 5 0) (left-hand scale) and | Ca | 2 (right-hand scale)
for 20 eigenstates around E0. d, In the integrable system, the values of n(kx)
for two eigenstates, a and b, with energies close to E0 and for the

microcanonical and diagonal ensembles are very different from each other;
that is, the ETH fails. e, Upper panel: the EEV n(kx 5 0), considered as a
function of the eigenstate energy gives a thick cloud of points rather than
resembling a smooth curve. Lower panel: the energy distributions in the
integrable system are similar to the non-integrable ones depicted in b. f,
Correlation between n(kx 5 0) and | Ca | 2 for 20 eigenstates around E0. This
correlation explains why in d the microcanonical prediction for n(kx 5 0) is
larger than the diagonal one.
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term [16]. The key element of our mapping, which is
schematically illustrated in Fig. 1, is that gauge invariance
has a natural counterpart in the Rydberg blockade mecha-
nism, which constrains the Hilbert space in the sameway as
Gauss law does in gauge theories. This provides an
immediate interpretation of the recent experiment with
Rydberg-blockaded atom arrays in Ref. [14] as the first
large-scale quantum simulation of a LGT at the edge of
classical computational methods [7].
From a theoretical viewpoint, the mapping offers a

hitherto unexplored perspective on the anomalously slow
relaxation recently observed in experiments: the long-lived
oscillations in the population of excited Rydberg atoms
correspond to a string inversion, a phenomenon which is
directly tied to string breaking [6,17,18] prototypical of
gauge theories including dynamical matter [cf. Figs. 1(d)
and 1(e)]. Themapping indicates that this phenomenon has a
natural interpretation in the LGT framework and suggests
the occurrence of slow dynamics in other U(1) gauge
theories, such as higher-spin QLMs [19], Higgs theories
[20,21], and the Schwinger model [22,23]. These theories
have been widely discussed in the context of Schwinger pair
production taking place at high-intensity laser facilities, thus
providing a highly unexpected, direct link between appa-
rently unrelated experimental platforms [18,24–27].
We discuss the generality of this type of quantum

evolution by extending our analysis to other relevant

instances of “slow dynamics,” characterized by the absence
of relaxation on all timescales corresponding to any micro-
scopic coupling present in the system. As initial states, we
focus on those consisting of particle-antiparticle pairs,
corresponding to regular configurations of the Rydberg
atom arrays with localized defects, which are accessible
within the setup of Ref. [14]. We show that these defects
propagate ballistically with long-lived coherent interfer-
ence patterns. This behavior is found to be governed by
special bands of highly excited eigenstates characterized
by a regularity in the energy-momentum dispersion rela-
tion. These findings open up a novel perspective which
complements and extends toward gauge theories recent
approaches to slow relaxation in Rydberg-blockaded
atomic chains [28–33].

II. RYDBERG ATOM ARRAYS

We are interested here in the dynamics of a one-dimen-
sional array of L optical traps, each of them hosting a single
atom, as schematically illustrated in Fig. 1(a). The atoms
are trapped in their electronic ground state (black circle),
denoted by j↓ij, where j numbers the trap. These ground
states are quasiresonantly coupled to a single Rydberg
state, i.e., a highly excited electronic level, denoted by j↑ij.
The dynamics of this chain of qbits fj↑;↓ijgj¼1;…;L is
governed by the following Ising-type Hamiltonian [13,34]:
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FIG. 1. Gauge-theory interpretation of Rydberg atom quantum simulations. (a) Schematics of a Rydberg atom chain. Each potential
well of the optical lattice hosts a single atom, which can be in either the ground (black) or excited Rydberg (yellow) state. These two
levels are coupled by a laser field. The Rydberg blockade prevents the simultaneous excitations of neighboring atoms. (b) Degrees of
freedom of a U(1) LGT in the spin-1=2 quantum link model (QLM) formulation. Gauge fields are represented by spin variables residing
on links. Matter fields are represented by Kogut-Susskind fermions: an occupied site corresponds to the vacuum on odd sites and to a
quark q on even sites. An empty site, instead, corresponds to the vacuum on even sites and to an antiquark q̄ on odd sites. (c): Mapping
between Rydberg-blockaded states and configurations of the electric field constrained by the Gauss law in the QLM. Because of the
staggered electric charge, the allowed configurations of the electric field depend on the link, as illustrated. The two so-called charge-
density wave configurations “CDW1” and “CDW2” of the Rydberg atom arrays are mapped onto the “string” and “antistring” states,
respectively, characterized by uniform rightward or leftward electric fluxes. The empty configuration with all Rydberg atoms in their
ground state is mapped to a state filled by adjacent particle-antiparticle pairs. (d) Time evolution of the Rydberg array governed by the
effective Hamiltonian HFSS in Eq. (2), starting from the CDW1 state. The plot shows the space and time resolved population hnji of the
excited Rydberg atoms. (e) Evolution of the expectation value of the electric field operator Êj;jþ1 in the QLM. These dynamics map
exactly onto the ones shown in (d) via the mapping illustrated in (c). The thin lines highlight the oscillation between CDW1, CDW2 [left,
bottom of (c)] or string and antistring (right) states. In these simulations, L ¼ 24 and δ ¼ m ¼ 0.
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The strong, coherent interactions between Rydberg atoms provide 
an effective coherent constraint that prevents simultaneous excitation 
of nearby atoms into Rydberg states. This is the essence of the so-called 
Rydberg blockade15, demonstrated in Fig. 1d. When two atoms are 
sufficiently close that that their Rydberg–Rydberg interactions Vij 
exceed the effective Rabi frequency Ω, multiple Rydberg excitations are 
suppressed. This defines the Rydberg blockade radius Rb, at which 
Vij = Ω (Rb = 9 µm for |r〉 = |70S1/2〉 and Ω = 2π × 2 MHz, as used here). 
In the case of resonant driving of atoms separated by a = 23 µm, we 
observe Rabi oscillations associated with non-interacting atoms (blue 
curve in Fig. 1d). However, the dynamics changes substantially as we 
bring multiple atoms close to each other (a = 2.87 µm < Rb). In this case, 
we observe Rabi oscillations between the ground state and a collective 

state with exactly one excitation ( = / ∑ | … … 〉W N g r g(1 ) i i N1 ) with 
the characteristic N  scaling of the collective Rabi frequency24,28,29. 
These observations enable us to quantify the coherence properties of 
our system (see Methods and Extended Data Fig. 3). In particular, the 
amplitude of Rabi oscillations in Fig. 1d is limited mostly by the state 
detection fidelity (93% for |r〉 and about 98% for |g〉; Methods). The 
individual Rabi frequencies are controlled to better than 3% across the 
array, whereas the coherence time is limited ultimately by the small 
probability of spontaneous emission from the intermediate state |e〉 
during the laser pulse (scattering rate 0.022 µs−1; Methods).

Programmable quantum simulator
In the case of homogeneous coherent coupling considered here, the 
Hamiltonian in equation (1) resembles closely the paradigmatic Ising 
model for effective spin-1/2 particles with variable interaction range. 
Its ground state exhibits a rich variety of many-body phases that break 
distinct spatial symmetries (Fig. 2a). Specifically, at large negative  
values of ∆/Ω, its ground state corresponds to all atoms in the state |g〉, 
corresponding to the paramagnetic or disordered phase. As ∆/Ω is 
increased towards large positive values, the number of atoms in |r〉 
increases and interactions between them become important. This gives 
rise to spatially ordered phases in which Rydberg atoms are arranged 
regularly across the array, resulting in ‘Rydberg crystals’ with different 
spatial symmetries30,31, as illustrated in Fig. 2a. The origin of these 
correlated states can be understood intuitively by first considering the 
situation in which ∆ Ω+ +≫ ≫ ≫V Vi i i i, 1 , 2, that is, with blockade for 
neighbouring atoms but negligible interaction between next-nearest 
neighbours. In this case, the ground state corresponds to a Rydberg 
crystal that breaks Z2 translational symmetry in a manner analogous 
to antiferromagnetic order in magnetic systems. Moreover, by  
tuning the parameters so that ∆ Ω+ + +≫ ≫ ≫V V V,i i i i i i, 1 , 2 , 3 and 

∆ Ω+ + + +≫ ≫ ≫V V V V, ,i i i i i i i i, 1 , 2 , 3 , 4  , we obtain arrays with broken Z3 
and Z4 symmetries, respectively (Fig. 2).

To prepare the system in these phases, we control the detuning ∆(t) 
of the driving lasers dynamically to transform the ground state of the 
Hamiltonian adiabatically from a product state of all atoms in |g〉 to 
crystalline states22,31. In contrast to previous work where Rydberg 
crystals are prepared via a sequence of avoided crossings22,31,32, the 
operation at a finite Ω and well-defined atom separation enables us to 
move across a single phase transition into the desired phase directly33.

In the experiment, we first prepare all atoms in state |g〉 = |5S1/2, F = 2, 
mF = −2〉 by optical pumping. We then switch on the laser fields and 
sweep the two-photon detuning from negative to positive values using 
the functional form shown in Fig. 3a. Figure 2b displays the resulting 
single-atom trajectories in a group of 13 atoms for three different inter-
action strengths as we vary the detuning ∆. In each of these instances, 
we observe a clear transition from the initial state |g1, …, g13〉 to an 
ordered state of different broken symmetry. The distance between the 
atoms determines the interaction strength, which leads to different 
crystalline order for a given final detuning. To achieve Z2 order,  
we arrange the atoms with a spacing of 5.74 µm, which results  
in a measured nearest-neighbour interaction strength (see Extended 
Data Fig. 4) of Ω= π× = π×+ ≫V 2 24 MHz 2 2 MHzi i, 1 , while the 
next-nearest-neighbour interaction is small (2π × 0.38 MHz). This 
results in a build-up of antiferromagnetic order whereby every other 
trap site is occupied by a Rydberg atom (Z2 order). By reducing the 
spacing between the atoms to 3.57 µm and 2.87 µm, Z3 and Z4 order is 
observed, respectively (Fig. 2b).

We benchmark the performance of the quantum simulator by com-
paring the measured build-up of Z2 order with theoretical predictions 
for a N = 7 atom system, obtained via exact numerical simulations. As 
shown in Fig. 3, this fully coherent simulation without free parameters 
yields excellent agreement with the observed data when the finite detec-
tion fidelity is accounted for. The evolution of the many-body states in 
Fig. 3c shows that we measure the perfect antiferromagnetic state with 
54(4)% probability (here and elsewhere, unless otherwise specified, the 
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Figure 1 | Experimental platform. a, Individual 87Rb atoms (green) are 
trapped using optical tweezers (vertical red beams) and arranged into 
defect-free arrays. Coherent interactions Vij between the atoms (arrows) 
are enabled by exciting them (horizontal blue and red beams) to a  
Rydberg state with strength Ω and detuning ∆ (inset). b, A two-photon 
process couples the ground state |g〉 = |5S1/2, F = 2, mF = −2〉 to the 
Rydberg state |r〉 = |70S1/2, J = 1/2, mJ = −1/2〉 via an intermediate  
state |e〉 = |6P3/2, F = 3, mF = −3〉 with detuning δ, using circularly 
polarized 420-nm and 1,013-nm lasers with single-photon Rabi 
frequencies of ΩB and ΩR, respectively. Typical experimental values are 
δ Ω Ω≈ π× ≈ π×≫2 560 MHz ( , ) 2 (60, 36) MHzB R . c, The experimental 
protocol consists of loading the atoms into a tweezer array (1) and then 
rearranging them into a preprogrammed configuration (2). After this, the 
system evolves under U(t) with tunable parameters ∆(t), Ω(t) and Vij. This 
evolution can be implemented in parallel on several non-interacting  
sub-systems (3). We then detect the final state using fluorescence  
imaging (4). Atoms in state |g〉 remain trapped, whereas atoms in state |r〉 
are ejected from the trap and detected as the absence of fluorescence 
(indicated with red circles). d, For resonant driving (∆ = 0), isolated atoms 
(blue circles) display Rabi oscillations between |g〉 and |r〉. Arranging the 
atoms into fully blockaded clusters of N = 2 (green circles) and N = 3  
(red circles) atoms results in only one excitation being shared between the 
atoms in the cluster, while the Rabi frequency is enhanced by N . The 
probability of detecting more than one excitation in the cluster is ≤5%. 
Error bars indicate 68% confidence intervals and are smaller than the 
marker size.

© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.
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Rydberg-blockaded atom arrays in Ref. [14] as the first
large-scale quantum simulation of a LGT at the edge of
classical computational methods [7].
From a theoretical viewpoint, the mapping offers a

hitherto unexplored perspective on the anomalously slow
relaxation recently observed in experiments: the long-lived
oscillations in the population of excited Rydberg atoms
correspond to a string inversion, a phenomenon which is
directly tied to string breaking [6,17,18] prototypical of
gauge theories including dynamical matter [cf. Figs. 1(d)
and 1(e)]. Themapping indicates that this phenomenon has a
natural interpretation in the LGT framework and suggests
the occurrence of slow dynamics in other U(1) gauge
theories, such as higher-spin QLMs [19], Higgs theories
[20,21], and the Schwinger model [22,23]. These theories
have been widely discussed in the context of Schwinger pair
production taking place at high-intensity laser facilities, thus
providing a highly unexpected, direct link between appa-
rently unrelated experimental platforms [18,24–27].
We discuss the generality of this type of quantum

evolution by extending our analysis to other relevant

instances of “slow dynamics,” characterized by the absence
of relaxation on all timescales corresponding to any micro-
scopic coupling present in the system. As initial states, we
focus on those consisting of particle-antiparticle pairs,
corresponding to regular configurations of the Rydberg
atom arrays with localized defects, which are accessible
within the setup of Ref. [14]. We show that these defects
propagate ballistically with long-lived coherent interfer-
ence patterns. This behavior is found to be governed by
special bands of highly excited eigenstates characterized
by a regularity in the energy-momentum dispersion rela-
tion. These findings open up a novel perspective which
complements and extends toward gauge theories recent
approaches to slow relaxation in Rydberg-blockaded
atomic chains [28–33].

II. RYDBERG ATOM ARRAYS

We are interested here in the dynamics of a one-dimen-
sional array of L optical traps, each of them hosting a single
atom, as schematically illustrated in Fig. 1(a). The atoms
are trapped in their electronic ground state (black circle),
denoted by j↓ij, where j numbers the trap. These ground
states are quasiresonantly coupled to a single Rydberg
state, i.e., a highly excited electronic level, denoted by j↑ij.
The dynamics of this chain of qbits fj↑;↓ijgj¼1;…;L is
governed by the following Ising-type Hamiltonian [13,34]:
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(d) (e)

=
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FIG. 1. Gauge-theory interpretation of Rydberg atom quantum simulations. (a) Schematics of a Rydberg atom chain. Each potential
well of the optical lattice hosts a single atom, which can be in either the ground (black) or excited Rydberg (yellow) state. These two
levels are coupled by a laser field. The Rydberg blockade prevents the simultaneous excitations of neighboring atoms. (b) Degrees of
freedom of a U(1) LGT in the spin-1=2 quantum link model (QLM) formulation. Gauge fields are represented by spin variables residing
on links. Matter fields are represented by Kogut-Susskind fermions: an occupied site corresponds to the vacuum on odd sites and to a
quark q on even sites. An empty site, instead, corresponds to the vacuum on even sites and to an antiquark q̄ on odd sites. (c): Mapping
between Rydberg-blockaded states and configurations of the electric field constrained by the Gauss law in the QLM. Because of the
staggered electric charge, the allowed configurations of the electric field depend on the link, as illustrated. The two so-called charge-
density wave configurations “CDW1” and “CDW2” of the Rydberg atom arrays are mapped onto the “string” and “antistring” states,
respectively, characterized by uniform rightward or leftward electric fluxes. The empty configuration with all Rydberg atoms in their
ground state is mapped to a state filled by adjacent particle-antiparticle pairs. (d) Time evolution of the Rydberg array governed by the
effective Hamiltonian HFSS in Eq. (2), starting from the CDW1 state. The plot shows the space and time resolved population hnji of the
excited Rydberg atoms. (e) Evolution of the expectation value of the electric field operator Êj;jþ1 in the QLM. These dynamics map
exactly onto the ones shown in (d) via the mapping illustrated in (c). The thin lines highlight the oscillation between CDW1, CDW2 [left,
bottom of (c)] or string and antistring (right) states. In these simulations, L ¼ 24 and δ ¼ m ¼ 0.
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Extended Data Figure 10 | Decay of oscillations after a quench and 
entropy growth. a, Dynamics of the domain-wall density under the 
constrained Hamiltonian Hc for different initial states. The red line shows 
the domain-wall density for a system of 25 atoms initially prepared in 
the electronic ground state. In this case, the domain-wall density relaxes 
quickly to a steady value corresponding to thermalization. In contrast,  
the blue line shows the dynamics if the system is initialized in the  
Z2-ordered state. In this case, the domain-wall density oscillates over 
several periods and even for very long times does not relax fully to a steady 
value. b, Same as in a, but taking into account the full 1/R6 interactions. 
While the dynamics for an initial state |g〉⊗N is very similar to the one 

obtained in the constrained case, for the crystalline initial state the decay 
of the oscillations is faster than in the constrained model. c, Growth of 
entanglement entropy in a bipartite splitting of the 25-atom array for 
the different cases displayed in a and b. The entropy is defined as the 
von Neumann entropy of the reduced state of the first 13 atoms of the 
array. The dashed lines correspond to dynamics under the constrained 
Hamiltonian, neglecting the 1/R6 tail, whereas the solid lines take the full 
interactions into account. Red lines correspond to the initial state |g〉⊗N, 
whereas blue lines correspond to crystalline initial states. In all panels we 
chose Ω = 2π × 2 MHz and, where applicable, interaction parameters such 
that the nearest-neighbour interaction evaluates to Vi,i+1 = 2π × 25.6 MHz.
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experiment, after such a slowly changing laser pulse, we observe long 
ordered chains where the atomic states alternate between the Rydberg 
and ground states. These ordered domains can be separated by domain 
walls that consist of two neighbouring atoms in the same electronic 
state (Fig. 5a)35. These features cannot be observed in the average 
excitation probability of the bulk (see Extended Data Fig. 6a).

The domain-wall density can be used to quantify the transition 
from the disordered phase to the ordered Z2 phase as a function of 
detuning ∆. As the system enters the Z2 phase, ordered domains 
grow in size, leading to a substantial reduction in the domain-wall 
density (blue points in Fig. 5b). Consistent with expectations for an 
Ising-type second-order quantum phase transition35, we observe 
domains of fluctuating length close to the transition point between 
the two phases, which is reflected by a pronounced peak in the  
variance of the domain-wall density. Consistent with predictions from 
finite-size scaling analysis30,36, this peak is shifted towards positive 
values of ∆/Ω. The measured position of the peak is ∆ ≈ 0.5Ω. The 
observed domain-wall density is in excellent agreement with fully 
coherent simulations of the quantum dynamics based on 51-atom 
matrix product states (blue line in Fig. 5b); however, these simula-
tions underestimate the variance at the phase transition (see Extended  
Data Fig. 6b).

At the end of the sweep, deep in the Z2 phase (∆ Ω/ ≫ 1) we can 
neglect Ω so that the Hamiltonian in equation (1) becomes essentially 
classical. In this regime, the measured domain-wall number distri-
bution enables us to infer directly the statistics of excitations that are 
created when crossing the phase transition. From 18,439 experimental 
realizations we obtain the distribution depicted in Fig. 5c with an 
average of 9.01(2) domain walls. From a maximum-likelihood esti-
mation we obtain the distribution corrected for detection fidelity (see 
Extended Data Fig. 7), which corresponds to a state that has on 
 average 5.4 domain walls. These domain walls are  probably created 
as a result of non-adiabatic transitions from the ground state when 
crossing the phase transition37, where the energy gap depends on the 
system size (and scales as 1/N)36. In addition, the preparation fidelity 
is limited by spontaneous emission during the laser pulse (an average 
of 1.1 photons are scattered per microsecond for the entire array; see 
Methods).

To further characterize the Z2-ordered state that is created, we eva-
luate the correlation function

= 〈 〉− 〈 〉〈 〉g n n n n (2)ij i j i j
(2)

where the average 〈…〉 is taken over experimental repetitions. We find 
that the correlations decay exponentially over distance with a decay 
length of ξ = 3.03(6) sites (see Fig. 5d and Methods; the error denotes 
the uncertainty in the fit). We note that this length does not characterize 
the system fully, as discussed below (see also Extended Data Fig. 8).

Finally, Fig. 6 demonstrates that our approach also enables the study 
of coherent dynamics of many-body systems far from equilibrium. 
Specifically, we focus on the quench dynamics of Rydberg crystals ini-
tially prepared deep in the Z2-ordered phase, as we change the detuning 
∆(t) suddenly to the single-atom resonance ∆ = 0 (Fig. 6a). After such 
a quench, we observe oscillations of many-body states between the ini-
tial crystal and a complementary crystal in which each internal atomic 
state is inverted (Fig. 6a). Remarkably, we find that these oscillations are 
robust, persisting over several periods with a frequency that is largely 
independent of the system size. This is confirmed by measuring the 
dynamics of the domain-wall density, which signals the appearance 
and disappearance of the crystalline states, shown in Fig. 6b for arrays 
of 9 and 51 atoms. We find that the initial crystal repeatedly revives 
with a period that is slower by a factor of 1.38(1) (error denotes the 
uncertainty in the fit) compared to the Rabi-oscillation period for inde-
pendent, non-interacting atoms.

Discussion
Several important features of these experimental observations should 
be noted. First, the Z2-ordered state cannot be characterized by a sim-
ple thermal ensemble. More specifically, if an effective temperature is 
estimated on the basis of the experimentally determined, corrected 
domain-wall density of 0.1, then the corresponding thermal ensemble 
predicts a correlation length of ξth = 4.48(3), which is significantly longer 
than the measured value of ξ = 3.03(6) (Methods). Such a discrepancy 
is also reflected in distinct probability distributions for the number of 
domain walls (Fig. 5c). These observations suggest that the system does 
not thermalize within the timescale of the Z2 state preparation.
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Figure 5 | Quantifying Z2 order in a 51-atom array after a slow detuning 
sweep. a, Single-shot fluorescence images of a 51-atom array before 
applying the adiabatic pulse (top row) and after the pulse (bottom three 
rows correspond to three separate instances). Red circles mark missing 
atoms, which are attributed to Rydberg excitations. Domain walls are 
identified as either two neighbouring atoms in the same state or a ground-
state atom at the edge of the array (Methods), and are indicated with blue 
ellipses. Long Z2-ordered chains between domain walls are observed. 
b, Blue circles show the mean domain-wall density as a function of 
detuning during the sweep. Error bars show the standard error of the mean 
and are smaller than the marker size. The red circles are the corresponding 
variances, and the error bars represent one standard deviation. The onset 
of the phase transition is indicated by a decrease in the domain-wall 

density and a peak in the variance (see main text for details). Each point is 
obtained from about 1,000 realizations. The solid blue curve is a fully 
coherent matrix product state (MPS) simulation without free parameters 
(bond dimension D = 256), taking measurement fidelities into account. 
c, Domain-wall number distribution for ∆ = 2π × 14 MHz, obtained from 
18,439 experimental realizations (blue bars, top). Error bars indicate 68% 
confidence intervals. Owing to the boundary conditions, only even 
numbers of domain walls appear (Methods). Green bars (bottom) show 
the distribution obtained by correcting for finite detection fidelity using a 
maximum-likelihood method (Methods), which results in an average of 
5.4 domain walls; red bars show the distribution of a thermal state with the 
same mean domain-wall density (Methods). d, Measured correlation 
function g ij

(2) (equation (2)) in the Z2 phase.
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Even more striking is the coherent and persistent oscillation 
of the crystalline order after the quantum quench. With respect 
to the quenched Hamiltonian (∆ = 0), the energy density of our  
Z2-ordered state corresponds to that of an infinite-temperature 
ensemble within the manifold constrained by Rydberg blockade. 
Also, our Hamiltonian does not have any explicitly conserved quan-
tities other than total energy. Nevertheless, the oscillations persist 
well beyond the natural timescale of local relaxation (1/Ω) and the 
fastest timescale (1/Vi,i+1).

To understand these observations, we consider a simplified model 
in which the effect of long-range interactions is neglected, and nearest- 
neighbour interactions are replaced by hard constraints on neigh-
bouring excitations of Rydberg states30. In this limit, the qualitative 
behaviour of the quench dynamics can be understood in terms of 
dimerized spins (Fig. 6c); owing to the blockade constraint, each dimer 
forms an effective spin-1 system with three states (|rg〉, |gg〉 and |gr〉), 
in which the resonant drive ‘rotates’ the three states over the period 

Ωπ/2 (2 ), which is close to that observed experimentally. Although 
this qualitative picture does not take into account the strong interac-
tions (constraints) between neighbouring dimers, it can be extended 
by considering a minimal variational ansatz for the many-body wave 
function based on matrix product states that respect all blockade con-
straints (Methods). Using the time-dependent variational principle, we 
derive analytical equations of motion and obtain a crystalline-order 
oscillation with a frequency of about Ω/1.51 (see Extended Data  
Fig. 9), which is within 10% of the experimental observations. These 
considerations are supported by various numerical simulations. The 
exact numerics predict that this simplified model exhibits crystal oscil-
lations with the observed frequency, while the entanglement entropy 
grows at a rate much smaller than Ω, indicating that the oscillation 
persists over many cycles (Fig. 6d and Methods). The addition of long-
range interactions leads to a faster decay of the oscillations, with a 

timescale that is determined by 1/Vi,i+2, in good agreement with experi-
mental observations (Fig. 6b); the entanglement entropy also grows on 
this timescale (Fig. 6d, see also Extended Data Fig. 10).

Our observations and analysis therefore indicate that the decay of 
crystal oscillation is governed by weak next-nearest-neighbour inter-
actions. This relatively slow thermalization is rather unexpected, 
because our Hamiltonian, with or without long-range interactions, is 
far from any known integrable system30, and features neither strong 
disorder nor explicitly conserved quantities38. Instead, our observations 
are probably associated with constrained dynamics due to Rydberg 
blockade and large separations of timescales ( Ω+ +≫ ≫V Vi i i i, 1 , 2 ;  
ref. 39) that result in an effective Hilbert-space dimension that is deter-
mined by the golden ratio + /(1 5 ) 2N N  (refs 40, 41). The evolution 
within such a constrained Hilbert space gives rise to the so-called quan-
tum dimer models, which are known to possess non-trivial dynamics42. 
Although these considerations provide important insights into the 
origin of robust emergent dynamics, our results challenge conventional 
theoretical concepts and so warrant further studies.

Outlook
Our observations demonstrate that Rydberg excitation of arrays of 
neutral atoms is a promising way of studying quantum dynamics and 
quantum simulations in large systems. Our method can be extended 
and improved in several ways. Individual qubit rotations around the z 
axis could be implemented using light shifts associated with trap light, 
and a second acousto-optic deflector could be used for individual con-
trol of coherent rotations around other directions. Further improve-
ment in coherence and controllability could be obtained by encoding 
qubits into hyperfine sublevels of the electronic ground state and using 
state-selective Rydberg excitation23. Implementing two-dimensional 
arrays could provide a path towards realizing thousands of traps. 
Such two-dimensional configurations could be realized by using a  
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Figure 6 | Emergent oscillations in many-body dynamics after sudden 
quench. a, A schematic of the sequence (top, showing ∆(t)), which 
involves adiabatic preparation and then a sudden quench to single-atom 
resonance. The single-atom trajectories are shown (bottom) for a 9-atom 
cluster, with the colour scale indicating the Rydberg probability. We 
observe that the initial crystal with a Rydberg excitation at every odd trap 
site (left inset) collapses after the quench, and a crystal with an excitation 
at every even site builds up (middle inset). At a later time, the initial crystal 
revives with a frequency of Ω/1.38(1) (right inset). Error bars denote 
68% confidence intervals. b, Domain-wall density after the quench. The 
dynamics decay slowly on a timescale of 0.88 µs. Shaded region represents 

the standard error of the mean. Solid blue line is a fully coherent matrix 
product state (MPS) simulation with bond dimension D = 256, taking into 
account measurement fidelity. c, Toy model of non-interacting dimers  
(see main text). Blue (white) circles represent atoms in state |g〉 (|r〉).  
d, Numerical calculations of the dynamics after a quench, starting from an 
ideal 25-atom crystal, obtained from exact diagonalization. Domain-wall 
density (red) and the growth of entanglement entropy of the half chain  
(13 atoms; blue) are shown as functions of time after the quench. Dashed 
lines take into account only the nearest-neighbour (NN) blockade 
constraint. Solid lines correspond to the full 1/R6 interaction potential.
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The strong, coherent interactions between Rydberg atoms provide 
an effective coherent constraint that prevents simultaneous excitation 
of nearby atoms into Rydberg states. This is the essence of the so-called 
Rydberg blockade15, demonstrated in Fig. 1d. When two atoms are 
sufficiently close that that their Rydberg–Rydberg interactions Vij 
exceed the effective Rabi frequency Ω, multiple Rydberg excitations are 
suppressed. This defines the Rydberg blockade radius Rb, at which 
Vij = Ω (Rb = 9 µm for |r〉 = |70S1/2〉 and Ω = 2π × 2 MHz, as used here). 
In the case of resonant driving of atoms separated by a = 23 µm, we 
observe Rabi oscillations associated with non-interacting atoms (blue 
curve in Fig. 1d). However, the dynamics changes substantially as we 
bring multiple atoms close to each other (a = 2.87 µm < Rb). In this case, 
we observe Rabi oscillations between the ground state and a collective 

state with exactly one excitation ( = / ∑ | … … 〉W N g r g(1 ) i i N1 ) with 
the characteristic N  scaling of the collective Rabi frequency24,28,29. 
These observations enable us to quantify the coherence properties of 
our system (see Methods and Extended Data Fig. 3). In particular, the 
amplitude of Rabi oscillations in Fig. 1d is limited mostly by the state 
detection fidelity (93% for |r〉 and about 98% for |g〉; Methods). The 
individual Rabi frequencies are controlled to better than 3% across the 
array, whereas the coherence time is limited ultimately by the small 
probability of spontaneous emission from the intermediate state |e〉 
during the laser pulse (scattering rate 0.022 µs−1; Methods).

Programmable quantum simulator
In the case of homogeneous coherent coupling considered here, the 
Hamiltonian in equation (1) resembles closely the paradigmatic Ising 
model for effective spin-1/2 particles with variable interaction range. 
Its ground state exhibits a rich variety of many-body phases that break 
distinct spatial symmetries (Fig. 2a). Specifically, at large negative  
values of ∆/Ω, its ground state corresponds to all atoms in the state |g〉, 
corresponding to the paramagnetic or disordered phase. As ∆/Ω is 
increased towards large positive values, the number of atoms in |r〉 
increases and interactions between them become important. This gives 
rise to spatially ordered phases in which Rydberg atoms are arranged 
regularly across the array, resulting in ‘Rydberg crystals’ with different 
spatial symmetries30,31, as illustrated in Fig. 2a. The origin of these 
correlated states can be understood intuitively by first considering the 
situation in which ∆ Ω+ +≫ ≫ ≫V Vi i i i, 1 , 2, that is, with blockade for 
neighbouring atoms but negligible interaction between next-nearest 
neighbours. In this case, the ground state corresponds to a Rydberg 
crystal that breaks Z2 translational symmetry in a manner analogous 
to antiferromagnetic order in magnetic systems. Moreover, by  
tuning the parameters so that ∆ Ω+ + +≫ ≫ ≫V V V,i i i i i i, 1 , 2 , 3 and 

∆ Ω+ + + +≫ ≫ ≫V V V V, ,i i i i i i i i, 1 , 2 , 3 , 4  , we obtain arrays with broken Z3 
and Z4 symmetries, respectively (Fig. 2).

To prepare the system in these phases, we control the detuning ∆(t) 
of the driving lasers dynamically to transform the ground state of the 
Hamiltonian adiabatically from a product state of all atoms in |g〉 to 
crystalline states22,31. In contrast to previous work where Rydberg 
crystals are prepared via a sequence of avoided crossings22,31,32, the 
operation at a finite Ω and well-defined atom separation enables us to 
move across a single phase transition into the desired phase directly33.

In the experiment, we first prepare all atoms in state |g〉 = |5S1/2, F = 2, 
mF = −2〉 by optical pumping. We then switch on the laser fields and 
sweep the two-photon detuning from negative to positive values using 
the functional form shown in Fig. 3a. Figure 2b displays the resulting 
single-atom trajectories in a group of 13 atoms for three different inter-
action strengths as we vary the detuning ∆. In each of these instances, 
we observe a clear transition from the initial state |g1, …, g13〉 to an 
ordered state of different broken symmetry. The distance between the 
atoms determines the interaction strength, which leads to different 
crystalline order for a given final detuning. To achieve Z2 order,  
we arrange the atoms with a spacing of 5.74 µm, which results  
in a measured nearest-neighbour interaction strength (see Extended 
Data Fig. 4) of Ω= π× = π×+ ≫V 2 24 MHz 2 2 MHzi i, 1 , while the 
next-nearest-neighbour interaction is small (2π × 0.38 MHz). This 
results in a build-up of antiferromagnetic order whereby every other 
trap site is occupied by a Rydberg atom (Z2 order). By reducing the 
spacing between the atoms to 3.57 µm and 2.87 µm, Z3 and Z4 order is 
observed, respectively (Fig. 2b).

We benchmark the performance of the quantum simulator by com-
paring the measured build-up of Z2 order with theoretical predictions 
for a N = 7 atom system, obtained via exact numerical simulations. As 
shown in Fig. 3, this fully coherent simulation without free parameters 
yields excellent agreement with the observed data when the finite detec-
tion fidelity is accounted for. The evolution of the many-body states in 
Fig. 3c shows that we measure the perfect antiferromagnetic state with 
54(4)% probability (here and elsewhere, unless otherwise specified, the 
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Figure 1 | Experimental platform. a, Individual 87Rb atoms (green) are 
trapped using optical tweezers (vertical red beams) and arranged into 
defect-free arrays. Coherent interactions Vij between the atoms (arrows) 
are enabled by exciting them (horizontal blue and red beams) to a  
Rydberg state with strength Ω and detuning ∆ (inset). b, A two-photon 
process couples the ground state |g〉 = |5S1/2, F = 2, mF = −2〉 to the 
Rydberg state |r〉 = |70S1/2, J = 1/2, mJ = −1/2〉 via an intermediate  
state |e〉 = |6P3/2, F = 3, mF = −3〉 with detuning δ, using circularly 
polarized 420-nm and 1,013-nm lasers with single-photon Rabi 
frequencies of ΩB and ΩR, respectively. Typical experimental values are 
δ Ω Ω≈ π× ≈ π×≫2 560 MHz ( , ) 2 (60, 36) MHzB R . c, The experimental 
protocol consists of loading the atoms into a tweezer array (1) and then 
rearranging them into a preprogrammed configuration (2). After this, the 
system evolves under U(t) with tunable parameters ∆(t), Ω(t) and Vij. This 
evolution can be implemented in parallel on several non-interacting  
sub-systems (3). We then detect the final state using fluorescence  
imaging (4). Atoms in state |g〉 remain trapped, whereas atoms in state |r〉 
are ejected from the trap and detected as the absence of fluorescence 
(indicated with red circles). d, For resonant driving (∆ = 0), isolated atoms 
(blue circles) display Rabi oscillations between |g〉 and |r〉. Arranging the 
atoms into fully blockaded clusters of N = 2 (green circles) and N = 3  
(red circles) atoms results in only one excitation being shared between the 
atoms in the cluster, while the Rabi frequency is enhanced by N . The 
probability of detecting more than one excitation in the cluster is ≤5%. 
Error bars indicate 68% confidence intervals and are smaller than the 
marker size.
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schematically illustrated in Fig. 1, is that gauge invariance
has a natural counterpart in the Rydberg blockade mecha-
nism, which constrains the Hilbert space in the sameway as
Gauss law does in gauge theories. This provides an
immediate interpretation of the recent experiment with
Rydberg-blockaded atom arrays in Ref. [14] as the first
large-scale quantum simulation of a LGT at the edge of
classical computational methods [7].
From a theoretical viewpoint, the mapping offers a

hitherto unexplored perspective on the anomalously slow
relaxation recently observed in experiments: the long-lived
oscillations in the population of excited Rydberg atoms
correspond to a string inversion, a phenomenon which is
directly tied to string breaking [6,17,18] prototypical of
gauge theories including dynamical matter [cf. Figs. 1(d)
and 1(e)]. Themapping indicates that this phenomenon has a
natural interpretation in the LGT framework and suggests
the occurrence of slow dynamics in other U(1) gauge
theories, such as higher-spin QLMs [19], Higgs theories
[20,21], and the Schwinger model [22,23]. These theories
have been widely discussed in the context of Schwinger pair
production taking place at high-intensity laser facilities, thus
providing a highly unexpected, direct link between appa-
rently unrelated experimental platforms [18,24–27].
We discuss the generality of this type of quantum

evolution by extending our analysis to other relevant

instances of “slow dynamics,” characterized by the absence
of relaxation on all timescales corresponding to any micro-
scopic coupling present in the system. As initial states, we
focus on those consisting of particle-antiparticle pairs,
corresponding to regular configurations of the Rydberg
atom arrays with localized defects, which are accessible
within the setup of Ref. [14]. We show that these defects
propagate ballistically with long-lived coherent interfer-
ence patterns. This behavior is found to be governed by
special bands of highly excited eigenstates characterized
by a regularity in the energy-momentum dispersion rela-
tion. These findings open up a novel perspective which
complements and extends toward gauge theories recent
approaches to slow relaxation in Rydberg-blockaded
atomic chains [28–33].

II. RYDBERG ATOM ARRAYS

We are interested here in the dynamics of a one-dimen-
sional array of L optical traps, each of them hosting a single
atom, as schematically illustrated in Fig. 1(a). The atoms
are trapped in their electronic ground state (black circle),
denoted by j↓ij, where j numbers the trap. These ground
states are quasiresonantly coupled to a single Rydberg
state, i.e., a highly excited electronic level, denoted by j↑ij.
The dynamics of this chain of qbits fj↑;↓ijgj¼1;…;L is
governed by the following Ising-type Hamiltonian [13,34]:
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FIG. 1. Gauge-theory interpretation of Rydberg atom quantum simulations. (a) Schematics of a Rydberg atom chain. Each potential
well of the optical lattice hosts a single atom, which can be in either the ground (black) or excited Rydberg (yellow) state. These two
levels are coupled by a laser field. The Rydberg blockade prevents the simultaneous excitations of neighboring atoms. (b) Degrees of
freedom of a U(1) LGT in the spin-1=2 quantum link model (QLM) formulation. Gauge fields are represented by spin variables residing
on links. Matter fields are represented by Kogut-Susskind fermions: an occupied site corresponds to the vacuum on odd sites and to a
quark q on even sites. An empty site, instead, corresponds to the vacuum on even sites and to an antiquark q̄ on odd sites. (c): Mapping
between Rydberg-blockaded states and configurations of the electric field constrained by the Gauss law in the QLM. Because of the
staggered electric charge, the allowed configurations of the electric field depend on the link, as illustrated. The two so-called charge-
density wave configurations “CDW1” and “CDW2” of the Rydberg atom arrays are mapped onto the “string” and “antistring” states,
respectively, characterized by uniform rightward or leftward electric fluxes. The empty configuration with all Rydberg atoms in their
ground state is mapped to a state filled by adjacent particle-antiparticle pairs. (d) Time evolution of the Rydberg array governed by the
effective Hamiltonian HFSS in Eq. (2), starting from the CDW1 state. The plot shows the space and time resolved population hnji of the
excited Rydberg atoms. (e) Evolution of the expectation value of the electric field operator Êj;jþ1 in the QLM. These dynamics map
exactly onto the ones shown in (d) via the mapping illustrated in (c). The thin lines highlight the oscillation between CDW1, CDW2 [left,
bottom of (c)] or string and antistring (right) states. In these simulations, L ¼ 24 and δ ¼ m ¼ 0.
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Extended Data Figure 10 | Decay of oscillations after a quench and 
entropy growth. a, Dynamics of the domain-wall density under the 
constrained Hamiltonian Hc for different initial states. The red line shows 
the domain-wall density for a system of 25 atoms initially prepared in 
the electronic ground state. In this case, the domain-wall density relaxes 
quickly to a steady value corresponding to thermalization. In contrast,  
the blue line shows the dynamics if the system is initialized in the  
Z2-ordered state. In this case, the domain-wall density oscillates over 
several periods and even for very long times does not relax fully to a steady 
value. b, Same as in a, but taking into account the full 1/R6 interactions. 
While the dynamics for an initial state |g〉⊗N is very similar to the one 

obtained in the constrained case, for the crystalline initial state the decay 
of the oscillations is faster than in the constrained model. c, Growth of 
entanglement entropy in a bipartite splitting of the 25-atom array for 
the different cases displayed in a and b. The entropy is defined as the 
von Neumann entropy of the reduced state of the first 13 atoms of the 
array. The dashed lines correspond to dynamics under the constrained 
Hamiltonian, neglecting the 1/R6 tail, whereas the solid lines take the full 
interactions into account. Red lines correspond to the initial state |g〉⊗N, 
whereas blue lines correspond to crystalline initial states. In all panels we 
chose Ω = 2π × 2 MHz and, where applicable, interaction parameters such 
that the nearest-neighbour interaction evaluates to Vi,i+1 = 2π × 25.6 MHz.
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experiment, after such a slowly changing laser pulse, we observe long 
ordered chains where the atomic states alternate between the Rydberg 
and ground states. These ordered domains can be separated by domain 
walls that consist of two neighbouring atoms in the same electronic 
state (Fig. 5a)35. These features cannot be observed in the average 
excitation probability of the bulk (see Extended Data Fig. 6a).

The domain-wall density can be used to quantify the transition 
from the disordered phase to the ordered Z2 phase as a function of 
detuning ∆. As the system enters the Z2 phase, ordered domains 
grow in size, leading to a substantial reduction in the domain-wall 
density (blue points in Fig. 5b). Consistent with expectations for an 
Ising-type second-order quantum phase transition35, we observe 
domains of fluctuating length close to the transition point between 
the two phases, which is reflected by a pronounced peak in the  
variance of the domain-wall density. Consistent with predictions from 
finite-size scaling analysis30,36, this peak is shifted towards positive 
values of ∆/Ω. The measured position of the peak is ∆ ≈ 0.5Ω. The 
observed domain-wall density is in excellent agreement with fully 
coherent simulations of the quantum dynamics based on 51-atom 
matrix product states (blue line in Fig. 5b); however, these simula-
tions underestimate the variance at the phase transition (see Extended  
Data Fig. 6b).

At the end of the sweep, deep in the Z2 phase (∆ Ω/ ≫ 1) we can 
neglect Ω so that the Hamiltonian in equation (1) becomes essentially 
classical. In this regime, the measured domain-wall number distri-
bution enables us to infer directly the statistics of excitations that are 
created when crossing the phase transition. From 18,439 experimental 
realizations we obtain the distribution depicted in Fig. 5c with an 
average of 9.01(2) domain walls. From a maximum-likelihood esti-
mation we obtain the distribution corrected for detection fidelity (see 
Extended Data Fig. 7), which corresponds to a state that has on 
 average 5.4 domain walls. These domain walls are  probably created 
as a result of non-adiabatic transitions from the ground state when 
crossing the phase transition37, where the energy gap depends on the 
system size (and scales as 1/N)36. In addition, the preparation fidelity 
is limited by spontaneous emission during the laser pulse (an average 
of 1.1 photons are scattered per microsecond for the entire array; see 
Methods).

To further characterize the Z2-ordered state that is created, we eva-
luate the correlation function

= 〈 〉− 〈 〉〈 〉g n n n n (2)ij i j i j
(2)

where the average 〈…〉 is taken over experimental repetitions. We find 
that the correlations decay exponentially over distance with a decay 
length of ξ = 3.03(6) sites (see Fig. 5d and Methods; the error denotes 
the uncertainty in the fit). We note that this length does not characterize 
the system fully, as discussed below (see also Extended Data Fig. 8).

Finally, Fig. 6 demonstrates that our approach also enables the study 
of coherent dynamics of many-body systems far from equilibrium. 
Specifically, we focus on the quench dynamics of Rydberg crystals ini-
tially prepared deep in the Z2-ordered phase, as we change the detuning 
∆(t) suddenly to the single-atom resonance ∆ = 0 (Fig. 6a). After such 
a quench, we observe oscillations of many-body states between the ini-
tial crystal and a complementary crystal in which each internal atomic 
state is inverted (Fig. 6a). Remarkably, we find that these oscillations are 
robust, persisting over several periods with a frequency that is largely 
independent of the system size. This is confirmed by measuring the 
dynamics of the domain-wall density, which signals the appearance 
and disappearance of the crystalline states, shown in Fig. 6b for arrays 
of 9 and 51 atoms. We find that the initial crystal repeatedly revives 
with a period that is slower by a factor of 1.38(1) (error denotes the 
uncertainty in the fit) compared to the Rabi-oscillation period for inde-
pendent, non-interacting atoms.

Discussion
Several important features of these experimental observations should 
be noted. First, the Z2-ordered state cannot be characterized by a sim-
ple thermal ensemble. More specifically, if an effective temperature is 
estimated on the basis of the experimentally determined, corrected 
domain-wall density of 0.1, then the corresponding thermal ensemble 
predicts a correlation length of ξth = 4.48(3), which is significantly longer 
than the measured value of ξ = 3.03(6) (Methods). Such a discrepancy 
is also reflected in distinct probability distributions for the number of 
domain walls (Fig. 5c). These observations suggest that the system does 
not thermalize within the timescale of the Z2 state preparation.
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Figure 5 | Quantifying Z2 order in a 51-atom array after a slow detuning 
sweep. a, Single-shot fluorescence images of a 51-atom array before 
applying the adiabatic pulse (top row) and after the pulse (bottom three 
rows correspond to three separate instances). Red circles mark missing 
atoms, which are attributed to Rydberg excitations. Domain walls are 
identified as either two neighbouring atoms in the same state or a ground-
state atom at the edge of the array (Methods), and are indicated with blue 
ellipses. Long Z2-ordered chains between domain walls are observed. 
b, Blue circles show the mean domain-wall density as a function of 
detuning during the sweep. Error bars show the standard error of the mean 
and are smaller than the marker size. The red circles are the corresponding 
variances, and the error bars represent one standard deviation. The onset 
of the phase transition is indicated by a decrease in the domain-wall 

density and a peak in the variance (see main text for details). Each point is 
obtained from about 1,000 realizations. The solid blue curve is a fully 
coherent matrix product state (MPS) simulation without free parameters 
(bond dimension D = 256), taking measurement fidelities into account. 
c, Domain-wall number distribution for ∆ = 2π × 14 MHz, obtained from 
18,439 experimental realizations (blue bars, top). Error bars indicate 68% 
confidence intervals. Owing to the boundary conditions, only even 
numbers of domain walls appear (Methods). Green bars (bottom) show 
the distribution obtained by correcting for finite detection fidelity using a 
maximum-likelihood method (Methods), which results in an average of 
5.4 domain walls; red bars show the distribution of a thermal state with the 
same mean domain-wall density (Methods). d, Measured correlation 
function g ij

(2) (equation (2)) in the Z2 phase.
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Even more striking is the coherent and persistent oscillation 
of the crystalline order after the quantum quench. With respect 
to the quenched Hamiltonian (∆ = 0), the energy density of our  
Z2-ordered state corresponds to that of an infinite-temperature 
ensemble within the manifold constrained by Rydberg blockade. 
Also, our Hamiltonian does not have any explicitly conserved quan-
tities other than total energy. Nevertheless, the oscillations persist 
well beyond the natural timescale of local relaxation (1/Ω) and the 
fastest timescale (1/Vi,i+1).

To understand these observations, we consider a simplified model 
in which the effect of long-range interactions is neglected, and nearest- 
neighbour interactions are replaced by hard constraints on neigh-
bouring excitations of Rydberg states30. In this limit, the qualitative 
behaviour of the quench dynamics can be understood in terms of 
dimerized spins (Fig. 6c); owing to the blockade constraint, each dimer 
forms an effective spin-1 system with three states (|rg〉, |gg〉 and |gr〉), 
in which the resonant drive ‘rotates’ the three states over the period 

Ωπ/2 (2 ), which is close to that observed experimentally. Although 
this qualitative picture does not take into account the strong interac-
tions (constraints) between neighbouring dimers, it can be extended 
by considering a minimal variational ansatz for the many-body wave 
function based on matrix product states that respect all blockade con-
straints (Methods). Using the time-dependent variational principle, we 
derive analytical equations of motion and obtain a crystalline-order 
oscillation with a frequency of about Ω/1.51 (see Extended Data  
Fig. 9), which is within 10% of the experimental observations. These 
considerations are supported by various numerical simulations. The 
exact numerics predict that this simplified model exhibits crystal oscil-
lations with the observed frequency, while the entanglement entropy 
grows at a rate much smaller than Ω, indicating that the oscillation 
persists over many cycles (Fig. 6d and Methods). The addition of long-
range interactions leads to a faster decay of the oscillations, with a 

timescale that is determined by 1/Vi,i+2, in good agreement with experi-
mental observations (Fig. 6b); the entanglement entropy also grows on 
this timescale (Fig. 6d, see also Extended Data Fig. 10).

Our observations and analysis therefore indicate that the decay of 
crystal oscillation is governed by weak next-nearest-neighbour inter-
actions. This relatively slow thermalization is rather unexpected, 
because our Hamiltonian, with or without long-range interactions, is 
far from any known integrable system30, and features neither strong 
disorder nor explicitly conserved quantities38. Instead, our observations 
are probably associated with constrained dynamics due to Rydberg 
blockade and large separations of timescales ( Ω+ +≫ ≫V Vi i i i, 1 , 2 ;  
ref. 39) that result in an effective Hilbert-space dimension that is deter-
mined by the golden ratio + /(1 5 ) 2N N  (refs 40, 41). The evolution 
within such a constrained Hilbert space gives rise to the so-called quan-
tum dimer models, which are known to possess non-trivial dynamics42. 
Although these considerations provide important insights into the 
origin of robust emergent dynamics, our results challenge conventional 
theoretical concepts and so warrant further studies.

Outlook
Our observations demonstrate that Rydberg excitation of arrays of 
neutral atoms is a promising way of studying quantum dynamics and 
quantum simulations in large systems. Our method can be extended 
and improved in several ways. Individual qubit rotations around the z 
axis could be implemented using light shifts associated with trap light, 
and a second acousto-optic deflector could be used for individual con-
trol of coherent rotations around other directions. Further improve-
ment in coherence and controllability could be obtained by encoding 
qubits into hyperfine sublevels of the electronic ground state and using 
state-selective Rydberg excitation23. Implementing two-dimensional 
arrays could provide a path towards realizing thousands of traps. 
Such two-dimensional configurations could be realized by using a  
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Figure 6 | Emergent oscillations in many-body dynamics after sudden 
quench. a, A schematic of the sequence (top, showing ∆(t)), which 
involves adiabatic preparation and then a sudden quench to single-atom 
resonance. The single-atom trajectories are shown (bottom) for a 9-atom 
cluster, with the colour scale indicating the Rydberg probability. We 
observe that the initial crystal with a Rydberg excitation at every odd trap 
site (left inset) collapses after the quench, and a crystal with an excitation 
at every even site builds up (middle inset). At a later time, the initial crystal 
revives with a frequency of Ω/1.38(1) (right inset). Error bars denote 
68% confidence intervals. b, Domain-wall density after the quench. The 
dynamics decay slowly on a timescale of 0.88 µs. Shaded region represents 

the standard error of the mean. Solid blue line is a fully coherent matrix 
product state (MPS) simulation with bond dimension D = 256, taking into 
account measurement fidelity. c, Toy model of non-interacting dimers  
(see main text). Blue (white) circles represent atoms in state |g〉 (|r〉).  
d, Numerical calculations of the dynamics after a quench, starting from an 
ideal 25-atom crystal, obtained from exact diagonalization. Domain-wall 
density (red) and the growth of entanglement entropy of the half chain  
(13 atoms; blue) are shown as functions of time after the quench. Dashed 
lines take into account only the nearest-neighbour (NN) blockade 
constraint. Solid lines correspond to the full 1/R6 interaction potential.
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The strong, coherent interactions between Rydberg atoms provide 
an effective coherent constraint that prevents simultaneous excitation 
of nearby atoms into Rydberg states. This is the essence of the so-called 
Rydberg blockade15, demonstrated in Fig. 1d. When two atoms are 
sufficiently close that that their Rydberg–Rydberg interactions Vij 
exceed the effective Rabi frequency Ω, multiple Rydberg excitations are 
suppressed. This defines the Rydberg blockade radius Rb, at which 
Vij = Ω (Rb = 9 µm for |r〉 = |70S1/2〉 and Ω = 2π × 2 MHz, as used here). 
In the case of resonant driving of atoms separated by a = 23 µm, we 
observe Rabi oscillations associated with non-interacting atoms (blue 
curve in Fig. 1d). However, the dynamics changes substantially as we 
bring multiple atoms close to each other (a = 2.87 µm < Rb). In this case, 
we observe Rabi oscillations between the ground state and a collective 

state with exactly one excitation ( = / ∑ | … … 〉W N g r g(1 ) i i N1 ) with 
the characteristic N  scaling of the collective Rabi frequency24,28,29. 
These observations enable us to quantify the coherence properties of 
our system (see Methods and Extended Data Fig. 3). In particular, the 
amplitude of Rabi oscillations in Fig. 1d is limited mostly by the state 
detection fidelity (93% for |r〉 and about 98% for |g〉; Methods). The 
individual Rabi frequencies are controlled to better than 3% across the 
array, whereas the coherence time is limited ultimately by the small 
probability of spontaneous emission from the intermediate state |e〉 
during the laser pulse (scattering rate 0.022 µs−1; Methods).

Programmable quantum simulator
In the case of homogeneous coherent coupling considered here, the 
Hamiltonian in equation (1) resembles closely the paradigmatic Ising 
model for effective spin-1/2 particles with variable interaction range. 
Its ground state exhibits a rich variety of many-body phases that break 
distinct spatial symmetries (Fig. 2a). Specifically, at large negative  
values of ∆/Ω, its ground state corresponds to all atoms in the state |g〉, 
corresponding to the paramagnetic or disordered phase. As ∆/Ω is 
increased towards large positive values, the number of atoms in |r〉 
increases and interactions between them become important. This gives 
rise to spatially ordered phases in which Rydberg atoms are arranged 
regularly across the array, resulting in ‘Rydberg crystals’ with different 
spatial symmetries30,31, as illustrated in Fig. 2a. The origin of these 
correlated states can be understood intuitively by first considering the 
situation in which ∆ Ω+ +≫ ≫ ≫V Vi i i i, 1 , 2, that is, with blockade for 
neighbouring atoms but negligible interaction between next-nearest 
neighbours. In this case, the ground state corresponds to a Rydberg 
crystal that breaks Z2 translational symmetry in a manner analogous 
to antiferromagnetic order in magnetic systems. Moreover, by  
tuning the parameters so that ∆ Ω+ + +≫ ≫ ≫V V V,i i i i i i, 1 , 2 , 3 and 

∆ Ω+ + + +≫ ≫ ≫V V V V, ,i i i i i i i i, 1 , 2 , 3 , 4  , we obtain arrays with broken Z3 
and Z4 symmetries, respectively (Fig. 2).

To prepare the system in these phases, we control the detuning ∆(t) 
of the driving lasers dynamically to transform the ground state of the 
Hamiltonian adiabatically from a product state of all atoms in |g〉 to 
crystalline states22,31. In contrast to previous work where Rydberg 
crystals are prepared via a sequence of avoided crossings22,31,32, the 
operation at a finite Ω and well-defined atom separation enables us to 
move across a single phase transition into the desired phase directly33.

In the experiment, we first prepare all atoms in state |g〉 = |5S1/2, F = 2, 
mF = −2〉 by optical pumping. We then switch on the laser fields and 
sweep the two-photon detuning from negative to positive values using 
the functional form shown in Fig. 3a. Figure 2b displays the resulting 
single-atom trajectories in a group of 13 atoms for three different inter-
action strengths as we vary the detuning ∆. In each of these instances, 
we observe a clear transition from the initial state |g1, …, g13〉 to an 
ordered state of different broken symmetry. The distance between the 
atoms determines the interaction strength, which leads to different 
crystalline order for a given final detuning. To achieve Z2 order,  
we arrange the atoms with a spacing of 5.74 µm, which results  
in a measured nearest-neighbour interaction strength (see Extended 
Data Fig. 4) of Ω= π× = π×+ ≫V 2 24 MHz 2 2 MHzi i, 1 , while the 
next-nearest-neighbour interaction is small (2π × 0.38 MHz). This 
results in a build-up of antiferromagnetic order whereby every other 
trap site is occupied by a Rydberg atom (Z2 order). By reducing the 
spacing between the atoms to 3.57 µm and 2.87 µm, Z3 and Z4 order is 
observed, respectively (Fig. 2b).

We benchmark the performance of the quantum simulator by com-
paring the measured build-up of Z2 order with theoretical predictions 
for a N = 7 atom system, obtained via exact numerical simulations. As 
shown in Fig. 3, this fully coherent simulation without free parameters 
yields excellent agreement with the observed data when the finite detec-
tion fidelity is accounted for. The evolution of the many-body states in 
Fig. 3c shows that we measure the perfect antiferromagnetic state with 
54(4)% probability (here and elsewhere, unless otherwise specified, the 
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Figure 1 | Experimental platform. a, Individual 87Rb atoms (green) are 
trapped using optical tweezers (vertical red beams) and arranged into 
defect-free arrays. Coherent interactions Vij between the atoms (arrows) 
are enabled by exciting them (horizontal blue and red beams) to a  
Rydberg state with strength Ω and detuning ∆ (inset). b, A two-photon 
process couples the ground state |g〉 = |5S1/2, F = 2, mF = −2〉 to the 
Rydberg state |r〉 = |70S1/2, J = 1/2, mJ = −1/2〉 via an intermediate  
state |e〉 = |6P3/2, F = 3, mF = −3〉 with detuning δ, using circularly 
polarized 420-nm and 1,013-nm lasers with single-photon Rabi 
frequencies of ΩB and ΩR, respectively. Typical experimental values are 
δ Ω Ω≈ π× ≈ π×≫2 560 MHz ( , ) 2 (60, 36) MHzB R . c, The experimental 
protocol consists of loading the atoms into a tweezer array (1) and then 
rearranging them into a preprogrammed configuration (2). After this, the 
system evolves under U(t) with tunable parameters ∆(t), Ω(t) and Vij. This 
evolution can be implemented in parallel on several non-interacting  
sub-systems (3). We then detect the final state using fluorescence  
imaging (4). Atoms in state |g〉 remain trapped, whereas atoms in state |r〉 
are ejected from the trap and detected as the absence of fluorescence 
(indicated with red circles). d, For resonant driving (∆ = 0), isolated atoms 
(blue circles) display Rabi oscillations between |g〉 and |r〉. Arranging the 
atoms into fully blockaded clusters of N = 2 (green circles) and N = 3  
(red circles) atoms results in only one excitation being shared between the 
atoms in the cluster, while the Rabi frequency is enhanced by N . The 
probability of detecting more than one excitation in the cluster is ≤5%. 
Error bars indicate 68% confidence intervals and are smaller than the 
marker size.

© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.
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Ω
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j

(Ωσx
j + 2Δnj)BLOCKADE: 

Vjk ≫ Ω, Δ

term [16]. The key element of our mapping, which is
schematically illustrated in Fig. 1, is that gauge invariance
has a natural counterpart in the Rydberg blockade mecha-
nism, which constrains the Hilbert space in the sameway as
Gauss law does in gauge theories. This provides an
immediate interpretation of the recent experiment with
Rydberg-blockaded atom arrays in Ref. [14] as the first
large-scale quantum simulation of a LGT at the edge of
classical computational methods [7].
From a theoretical viewpoint, the mapping offers a

hitherto unexplored perspective on the anomalously slow
relaxation recently observed in experiments: the long-lived
oscillations in the population of excited Rydberg atoms
correspond to a string inversion, a phenomenon which is
directly tied to string breaking [6,17,18] prototypical of
gauge theories including dynamical matter [cf. Figs. 1(d)
and 1(e)]. Themapping indicates that this phenomenon has a
natural interpretation in the LGT framework and suggests
the occurrence of slow dynamics in other U(1) gauge
theories, such as higher-spin QLMs [19], Higgs theories
[20,21], and the Schwinger model [22,23]. These theories
have been widely discussed in the context of Schwinger pair
production taking place at high-intensity laser facilities, thus
providing a highly unexpected, direct link between appa-
rently unrelated experimental platforms [18,24–27].
We discuss the generality of this type of quantum

evolution by extending our analysis to other relevant

instances of “slow dynamics,” characterized by the absence
of relaxation on all timescales corresponding to any micro-
scopic coupling present in the system. As initial states, we
focus on those consisting of particle-antiparticle pairs,
corresponding to regular configurations of the Rydberg
atom arrays with localized defects, which are accessible
within the setup of Ref. [14]. We show that these defects
propagate ballistically with long-lived coherent interfer-
ence patterns. This behavior is found to be governed by
special bands of highly excited eigenstates characterized
by a regularity in the energy-momentum dispersion rela-
tion. These findings open up a novel perspective which
complements and extends toward gauge theories recent
approaches to slow relaxation in Rydberg-blockaded
atomic chains [28–33].

II. RYDBERG ATOM ARRAYS

We are interested here in the dynamics of a one-dimen-
sional array of L optical traps, each of them hosting a single
atom, as schematically illustrated in Fig. 1(a). The atoms
are trapped in their electronic ground state (black circle),
denoted by j↓ij, where j numbers the trap. These ground
states are quasiresonantly coupled to a single Rydberg
state, i.e., a highly excited electronic level, denoted by j↑ij.
The dynamics of this chain of qbits fj↑;↓ijgj¼1;…;L is
governed by the following Ising-type Hamiltonian [13,34]:

(b)

(c)
Gauge fields

Matter fields

Odd sites Even sites

=

=

=

=

Quantum link model(a) Rydberg atom chain
Mapping

Rydberg Rydberg QLM
Odd-even bonds Even-odd bonds

CDW1

CDW2

Empty

QLM

(d) (e)

=
=

FIG. 1. Gauge-theory interpretation of Rydberg atom quantum simulations. (a) Schematics of a Rydberg atom chain. Each potential
well of the optical lattice hosts a single atom, which can be in either the ground (black) or excited Rydberg (yellow) state. These two
levels are coupled by a laser field. The Rydberg blockade prevents the simultaneous excitations of neighboring atoms. (b) Degrees of
freedom of a U(1) LGT in the spin-1=2 quantum link model (QLM) formulation. Gauge fields are represented by spin variables residing
on links. Matter fields are represented by Kogut-Susskind fermions: an occupied site corresponds to the vacuum on odd sites and to a
quark q on even sites. An empty site, instead, corresponds to the vacuum on even sites and to an antiquark q̄ on odd sites. (c): Mapping
between Rydberg-blockaded states and configurations of the electric field constrained by the Gauss law in the QLM. Because of the
staggered electric charge, the allowed configurations of the electric field depend on the link, as illustrated. The two so-called charge-
density wave configurations “CDW1” and “CDW2” of the Rydberg atom arrays are mapped onto the “string” and “antistring” states,
respectively, characterized by uniform rightward or leftward electric fluxes. The empty configuration with all Rydberg atoms in their
ground state is mapped to a state filled by adjacent particle-antiparticle pairs. (d) Time evolution of the Rydberg array governed by the
effective Hamiltonian HFSS in Eq. (2), starting from the CDW1 state. The plot shows the space and time resolved population hnji of the
excited Rydberg atoms. (e) Evolution of the expectation value of the electric field operator Êj;jþ1 in the QLM. These dynamics map
exactly onto the ones shown in (d) via the mapping illustrated in (c). The thin lines highlight the oscillation between CDW1, CDW2 [left,
bottom of (c)] or string and antistring (right) states. In these simulations, L ¼ 24 and δ ¼ m ¼ 0.
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larger than the detuning and the Rabi frequency, the system is mod-
elled by the following spin-1/2 Hamiltonian16,

∑=
=

+ +H PX P (1)
i

L

i i i
1

1 2

where Xi, Yi, Zi are the Pauli operators, L denotes the length of the 
chain and we work in units ħ =  1. In what follows, we use ∣∘⟩  to refer 
the ground state and ∣∙⟩  to refer to the Rydberg state of a single 
atom. The operator Xi =  ∣∘⟩ ⟨∙∣ + ∣∙⟩ ⟨∘∣  creates or removes an exci-
tation at a given site, and projectors = ∣∘⟩ ⟨∘∣Pi  =  (1 −  Zi)/2, written 
in terms of Zi =  ∣∙⟩ ⟨∙∣−∣∘⟩ ⟨∘∣ , ensure that the nearby atoms are not 
simultaneously in the excited state. For example, P1X2P3 acting on 
∣∘∘∘⟩  gives ∣∘∙∘⟩  (and vice versa), while it annihilates any of the con-
figurations ∣∙∘∘⟩ , ∣∘∘∙⟩ , ∣∙∘∙⟩ .

The presence of projectors in the Hamiltonian (equation (1)) 
does not allow for relaxation of several adjacent Rydberg atoms. 
In other words, configurations ∣…∙∙…⟩  are ‘dark states’ breaking 
our chain into two disconnected parts. Hence, such configura-
tions are excluded in what follows and we consider a constrained 
Hilbert space without any adjacent Rydberg atoms. Such a con-
straint makes the Hilbert space identical to that of chains of non-
Abelian Fibonacci anyons, rather than spins-1/2 or fermions. For 
periodic boundary conditions (PBC), the Hilbert space dimension 
is equal to D =  FL−1 +  FL+1, where Fn is the nth Fibonacci number. For 
instance, in the case of the L =  6 chain we have D =  18, as shown in 
Fig. 1. For open boundary conditions (OBC), D scales as FL+2. Thus, 
the Hilbert space is evidently very different from, for example, the  
spin-1

2
 chain where the number of states grows as 2L.

The model in equation (1) is particle–hole symmetric: an opera-
tor = ∏P Zi i anticommutes with the Hamiltonian, PH =  − HP, and 
therefore each eigenstate ψ∣ ⟩  with energy E ≠  0 has a partner ψ∣ ⟩P  
with energy − E. Furthermore, the model has spatial inversion 
symmetry I which maps i →  L −  i +  1. In addition, with PBC, this 
model has translation symmetry. In what follows, unless specified 
otherwise, we restrict ourselves to PBC (thus identifying i =  L +  1 
and i =  1) and explicitly resolve translation and inversion symme-
tries which allow us to fully diagonalize systems of up to L =  32 sites 
(with +D0  =  77,436 states in the zero-momentum inversion-sym-
metric sector).

Experiment25 and numerical simulations on small systems29 
revealed that the relaxation under unitary dynamics specified by 
the Hamiltonian (equation (1)) strongly depends on the initial state 
of the system. In particular, starting from period-2 charge density 
wave states

Z Z∣ ⟩ = ∣∙∘∙∘…⟩ ∣ ⟩ = ∣∘∙∘∙…⟩′, (2)2 2

that are related by a translation by one lattice period, the system 
shows surprising long-time oscillations of local observables for long 
chains of up to L =  51 sites. Although this might suggest that the sys-
tem is non-ergodic, it was also observed that the initial state with all 
atoms in the state ∣∘⟩  shows fast relaxation and no revivals, charac-
teristic of thermalizing systems. Given that the model in equation (1)  
is translation invariant and has no disorder, many-body localization 
cannot be at play. Below we explain the origin of the observed oscil-
lations and the apparent non-ergodic dynamics.

Dynamics
We start by characterizing the dynamical evolution of the model 
in equation (1) for different initial conditions. Motivated by 
experiment25, we consider a family of charge density wave states 
Z∣ ⟩k  =  ∣…∙∘…∘∙…⟩ , where the atoms in excited states are separated 

by k −  1 atoms in the ground state, as well as the fully polarized state 
∣…∘∘∘…⟩ ≡ ∣ ⟩0 . We use the infinite time evolving block decima-
tion (iTEBD) method, which provides results valid in the thermo-
dynamic limit up to some finite time30. The bond dimension used is 
400, which limits the evolution time to t ~ 30.

Figure 2a reveals linear growth of entanglement entropy evalu-
ated for the midpoint bipartition for all considered initial states. 
Yet, the slope of entanglement growth strongly depends on the 
initial state, with the slowest growth observed when the system is 
prepared in the period-2 density wave state, Z∣ ⟩2 , in equation (2).  
In addition, the entanglement growth has weak oscillations on 
top of the linear growth. Relative to the magnitude of entropy, the 
oscillations are most significant for the Z∣ ⟩2  initial state. Figure 2b  
illustrates the oscillations in entanglement by subtracting the lin-
ear component. We note that the oscillations are periodic with 
the period Z ≈ .T 2 35

2
, in agreement with ref. 25. Similarly, periodic 

oscillations are clearly visible in the local correlation function, 
⟨ ⟩+Z Zi i 1  (Fig. 2c). The oscillations that persist for long times when 
the entanglement light-cone reaches a distance of ≳ 20 sites, as evi-
denced by the correlation function, are highly unusual. Although 
experimental work25 presented a variational ansatz capturing these 
oscillations, below we demonstrate that the oscillations actually 
arise due to the existence of special eigenstates within the rest of the 
many-body spectrum.

Special states
The special eigenstates become clearly visible when one arranges 
the entire many-body spectrum according to the overlap with 
the density-wave Z∣ ⟩2  state, as shown in Fig. 3a. This reveals the  
‘Z2-band’ of special eigenstates, which are distinguished by atypically  

0 1 2 3 4 5 6 Dz2

Fig. 1 | The Hilbert space graph of the Fibonacci chain with L!=!6 sites. 
The nodes of the graph label the allowed product states, while the edges 
connect configurations that result from a given product state due to the 
action of the Hamiltonian. Nodes of the graph are grouped according to the 
Hamming distance ZD

2
 from the Z∣ ⟩2  state.
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Fig. 2 | Periodic revivals in the dynamics of entanglement entropy and 
local correlation function. a, Entanglement entropy for the midpoint 
bipartition displays linear growth starting from various initial density-wave 
product states, as well as the fully polarized ∣ ⟩ ∣ ∘∘∘ ⟩= … …0  state. b,c, For 
the Z∣ ⟩2  initial state the entanglement entropy oscillates around the linear 
growth with the same frequency as the local correlation functions.
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high overlaps with the Z∣ ⟩2  product state. The energy separation 
between states stays approximately constant near the centre of the 
band and is given by Ω ≈  1.33. This energy separation matches half 
the frequency of the real-time oscillations observed in the iTEBD 
numerical simulations in Fig. 2. The factor of two comes from the 
fact that the measured correlator does not distinguish between the 
Z∣ ⟩2  and Z∣ ⟩′

2  states.
Next, we show that it is possible to construct accurate approxi-

mations to the entire band of special states. This is surprising 
because the model in equation (1) is not frustration free; hence 
even its ground state cannot be exactly expressed as a matrix prod-
uct state with bond dimension equal to 2 (ref. 31). Remarkably, the 
eigenstates in the Z∣ ⟩2 -band can still be accurately described within 
an effective tight-binding approximation. In this effective descrip-
tion, a ‘site’ will turn out to be a superposition of product states at a 
fixed Hamming distance ZD

2
 from the Z∣ ⟩2  product state, which is 

defined as the minimum number of spin flips required to transform 
those states into Z∣ ⟩2  (see Fig. 1). Despite the apparent simplicity 
of this representation, special eigenstates have larger than area-law 
entanglement entropy and cannot be expressed as matrix product 
states of finite bond dimension, in contrast to the states considered 
in ref. 32.

We start by splitting the Hamiltonian as H =  H+ +  H−, where we 
have introduced the operator

∑ ∑σ σ= ++

∈
−

+
+

∈
−

−
+H P P P P (3)

i
i i i

i
i i i

even
1 1

odd
1 1

with σ = ∣∙⟩ ⟨∘∣+
i  and σ = ∣∘⟩ ⟨∙∣−

i . This decomposition reflects 
the fact that H+ increases ZD

2
 by one (similarly, H− lowers ZD

2
).  

To derive the tight-binding model, we want to construct a basis ∣ ⟩n{ }  
in which the Hamiltonian in equation (1) is tridiagonal. We pro-
ceed iteratively, starting from the initial state ∣ ⟩0  =  Z∣ ⟩2 , and prop-
agating forward by the application of H+; that is, ∣ ⟩n  =  Z∣ ⟩+H( ) n

2 / 
Z∥ ∣ ⟩∥+H( ) n

2 . We dub this method the ‘forward scattering 
approximation’ (FSA). As suggested by the notation, the basis vec-
tors of the FSA can be labelled by the Hamming distance n from 
the initial Z∣ ⟩2  state. This is possible because, for the model in 
equation (1) and the chosen initial state, there is no intersection 
between the product state supports of different FSA vectors ∣ ⟩n ,  
∣ ⟩m  for m ≠  n. Another special feature, due to the fact that the 
Hamming distance must be n ≤  L, is that the FSA basis must con-
tain exactly L +  1 vectors.

The FSA results in a tridiagonal matrix which is the effective 
tight-binding Hamiltonian that describes the band of special states 
in Fig. 3a,

∑ β= ∣ ⟩ ⟨ + ∣ + . .
=

H n n( 1 h c ) (4)
n

L

nFSA
0

where h.c. stands for Hermitian conjugate and the hopping ampli-
tude is given by

β = ⟨ + ∣ ∣ ⟩ = ⟨ ∣ ∣ + ⟩+ −n H n n H n1 1 (5)n

Although equations (4) and (5) are formally reminiscent of the 
Lanczos recurrence, in the latter case the initial vector can be 
arbitrary and the propagation is instead performed by the full 
Hamiltonian. In the Methods section we discuss the approximation 
involved in the FSA and estimate the associated errors to be less 
than 1% for chains of L =  32 sites.

Finally, we compare the eigenstates of HFSA with exact eigen-
states from the special band obtained numerically in the L =  32 
chain with PBC. In Fig. 3b we observe that the lowest-energy spe-
cial state has exactly the same overlaps with the basis states ∣ ⟩n  
as the FSA eigenstate. For the special eigenstates in the middle of 
the many-body band, such as the one shown in Fig. 3c, the FSA 
overestimates the overlap, yet captures the oscillations. The agree-
ment between the FSA and exact eigenstates is highly surprising, 
and it further supports the unusual nature of the special eigen-
states. Indeed, a basis that has only L +  1 states, each concentrated 
in small parts of the Hilbert space, would provide an extremely 
poor approximation for a generic highly excited eigenstate of a  
thermalizing system of size L.

To provide further insights into the structure of special eigen-
states, we study their participation ratios in the product state basis. 
The second participation ratio, PR2, of the eigenstate ψ∣ ⟩  is defined 
as a sum of all wavefunction coefficients, α ψ= ∑ ∣⟨ ∣ ⟩ ∣αPR 2

4, where 
α labels all distinct product states in the inversion symmetric zero-
momentum sector. For ergodic states, one expects that PR2 decreases 
as the inverse Hilbert space dimension of the corresponding sector. 
This is indeed what we observe in Fig. 3d for ⟨ ⟩PR 2 av averaged over 
all eigenstates (with E ≠  0, see below) in the middle two-thirds of the 
full energy band. At the same time, PR2 averaged over special eigen-
states from the same energy interval also decreases exponentially 
with the system size, yet being exponentially enhanced compared 
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Extended Data Figure 10 | Decay of oscillations after a quench and 
entropy growth. a, Dynamics of the domain-wall density under the 
constrained Hamiltonian Hc for different initial states. The red line shows 
the domain-wall density for a system of 25 atoms initially prepared in 
the electronic ground state. In this case, the domain-wall density relaxes 
quickly to a steady value corresponding to thermalization. In contrast,  
the blue line shows the dynamics if the system is initialized in the  
Z2-ordered state. In this case, the domain-wall density oscillates over 
several periods and even for very long times does not relax fully to a steady 
value. b, Same as in a, but taking into account the full 1/R6 interactions. 
While the dynamics for an initial state |g〉⊗N is very similar to the one 

obtained in the constrained case, for the crystalline initial state the decay 
of the oscillations is faster than in the constrained model. c, Growth of 
entanglement entropy in a bipartite splitting of the 25-atom array for 
the different cases displayed in a and b. The entropy is defined as the 
von Neumann entropy of the reduced state of the first 13 atoms of the 
array. The dashed lines correspond to dynamics under the constrained 
Hamiltonian, neglecting the 1/R6 tail, whereas the solid lines take the full 
interactions into account. Red lines correspond to the initial state |g〉⊗N, 
whereas blue lines correspond to crystalline initial states. In all panels we 
chose Ω = 2π × 2 MHz and, where applicable, interaction parameters such 
that the nearest-neighbour interaction evaluates to Vi,i+1 = 2π × 25.6 MHz.

© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.
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experiment, after such a slowly changing laser pulse, we observe long 
ordered chains where the atomic states alternate between the Rydberg 
and ground states. These ordered domains can be separated by domain 
walls that consist of two neighbouring atoms in the same electronic 
state (Fig. 5a)35. These features cannot be observed in the average 
excitation probability of the bulk (see Extended Data Fig. 6a).

The domain-wall density can be used to quantify the transition 
from the disordered phase to the ordered Z2 phase as a function of 
detuning ∆. As the system enters the Z2 phase, ordered domains 
grow in size, leading to a substantial reduction in the domain-wall 
density (blue points in Fig. 5b). Consistent with expectations for an 
Ising-type second-order quantum phase transition35, we observe 
domains of fluctuating length close to the transition point between 
the two phases, which is reflected by a pronounced peak in the  
variance of the domain-wall density. Consistent with predictions from 
finite-size scaling analysis30,36, this peak is shifted towards positive 
values of ∆/Ω. The measured position of the peak is ∆ ≈ 0.5Ω. The 
observed domain-wall density is in excellent agreement with fully 
coherent simulations of the quantum dynamics based on 51-atom 
matrix product states (blue line in Fig. 5b); however, these simula-
tions underestimate the variance at the phase transition (see Extended  
Data Fig. 6b).

At the end of the sweep, deep in the Z2 phase (∆ Ω/ ≫ 1) we can 
neglect Ω so that the Hamiltonian in equation (1) becomes essentially 
classical. In this regime, the measured domain-wall number distri-
bution enables us to infer directly the statistics of excitations that are 
created when crossing the phase transition. From 18,439 experimental 
realizations we obtain the distribution depicted in Fig. 5c with an 
average of 9.01(2) domain walls. From a maximum-likelihood esti-
mation we obtain the distribution corrected for detection fidelity (see 
Extended Data Fig. 7), which corresponds to a state that has on 
 average 5.4 domain walls. These domain walls are  probably created 
as a result of non-adiabatic transitions from the ground state when 
crossing the phase transition37, where the energy gap depends on the 
system size (and scales as 1/N)36. In addition, the preparation fidelity 
is limited by spontaneous emission during the laser pulse (an average 
of 1.1 photons are scattered per microsecond for the entire array; see 
Methods).

To further characterize the Z2-ordered state that is created, we eva-
luate the correlation function

= 〈 〉− 〈 〉〈 〉g n n n n (2)ij i j i j
(2)

where the average 〈…〉 is taken over experimental repetitions. We find 
that the correlations decay exponentially over distance with a decay 
length of ξ = 3.03(6) sites (see Fig. 5d and Methods; the error denotes 
the uncertainty in the fit). We note that this length does not characterize 
the system fully, as discussed below (see also Extended Data Fig. 8).

Finally, Fig. 6 demonstrates that our approach also enables the study 
of coherent dynamics of many-body systems far from equilibrium. 
Specifically, we focus on the quench dynamics of Rydberg crystals ini-
tially prepared deep in the Z2-ordered phase, as we change the detuning 
∆(t) suddenly to the single-atom resonance ∆ = 0 (Fig. 6a). After such 
a quench, we observe oscillations of many-body states between the ini-
tial crystal and a complementary crystal in which each internal atomic 
state is inverted (Fig. 6a). Remarkably, we find that these oscillations are 
robust, persisting over several periods with a frequency that is largely 
independent of the system size. This is confirmed by measuring the 
dynamics of the domain-wall density, which signals the appearance 
and disappearance of the crystalline states, shown in Fig. 6b for arrays 
of 9 and 51 atoms. We find that the initial crystal repeatedly revives 
with a period that is slower by a factor of 1.38(1) (error denotes the 
uncertainty in the fit) compared to the Rabi-oscillation period for inde-
pendent, non-interacting atoms.

Discussion
Several important features of these experimental observations should 
be noted. First, the Z2-ordered state cannot be characterized by a sim-
ple thermal ensemble. More specifically, if an effective temperature is 
estimated on the basis of the experimentally determined, corrected 
domain-wall density of 0.1, then the corresponding thermal ensemble 
predicts a correlation length of ξth = 4.48(3), which is significantly longer 
than the measured value of ξ = 3.03(6) (Methods). Such a discrepancy 
is also reflected in distinct probability distributions for the number of 
domain walls (Fig. 5c). These observations suggest that the system does 
not thermalize within the timescale of the Z2 state preparation.
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Figure 5 | Quantifying Z2 order in a 51-atom array after a slow detuning 
sweep. a, Single-shot fluorescence images of a 51-atom array before 
applying the adiabatic pulse (top row) and after the pulse (bottom three 
rows correspond to three separate instances). Red circles mark missing 
atoms, which are attributed to Rydberg excitations. Domain walls are 
identified as either two neighbouring atoms in the same state or a ground-
state atom at the edge of the array (Methods), and are indicated with blue 
ellipses. Long Z2-ordered chains between domain walls are observed. 
b, Blue circles show the mean domain-wall density as a function of 
detuning during the sweep. Error bars show the standard error of the mean 
and are smaller than the marker size. The red circles are the corresponding 
variances, and the error bars represent one standard deviation. The onset 
of the phase transition is indicated by a decrease in the domain-wall 

density and a peak in the variance (see main text for details). Each point is 
obtained from about 1,000 realizations. The solid blue curve is a fully 
coherent matrix product state (MPS) simulation without free parameters 
(bond dimension D = 256), taking measurement fidelities into account. 
c, Domain-wall number distribution for ∆ = 2π × 14 MHz, obtained from 
18,439 experimental realizations (blue bars, top). Error bars indicate 68% 
confidence intervals. Owing to the boundary conditions, only even 
numbers of domain walls appear (Methods). Green bars (bottom) show 
the distribution obtained by correcting for finite detection fidelity using a 
maximum-likelihood method (Methods), which results in an average of 
5.4 domain walls; red bars show the distribution of a thermal state with the 
same mean domain-wall density (Methods). d, Measured correlation 
function g ij

(2) (equation (2)) in the Z2 phase.
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Even more striking is the coherent and persistent oscillation 
of the crystalline order after the quantum quench. With respect 
to the quenched Hamiltonian (∆ = 0), the energy density of our  
Z2-ordered state corresponds to that of an infinite-temperature 
ensemble within the manifold constrained by Rydberg blockade. 
Also, our Hamiltonian does not have any explicitly conserved quan-
tities other than total energy. Nevertheless, the oscillations persist 
well beyond the natural timescale of local relaxation (1/Ω) and the 
fastest timescale (1/Vi,i+1).

To understand these observations, we consider a simplified model 
in which the effect of long-range interactions is neglected, and nearest- 
neighbour interactions are replaced by hard constraints on neigh-
bouring excitations of Rydberg states30. In this limit, the qualitative 
behaviour of the quench dynamics can be understood in terms of 
dimerized spins (Fig. 6c); owing to the blockade constraint, each dimer 
forms an effective spin-1 system with three states (|rg〉, |gg〉 and |gr〉), 
in which the resonant drive ‘rotates’ the three states over the period 

Ωπ/2 (2 ), which is close to that observed experimentally. Although 
this qualitative picture does not take into account the strong interac-
tions (constraints) between neighbouring dimers, it can be extended 
by considering a minimal variational ansatz for the many-body wave 
function based on matrix product states that respect all blockade con-
straints (Methods). Using the time-dependent variational principle, we 
derive analytical equations of motion and obtain a crystalline-order 
oscillation with a frequency of about Ω/1.51 (see Extended Data  
Fig. 9), which is within 10% of the experimental observations. These 
considerations are supported by various numerical simulations. The 
exact numerics predict that this simplified model exhibits crystal oscil-
lations with the observed frequency, while the entanglement entropy 
grows at a rate much smaller than Ω, indicating that the oscillation 
persists over many cycles (Fig. 6d and Methods). The addition of long-
range interactions leads to a faster decay of the oscillations, with a 

timescale that is determined by 1/Vi,i+2, in good agreement with experi-
mental observations (Fig. 6b); the entanglement entropy also grows on 
this timescale (Fig. 6d, see also Extended Data Fig. 10).

Our observations and analysis therefore indicate that the decay of 
crystal oscillation is governed by weak next-nearest-neighbour inter-
actions. This relatively slow thermalization is rather unexpected, 
because our Hamiltonian, with or without long-range interactions, is 
far from any known integrable system30, and features neither strong 
disorder nor explicitly conserved quantities38. Instead, our observations 
are probably associated with constrained dynamics due to Rydberg 
blockade and large separations of timescales ( Ω+ +≫ ≫V Vi i i i, 1 , 2 ;  
ref. 39) that result in an effective Hilbert-space dimension that is deter-
mined by the golden ratio + /(1 5 ) 2N N  (refs 40, 41). The evolution 
within such a constrained Hilbert space gives rise to the so-called quan-
tum dimer models, which are known to possess non-trivial dynamics42. 
Although these considerations provide important insights into the 
origin of robust emergent dynamics, our results challenge conventional 
theoretical concepts and so warrant further studies.

Outlook
Our observations demonstrate that Rydberg excitation of arrays of 
neutral atoms is a promising way of studying quantum dynamics and 
quantum simulations in large systems. Our method can be extended 
and improved in several ways. Individual qubit rotations around the z 
axis could be implemented using light shifts associated with trap light, 
and a second acousto-optic deflector could be used for individual con-
trol of coherent rotations around other directions. Further improve-
ment in coherence and controllability could be obtained by encoding 
qubits into hyperfine sublevels of the electronic ground state and using 
state-selective Rydberg excitation23. Implementing two-dimensional 
arrays could provide a path towards realizing thousands of traps. 
Such two-dimensional configurations could be realized by using a  
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Figure 6 | Emergent oscillations in many-body dynamics after sudden 
quench. a, A schematic of the sequence (top, showing ∆(t)), which 
involves adiabatic preparation and then a sudden quench to single-atom 
resonance. The single-atom trajectories are shown (bottom) for a 9-atom 
cluster, with the colour scale indicating the Rydberg probability. We 
observe that the initial crystal with a Rydberg excitation at every odd trap 
site (left inset) collapses after the quench, and a crystal with an excitation 
at every even site builds up (middle inset). At a later time, the initial crystal 
revives with a frequency of Ω/1.38(1) (right inset). Error bars denote 
68% confidence intervals. b, Domain-wall density after the quench. The 
dynamics decay slowly on a timescale of 0.88 µs. Shaded region represents 

the standard error of the mean. Solid blue line is a fully coherent matrix 
product state (MPS) simulation with bond dimension D = 256, taking into 
account measurement fidelity. c, Toy model of non-interacting dimers  
(see main text). Blue (white) circles represent atoms in state |g〉 (|r〉).  
d, Numerical calculations of the dynamics after a quench, starting from an 
ideal 25-atom crystal, obtained from exact diagonalization. Domain-wall 
density (red) and the growth of entanglement entropy of the half chain  
(13 atoms; blue) are shown as functions of time after the quench. Dashed 
lines take into account only the nearest-neighbour (NN) blockade 
constraint. Solid lines correspond to the full 1/R6 interaction potential.

© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.

BERNIEN ET AL, NATURE 551, PP 579–584 (2017)

[1] PERSISTENT DYNAMICS  
 SPECIFIC INITIAL STATES 

FROM AN HILBERT SUBSPACE

5 8 0  |  N A T U R E  |  V O L  5 5 1  |  3 0  N O V E M B E R  2 0 1 7

ARTICLERESEARCH

The strong, coherent interactions between Rydberg atoms provide 
an effective coherent constraint that prevents simultaneous excitation 
of nearby atoms into Rydberg states. This is the essence of the so-called 
Rydberg blockade15, demonstrated in Fig. 1d. When two atoms are 
sufficiently close that that their Rydberg–Rydberg interactions Vij 
exceed the effective Rabi frequency Ω, multiple Rydberg excitations are 
suppressed. This defines the Rydberg blockade radius Rb, at which 
Vij = Ω (Rb = 9 µm for |r〉 = |70S1/2〉 and Ω = 2π × 2 MHz, as used here). 
In the case of resonant driving of atoms separated by a = 23 µm, we 
observe Rabi oscillations associated with non-interacting atoms (blue 
curve in Fig. 1d). However, the dynamics changes substantially as we 
bring multiple atoms close to each other (a = 2.87 µm < Rb). In this case, 
we observe Rabi oscillations between the ground state and a collective 

state with exactly one excitation ( = / ∑ | … … 〉W N g r g(1 ) i i N1 ) with 
the characteristic N  scaling of the collective Rabi frequency24,28,29. 
These observations enable us to quantify the coherence properties of 
our system (see Methods and Extended Data Fig. 3). In particular, the 
amplitude of Rabi oscillations in Fig. 1d is limited mostly by the state 
detection fidelity (93% for |r〉 and about 98% for |g〉; Methods). The 
individual Rabi frequencies are controlled to better than 3% across the 
array, whereas the coherence time is limited ultimately by the small 
probability of spontaneous emission from the intermediate state |e〉 
during the laser pulse (scattering rate 0.022 µs−1; Methods).

Programmable quantum simulator
In the case of homogeneous coherent coupling considered here, the 
Hamiltonian in equation (1) resembles closely the paradigmatic Ising 
model for effective spin-1/2 particles with variable interaction range. 
Its ground state exhibits a rich variety of many-body phases that break 
distinct spatial symmetries (Fig. 2a). Specifically, at large negative  
values of ∆/Ω, its ground state corresponds to all atoms in the state |g〉, 
corresponding to the paramagnetic or disordered phase. As ∆/Ω is 
increased towards large positive values, the number of atoms in |r〉 
increases and interactions between them become important. This gives 
rise to spatially ordered phases in which Rydberg atoms are arranged 
regularly across the array, resulting in ‘Rydberg crystals’ with different 
spatial symmetries30,31, as illustrated in Fig. 2a. The origin of these 
correlated states can be understood intuitively by first considering the 
situation in which ∆ Ω+ +≫ ≫ ≫V Vi i i i, 1 , 2, that is, with blockade for 
neighbouring atoms but negligible interaction between next-nearest 
neighbours. In this case, the ground state corresponds to a Rydberg 
crystal that breaks Z2 translational symmetry in a manner analogous 
to antiferromagnetic order in magnetic systems. Moreover, by  
tuning the parameters so that ∆ Ω+ + +≫ ≫ ≫V V V,i i i i i i, 1 , 2 , 3 and 

∆ Ω+ + + +≫ ≫ ≫V V V V, ,i i i i i i i i, 1 , 2 , 3 , 4  , we obtain arrays with broken Z3 
and Z4 symmetries, respectively (Fig. 2).

To prepare the system in these phases, we control the detuning ∆(t) 
of the driving lasers dynamically to transform the ground state of the 
Hamiltonian adiabatically from a product state of all atoms in |g〉 to 
crystalline states22,31. In contrast to previous work where Rydberg 
crystals are prepared via a sequence of avoided crossings22,31,32, the 
operation at a finite Ω and well-defined atom separation enables us to 
move across a single phase transition into the desired phase directly33.

In the experiment, we first prepare all atoms in state |g〉 = |5S1/2, F = 2, 
mF = −2〉 by optical pumping. We then switch on the laser fields and 
sweep the two-photon detuning from negative to positive values using 
the functional form shown in Fig. 3a. Figure 2b displays the resulting 
single-atom trajectories in a group of 13 atoms for three different inter-
action strengths as we vary the detuning ∆. In each of these instances, 
we observe a clear transition from the initial state |g1, …, g13〉 to an 
ordered state of different broken symmetry. The distance between the 
atoms determines the interaction strength, which leads to different 
crystalline order for a given final detuning. To achieve Z2 order,  
we arrange the atoms with a spacing of 5.74 µm, which results  
in a measured nearest-neighbour interaction strength (see Extended 
Data Fig. 4) of Ω= π× = π×+ ≫V 2 24 MHz 2 2 MHzi i, 1 , while the 
next-nearest-neighbour interaction is small (2π × 0.38 MHz). This 
results in a build-up of antiferromagnetic order whereby every other 
trap site is occupied by a Rydberg atom (Z2 order). By reducing the 
spacing between the atoms to 3.57 µm and 2.87 µm, Z3 and Z4 order is 
observed, respectively (Fig. 2b).

We benchmark the performance of the quantum simulator by com-
paring the measured build-up of Z2 order with theoretical predictions 
for a N = 7 atom system, obtained via exact numerical simulations. As 
shown in Fig. 3, this fully coherent simulation without free parameters 
yields excellent agreement with the observed data when the finite detec-
tion fidelity is accounted for. The evolution of the many-body states in 
Fig. 3c shows that we measure the perfect antiferromagnetic state with 
54(4)% probability (here and elsewhere, unless otherwise specified, the 
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Figure 1 | Experimental platform. a, Individual 87Rb atoms (green) are 
trapped using optical tweezers (vertical red beams) and arranged into 
defect-free arrays. Coherent interactions Vij between the atoms (arrows) 
are enabled by exciting them (horizontal blue and red beams) to a  
Rydberg state with strength Ω and detuning ∆ (inset). b, A two-photon 
process couples the ground state |g〉 = |5S1/2, F = 2, mF = −2〉 to the 
Rydberg state |r〉 = |70S1/2, J = 1/2, mJ = −1/2〉 via an intermediate  
state |e〉 = |6P3/2, F = 3, mF = −3〉 with detuning δ, using circularly 
polarized 420-nm and 1,013-nm lasers with single-photon Rabi 
frequencies of ΩB and ΩR, respectively. Typical experimental values are 
δ Ω Ω≈ π× ≈ π×≫2 560 MHz ( , ) 2 (60, 36) MHzB R . c, The experimental 
protocol consists of loading the atoms into a tweezer array (1) and then 
rearranging them into a preprogrammed configuration (2). After this, the 
system evolves under U(t) with tunable parameters ∆(t), Ω(t) and Vij. This 
evolution can be implemented in parallel on several non-interacting  
sub-systems (3). We then detect the final state using fluorescence  
imaging (4). Atoms in state |g〉 remain trapped, whereas atoms in state |r〉 
are ejected from the trap and detected as the absence of fluorescence 
(indicated with red circles). d, For resonant driving (∆ = 0), isolated atoms 
(blue circles) display Rabi oscillations between |g〉 and |r〉. Arranging the 
atoms into fully blockaded clusters of N = 2 (green circles) and N = 3  
(red circles) atoms results in only one excitation being shared between the 
atoms in the cluster, while the Rabi frequency is enhanced by N . The 
probability of detecting more than one excitation in the cluster is ≤5%. 
Error bars indicate 68% confidence intervals and are smaller than the 
marker size.
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term [16]. The key element of our mapping, which is
schematically illustrated in Fig. 1, is that gauge invariance
has a natural counterpart in the Rydberg blockade mecha-
nism, which constrains the Hilbert space in the sameway as
Gauss law does in gauge theories. This provides an
immediate interpretation of the recent experiment with
Rydberg-blockaded atom arrays in Ref. [14] as the first
large-scale quantum simulation of a LGT at the edge of
classical computational methods [7].
From a theoretical viewpoint, the mapping offers a

hitherto unexplored perspective on the anomalously slow
relaxation recently observed in experiments: the long-lived
oscillations in the population of excited Rydberg atoms
correspond to a string inversion, a phenomenon which is
directly tied to string breaking [6,17,18] prototypical of
gauge theories including dynamical matter [cf. Figs. 1(d)
and 1(e)]. Themapping indicates that this phenomenon has a
natural interpretation in the LGT framework and suggests
the occurrence of slow dynamics in other U(1) gauge
theories, such as higher-spin QLMs [19], Higgs theories
[20,21], and the Schwinger model [22,23]. These theories
have been widely discussed in the context of Schwinger pair
production taking place at high-intensity laser facilities, thus
providing a highly unexpected, direct link between appa-
rently unrelated experimental platforms [18,24–27].
We discuss the generality of this type of quantum

evolution by extending our analysis to other relevant

instances of “slow dynamics,” characterized by the absence
of relaxation on all timescales corresponding to any micro-
scopic coupling present in the system. As initial states, we
focus on those consisting of particle-antiparticle pairs,
corresponding to regular configurations of the Rydberg
atom arrays with localized defects, which are accessible
within the setup of Ref. [14]. We show that these defects
propagate ballistically with long-lived coherent interfer-
ence patterns. This behavior is found to be governed by
special bands of highly excited eigenstates characterized
by a regularity in the energy-momentum dispersion rela-
tion. These findings open up a novel perspective which
complements and extends toward gauge theories recent
approaches to slow relaxation in Rydberg-blockaded
atomic chains [28–33].

II. RYDBERG ATOM ARRAYS

We are interested here in the dynamics of a one-dimen-
sional array of L optical traps, each of them hosting a single
atom, as schematically illustrated in Fig. 1(a). The atoms
are trapped in their electronic ground state (black circle),
denoted by j↓ij, where j numbers the trap. These ground
states are quasiresonantly coupled to a single Rydberg
state, i.e., a highly excited electronic level, denoted by j↑ij.
The dynamics of this chain of qbits fj↑;↓ijgj¼1;…;L is
governed by the following Ising-type Hamiltonian [13,34]:
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FIG. 1. Gauge-theory interpretation of Rydberg atom quantum simulations. (a) Schematics of a Rydberg atom chain. Each potential
well of the optical lattice hosts a single atom, which can be in either the ground (black) or excited Rydberg (yellow) state. These two
levels are coupled by a laser field. The Rydberg blockade prevents the simultaneous excitations of neighboring atoms. (b) Degrees of
freedom of a U(1) LGT in the spin-1=2 quantum link model (QLM) formulation. Gauge fields are represented by spin variables residing
on links. Matter fields are represented by Kogut-Susskind fermions: an occupied site corresponds to the vacuum on odd sites and to a
quark q on even sites. An empty site, instead, corresponds to the vacuum on even sites and to an antiquark q̄ on odd sites. (c): Mapping
between Rydberg-blockaded states and configurations of the electric field constrained by the Gauss law in the QLM. Because of the
staggered electric charge, the allowed configurations of the electric field depend on the link, as illustrated. The two so-called charge-
density wave configurations “CDW1” and “CDW2” of the Rydberg atom arrays are mapped onto the “string” and “antistring” states,
respectively, characterized by uniform rightward or leftward electric fluxes. The empty configuration with all Rydberg atoms in their
ground state is mapped to a state filled by adjacent particle-antiparticle pairs. (d) Time evolution of the Rydberg array governed by the
effective Hamiltonian HFSS in Eq. (2), starting from the CDW1 state. The plot shows the space and time resolved population hnji of the
excited Rydberg atoms. (e) Evolution of the expectation value of the electric field operator Êj;jþ1 in the QLM. These dynamics map
exactly onto the ones shown in (d) via the mapping illustrated in (c). The thin lines highlight the oscillation between CDW1, CDW2 [left,
bottom of (c)] or string and antistring (right) states. In these simulations, L ¼ 24 and δ ¼ m ¼ 0.
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larger than the detuning and the Rabi frequency, the system is mod-
elled by the following spin-1/2 Hamiltonian16,

∑=
=

+ +H PX P (1)
i

L

i i i
1

1 2

where Xi, Yi, Zi are the Pauli operators, L denotes the length of the 
chain and we work in units ħ =  1. In what follows, we use ∣∘⟩  to refer 
the ground state and ∣∙⟩  to refer to the Rydberg state of a single 
atom. The operator Xi =  ∣∘⟩ ⟨∙∣ + ∣∙⟩ ⟨∘∣  creates or removes an exci-
tation at a given site, and projectors = ∣∘⟩ ⟨∘∣Pi  =  (1 −  Zi)/2, written 
in terms of Zi =  ∣∙⟩ ⟨∙∣−∣∘⟩ ⟨∘∣ , ensure that the nearby atoms are not 
simultaneously in the excited state. For example, P1X2P3 acting on 
∣∘∘∘⟩  gives ∣∘∙∘⟩  (and vice versa), while it annihilates any of the con-
figurations ∣∙∘∘⟩ , ∣∘∘∙⟩ , ∣∙∘∙⟩ .

The presence of projectors in the Hamiltonian (equation (1)) 
does not allow for relaxation of several adjacent Rydberg atoms. 
In other words, configurations ∣…∙∙…⟩  are ‘dark states’ breaking 
our chain into two disconnected parts. Hence, such configura-
tions are excluded in what follows and we consider a constrained 
Hilbert space without any adjacent Rydberg atoms. Such a con-
straint makes the Hilbert space identical to that of chains of non-
Abelian Fibonacci anyons, rather than spins-1/2 or fermions. For 
periodic boundary conditions (PBC), the Hilbert space dimension 
is equal to D =  FL−1 +  FL+1, where Fn is the nth Fibonacci number. For 
instance, in the case of the L =  6 chain we have D =  18, as shown in 
Fig. 1. For open boundary conditions (OBC), D scales as FL+2. Thus, 
the Hilbert space is evidently very different from, for example, the  
spin-1

2
 chain where the number of states grows as 2L.

The model in equation (1) is particle–hole symmetric: an opera-
tor = ∏P Zi i anticommutes with the Hamiltonian, PH =  − HP, and 
therefore each eigenstate ψ∣ ⟩  with energy E ≠  0 has a partner ψ∣ ⟩P  
with energy − E. Furthermore, the model has spatial inversion 
symmetry I which maps i →  L −  i +  1. In addition, with PBC, this 
model has translation symmetry. In what follows, unless specified 
otherwise, we restrict ourselves to PBC (thus identifying i =  L +  1 
and i =  1) and explicitly resolve translation and inversion symme-
tries which allow us to fully diagonalize systems of up to L =  32 sites 
(with +D0  =  77,436 states in the zero-momentum inversion-sym-
metric sector).

Experiment25 and numerical simulations on small systems29 
revealed that the relaxation under unitary dynamics specified by 
the Hamiltonian (equation (1)) strongly depends on the initial state 
of the system. In particular, starting from period-2 charge density 
wave states

Z Z∣ ⟩ = ∣∙∘∙∘…⟩ ∣ ⟩ = ∣∘∙∘∙…⟩′, (2)2 2

that are related by a translation by one lattice period, the system 
shows surprising long-time oscillations of local observables for long 
chains of up to L =  51 sites. Although this might suggest that the sys-
tem is non-ergodic, it was also observed that the initial state with all 
atoms in the state ∣∘⟩  shows fast relaxation and no revivals, charac-
teristic of thermalizing systems. Given that the model in equation (1)  
is translation invariant and has no disorder, many-body localization 
cannot be at play. Below we explain the origin of the observed oscil-
lations and the apparent non-ergodic dynamics.

Dynamics
We start by characterizing the dynamical evolution of the model 
in equation (1) for different initial conditions. Motivated by 
experiment25, we consider a family of charge density wave states 
Z∣ ⟩k  =  ∣…∙∘…∘∙…⟩ , where the atoms in excited states are separated 

by k −  1 atoms in the ground state, as well as the fully polarized state 
∣…∘∘∘…⟩ ≡ ∣ ⟩0 . We use the infinite time evolving block decima-
tion (iTEBD) method, which provides results valid in the thermo-
dynamic limit up to some finite time30. The bond dimension used is 
400, which limits the evolution time to t ~ 30.

Figure 2a reveals linear growth of entanglement entropy evalu-
ated for the midpoint bipartition for all considered initial states. 
Yet, the slope of entanglement growth strongly depends on the 
initial state, with the slowest growth observed when the system is 
prepared in the period-2 density wave state, Z∣ ⟩2 , in equation (2).  
In addition, the entanglement growth has weak oscillations on 
top of the linear growth. Relative to the magnitude of entropy, the 
oscillations are most significant for the Z∣ ⟩2  initial state. Figure 2b  
illustrates the oscillations in entanglement by subtracting the lin-
ear component. We note that the oscillations are periodic with 
the period Z ≈ .T 2 35

2
, in agreement with ref. 25. Similarly, periodic 

oscillations are clearly visible in the local correlation function, 
⟨ ⟩+Z Zi i 1  (Fig. 2c). The oscillations that persist for long times when 
the entanglement light-cone reaches a distance of ≳ 20 sites, as evi-
denced by the correlation function, are highly unusual. Although 
experimental work25 presented a variational ansatz capturing these 
oscillations, below we demonstrate that the oscillations actually 
arise due to the existence of special eigenstates within the rest of the 
many-body spectrum.

Special states
The special eigenstates become clearly visible when one arranges 
the entire many-body spectrum according to the overlap with 
the density-wave Z∣ ⟩2  state, as shown in Fig. 3a. This reveals the  
‘Z2-band’ of special eigenstates, which are distinguished by atypically  

0 1 2 3 4 5 6 Dz2

Fig. 1 | The Hilbert space graph of the Fibonacci chain with L!=!6 sites. 
The nodes of the graph label the allowed product states, while the edges 
connect configurations that result from a given product state due to the 
action of the Hamiltonian. Nodes of the graph are grouped according to the 
Hamming distance ZD

2
 from the Z∣ ⟩2  state.
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high overlaps with the Z∣ ⟩2  product state. The energy separation 
between states stays approximately constant near the centre of the 
band and is given by Ω ≈  1.33. This energy separation matches half 
the frequency of the real-time oscillations observed in the iTEBD 
numerical simulations in Fig. 2. The factor of two comes from the 
fact that the measured correlator does not distinguish between the 
Z∣ ⟩2  and Z∣ ⟩′

2  states.
Next, we show that it is possible to construct accurate approxi-

mations to the entire band of special states. This is surprising 
because the model in equation (1) is not frustration free; hence 
even its ground state cannot be exactly expressed as a matrix prod-
uct state with bond dimension equal to 2 (ref. 31). Remarkably, the 
eigenstates in the Z∣ ⟩2 -band can still be accurately described within 
an effective tight-binding approximation. In this effective descrip-
tion, a ‘site’ will turn out to be a superposition of product states at a 
fixed Hamming distance ZD

2
 from the Z∣ ⟩2  product state, which is 

defined as the minimum number of spin flips required to transform 
those states into Z∣ ⟩2  (see Fig. 1). Despite the apparent simplicity 
of this representation, special eigenstates have larger than area-law 
entanglement entropy and cannot be expressed as matrix product 
states of finite bond dimension, in contrast to the states considered 
in ref. 32.

We start by splitting the Hamiltonian as H =  H+ +  H−, where we 
have introduced the operator

∑ ∑σ σ= ++

∈
−

+
+

∈
−

−
+H P P P P (3)

i
i i i

i
i i i

even
1 1

odd
1 1

with σ = ∣∙⟩ ⟨∘∣+
i  and σ = ∣∘⟩ ⟨∙∣−

i . This decomposition reflects 
the fact that H+ increases ZD

2
 by one (similarly, H− lowers ZD

2
).  

To derive the tight-binding model, we want to construct a basis ∣ ⟩n{ }  
in which the Hamiltonian in equation (1) is tridiagonal. We pro-
ceed iteratively, starting from the initial state ∣ ⟩0  =  Z∣ ⟩2 , and prop-
agating forward by the application of H+; that is, ∣ ⟩n  =  Z∣ ⟩+H( ) n

2 / 
Z∥ ∣ ⟩∥+H( ) n

2 . We dub this method the ‘forward scattering 
approximation’ (FSA). As suggested by the notation, the basis vec-
tors of the FSA can be labelled by the Hamming distance n from 
the initial Z∣ ⟩2  state. This is possible because, for the model in 
equation (1) and the chosen initial state, there is no intersection 
between the product state supports of different FSA vectors ∣ ⟩n ,  
∣ ⟩m  for m ≠  n. Another special feature, due to the fact that the 
Hamming distance must be n ≤  L, is that the FSA basis must con-
tain exactly L +  1 vectors.

The FSA results in a tridiagonal matrix which is the effective 
tight-binding Hamiltonian that describes the band of special states 
in Fig. 3a,

∑ β= ∣ ⟩ ⟨ + ∣ + . .
=

H n n( 1 h c ) (4)
n

L

nFSA
0

where h.c. stands for Hermitian conjugate and the hopping ampli-
tude is given by

β = ⟨ + ∣ ∣ ⟩ = ⟨ ∣ ∣ + ⟩+ −n H n n H n1 1 (5)n

Although equations (4) and (5) are formally reminiscent of the 
Lanczos recurrence, in the latter case the initial vector can be 
arbitrary and the propagation is instead performed by the full 
Hamiltonian. In the Methods section we discuss the approximation 
involved in the FSA and estimate the associated errors to be less 
than 1% for chains of L =  32 sites.

Finally, we compare the eigenstates of HFSA with exact eigen-
states from the special band obtained numerically in the L =  32 
chain with PBC. In Fig. 3b we observe that the lowest-energy spe-
cial state has exactly the same overlaps with the basis states ∣ ⟩n  
as the FSA eigenstate. For the special eigenstates in the middle of 
the many-body band, such as the one shown in Fig. 3c, the FSA 
overestimates the overlap, yet captures the oscillations. The agree-
ment between the FSA and exact eigenstates is highly surprising, 
and it further supports the unusual nature of the special eigen-
states. Indeed, a basis that has only L +  1 states, each concentrated 
in small parts of the Hilbert space, would provide an extremely 
poor approximation for a generic highly excited eigenstate of a  
thermalizing system of size L.

To provide further insights into the structure of special eigen-
states, we study their participation ratios in the product state basis. 
The second participation ratio, PR2, of the eigenstate ψ∣ ⟩  is defined 
as a sum of all wavefunction coefficients, α ψ= ∑ ∣⟨ ∣ ⟩ ∣αPR 2

4, where 
α labels all distinct product states in the inversion symmetric zero-
momentum sector. For ergodic states, one expects that PR2 decreases 
as the inverse Hilbert space dimension of the corresponding sector. 
This is indeed what we observe in Fig. 3d for ⟨ ⟩PR 2 av averaged over 
all eigenstates (with E ≠  0, see below) in the middle two-thirds of the 
full energy band. At the same time, PR2 averaged over special eigen-
states from the same energy interval also decreases exponentially 
with the system size, yet being exponentially enhanced compared 
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Extended Data Figure 10 | Decay of oscillations after a quench and 
entropy growth. a, Dynamics of the domain-wall density under the 
constrained Hamiltonian Hc for different initial states. The red line shows 
the domain-wall density for a system of 25 atoms initially prepared in 
the electronic ground state. In this case, the domain-wall density relaxes 
quickly to a steady value corresponding to thermalization. In contrast,  
the blue line shows the dynamics if the system is initialized in the  
Z2-ordered state. In this case, the domain-wall density oscillates over 
several periods and even for very long times does not relax fully to a steady 
value. b, Same as in a, but taking into account the full 1/R6 interactions. 
While the dynamics for an initial state |g〉⊗N is very similar to the one 

obtained in the constrained case, for the crystalline initial state the decay 
of the oscillations is faster than in the constrained model. c, Growth of 
entanglement entropy in a bipartite splitting of the 25-atom array for 
the different cases displayed in a and b. The entropy is defined as the 
von Neumann entropy of the reduced state of the first 13 atoms of the 
array. The dashed lines correspond to dynamics under the constrained 
Hamiltonian, neglecting the 1/R6 tail, whereas the solid lines take the full 
interactions into account. Red lines correspond to the initial state |g〉⊗N, 
whereas blue lines correspond to crystalline initial states. In all panels we 
chose Ω = 2π × 2 MHz and, where applicable, interaction parameters such 
that the nearest-neighbour interaction evaluates to Vi,i+1 = 2π × 25.6 MHz.

© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.

5 8 2  |  N A T U R E  |  V O L  5 5 1  |  3 0  N O V E M B E R  2 0 1 7

ARTICLERESEARCH

experiment, after such a slowly changing laser pulse, we observe long 
ordered chains where the atomic states alternate between the Rydberg 
and ground states. These ordered domains can be separated by domain 
walls that consist of two neighbouring atoms in the same electronic 
state (Fig. 5a)35. These features cannot be observed in the average 
excitation probability of the bulk (see Extended Data Fig. 6a).

The domain-wall density can be used to quantify the transition 
from the disordered phase to the ordered Z2 phase as a function of 
detuning ∆. As the system enters the Z2 phase, ordered domains 
grow in size, leading to a substantial reduction in the domain-wall 
density (blue points in Fig. 5b). Consistent with expectations for an 
Ising-type second-order quantum phase transition35, we observe 
domains of fluctuating length close to the transition point between 
the two phases, which is reflected by a pronounced peak in the  
variance of the domain-wall density. Consistent with predictions from 
finite-size scaling analysis30,36, this peak is shifted towards positive 
values of ∆/Ω. The measured position of the peak is ∆ ≈ 0.5Ω. The 
observed domain-wall density is in excellent agreement with fully 
coherent simulations of the quantum dynamics based on 51-atom 
matrix product states (blue line in Fig. 5b); however, these simula-
tions underestimate the variance at the phase transition (see Extended  
Data Fig. 6b).

At the end of the sweep, deep in the Z2 phase (∆ Ω/ ≫ 1) we can 
neglect Ω so that the Hamiltonian in equation (1) becomes essentially 
classical. In this regime, the measured domain-wall number distri-
bution enables us to infer directly the statistics of excitations that are 
created when crossing the phase transition. From 18,439 experimental 
realizations we obtain the distribution depicted in Fig. 5c with an 
average of 9.01(2) domain walls. From a maximum-likelihood esti-
mation we obtain the distribution corrected for detection fidelity (see 
Extended Data Fig. 7), which corresponds to a state that has on 
 average 5.4 domain walls. These domain walls are  probably created 
as a result of non-adiabatic transitions from the ground state when 
crossing the phase transition37, where the energy gap depends on the 
system size (and scales as 1/N)36. In addition, the preparation fidelity 
is limited by spontaneous emission during the laser pulse (an average 
of 1.1 photons are scattered per microsecond for the entire array; see 
Methods).

To further characterize the Z2-ordered state that is created, we eva-
luate the correlation function

= 〈 〉− 〈 〉〈 〉g n n n n (2)ij i j i j
(2)

where the average 〈…〉 is taken over experimental repetitions. We find 
that the correlations decay exponentially over distance with a decay 
length of ξ = 3.03(6) sites (see Fig. 5d and Methods; the error denotes 
the uncertainty in the fit). We note that this length does not characterize 
the system fully, as discussed below (see also Extended Data Fig. 8).

Finally, Fig. 6 demonstrates that our approach also enables the study 
of coherent dynamics of many-body systems far from equilibrium. 
Specifically, we focus on the quench dynamics of Rydberg crystals ini-
tially prepared deep in the Z2-ordered phase, as we change the detuning 
∆(t) suddenly to the single-atom resonance ∆ = 0 (Fig. 6a). After such 
a quench, we observe oscillations of many-body states between the ini-
tial crystal and a complementary crystal in which each internal atomic 
state is inverted (Fig. 6a). Remarkably, we find that these oscillations are 
robust, persisting over several periods with a frequency that is largely 
independent of the system size. This is confirmed by measuring the 
dynamics of the domain-wall density, which signals the appearance 
and disappearance of the crystalline states, shown in Fig. 6b for arrays 
of 9 and 51 atoms. We find that the initial crystal repeatedly revives 
with a period that is slower by a factor of 1.38(1) (error denotes the 
uncertainty in the fit) compared to the Rabi-oscillation period for inde-
pendent, non-interacting atoms.

Discussion
Several important features of these experimental observations should 
be noted. First, the Z2-ordered state cannot be characterized by a sim-
ple thermal ensemble. More specifically, if an effective temperature is 
estimated on the basis of the experimentally determined, corrected 
domain-wall density of 0.1, then the corresponding thermal ensemble 
predicts a correlation length of ξth = 4.48(3), which is significantly longer 
than the measured value of ξ = 3.03(6) (Methods). Such a discrepancy 
is also reflected in distinct probability distributions for the number of 
domain walls (Fig. 5c). These observations suggest that the system does 
not thermalize within the timescale of the Z2 state preparation.
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Figure 5 | Quantifying Z2 order in a 51-atom array after a slow detuning 
sweep. a, Single-shot fluorescence images of a 51-atom array before 
applying the adiabatic pulse (top row) and after the pulse (bottom three 
rows correspond to three separate instances). Red circles mark missing 
atoms, which are attributed to Rydberg excitations. Domain walls are 
identified as either two neighbouring atoms in the same state or a ground-
state atom at the edge of the array (Methods), and are indicated with blue 
ellipses. Long Z2-ordered chains between domain walls are observed. 
b, Blue circles show the mean domain-wall density as a function of 
detuning during the sweep. Error bars show the standard error of the mean 
and are smaller than the marker size. The red circles are the corresponding 
variances, and the error bars represent one standard deviation. The onset 
of the phase transition is indicated by a decrease in the domain-wall 

density and a peak in the variance (see main text for details). Each point is 
obtained from about 1,000 realizations. The solid blue curve is a fully 
coherent matrix product state (MPS) simulation without free parameters 
(bond dimension D = 256), taking measurement fidelities into account. 
c, Domain-wall number distribution for ∆ = 2π × 14 MHz, obtained from 
18,439 experimental realizations (blue bars, top). Error bars indicate 68% 
confidence intervals. Owing to the boundary conditions, only even 
numbers of domain walls appear (Methods). Green bars (bottom) show 
the distribution obtained by correcting for finite detection fidelity using a 
maximum-likelihood method (Methods), which results in an average of 
5.4 domain walls; red bars show the distribution of a thermal state with the 
same mean domain-wall density (Methods). d, Measured correlation 
function g ij

(2) (equation (2)) in the Z2 phase.
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Even more striking is the coherent and persistent oscillation 
of the crystalline order after the quantum quench. With respect 
to the quenched Hamiltonian (∆ = 0), the energy density of our  
Z2-ordered state corresponds to that of an infinite-temperature 
ensemble within the manifold constrained by Rydberg blockade. 
Also, our Hamiltonian does not have any explicitly conserved quan-
tities other than total energy. Nevertheless, the oscillations persist 
well beyond the natural timescale of local relaxation (1/Ω) and the 
fastest timescale (1/Vi,i+1).

To understand these observations, we consider a simplified model 
in which the effect of long-range interactions is neglected, and nearest- 
neighbour interactions are replaced by hard constraints on neigh-
bouring excitations of Rydberg states30. In this limit, the qualitative 
behaviour of the quench dynamics can be understood in terms of 
dimerized spins (Fig. 6c); owing to the blockade constraint, each dimer 
forms an effective spin-1 system with three states (|rg〉, |gg〉 and |gr〉), 
in which the resonant drive ‘rotates’ the three states over the period 

Ωπ/2 (2 ), which is close to that observed experimentally. Although 
this qualitative picture does not take into account the strong interac-
tions (constraints) between neighbouring dimers, it can be extended 
by considering a minimal variational ansatz for the many-body wave 
function based on matrix product states that respect all blockade con-
straints (Methods). Using the time-dependent variational principle, we 
derive analytical equations of motion and obtain a crystalline-order 
oscillation with a frequency of about Ω/1.51 (see Extended Data  
Fig. 9), which is within 10% of the experimental observations. These 
considerations are supported by various numerical simulations. The 
exact numerics predict that this simplified model exhibits crystal oscil-
lations with the observed frequency, while the entanglement entropy 
grows at a rate much smaller than Ω, indicating that the oscillation 
persists over many cycles (Fig. 6d and Methods). The addition of long-
range interactions leads to a faster decay of the oscillations, with a 

timescale that is determined by 1/Vi,i+2, in good agreement with experi-
mental observations (Fig. 6b); the entanglement entropy also grows on 
this timescale (Fig. 6d, see also Extended Data Fig. 10).

Our observations and analysis therefore indicate that the decay of 
crystal oscillation is governed by weak next-nearest-neighbour inter-
actions. This relatively slow thermalization is rather unexpected, 
because our Hamiltonian, with or without long-range interactions, is 
far from any known integrable system30, and features neither strong 
disorder nor explicitly conserved quantities38. Instead, our observations 
are probably associated with constrained dynamics due to Rydberg 
blockade and large separations of timescales ( Ω+ +≫ ≫V Vi i i i, 1 , 2 ;  
ref. 39) that result in an effective Hilbert-space dimension that is deter-
mined by the golden ratio + /(1 5 ) 2N N  (refs 40, 41). The evolution 
within such a constrained Hilbert space gives rise to the so-called quan-
tum dimer models, which are known to possess non-trivial dynamics42. 
Although these considerations provide important insights into the 
origin of robust emergent dynamics, our results challenge conventional 
theoretical concepts and so warrant further studies.

Outlook
Our observations demonstrate that Rydberg excitation of arrays of 
neutral atoms is a promising way of studying quantum dynamics and 
quantum simulations in large systems. Our method can be extended 
and improved in several ways. Individual qubit rotations around the z 
axis could be implemented using light shifts associated with trap light, 
and a second acousto-optic deflector could be used for individual con-
trol of coherent rotations around other directions. Further improve-
ment in coherence and controllability could be obtained by encoding 
qubits into hyperfine sublevels of the electronic ground state and using 
state-selective Rydberg excitation23. Implementing two-dimensional 
arrays could provide a path towards realizing thousands of traps. 
Such two-dimensional configurations could be realized by using a  
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Figure 6 | Emergent oscillations in many-body dynamics after sudden 
quench. a, A schematic of the sequence (top, showing ∆(t)), which 
involves adiabatic preparation and then a sudden quench to single-atom 
resonance. The single-atom trajectories are shown (bottom) for a 9-atom 
cluster, with the colour scale indicating the Rydberg probability. We 
observe that the initial crystal with a Rydberg excitation at every odd trap 
site (left inset) collapses after the quench, and a crystal with an excitation 
at every even site builds up (middle inset). At a later time, the initial crystal 
revives with a frequency of Ω/1.38(1) (right inset). Error bars denote 
68% confidence intervals. b, Domain-wall density after the quench. The 
dynamics decay slowly on a timescale of 0.88 µs. Shaded region represents 

the standard error of the mean. Solid blue line is a fully coherent matrix 
product state (MPS) simulation with bond dimension D = 256, taking into 
account measurement fidelity. c, Toy model of non-interacting dimers  
(see main text). Blue (white) circles represent atoms in state |g〉 (|r〉).  
d, Numerical calculations of the dynamics after a quench, starting from an 
ideal 25-atom crystal, obtained from exact diagonalization. Domain-wall 
density (red) and the growth of entanglement entropy of the half chain  
(13 atoms; blue) are shown as functions of time after the quench. Dashed 
lines take into account only the nearest-neighbour (NN) blockade 
constraint. Solid lines correspond to the full 1/R6 interaction potential.
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The strong, coherent interactions between Rydberg atoms provide 
an effective coherent constraint that prevents simultaneous excitation 
of nearby atoms into Rydberg states. This is the essence of the so-called 
Rydberg blockade15, demonstrated in Fig. 1d. When two atoms are 
sufficiently close that that their Rydberg–Rydberg interactions Vij 
exceed the effective Rabi frequency Ω, multiple Rydberg excitations are 
suppressed. This defines the Rydberg blockade radius Rb, at which 
Vij = Ω (Rb = 9 µm for |r〉 = |70S1/2〉 and Ω = 2π × 2 MHz, as used here). 
In the case of resonant driving of atoms separated by a = 23 µm, we 
observe Rabi oscillations associated with non-interacting atoms (blue 
curve in Fig. 1d). However, the dynamics changes substantially as we 
bring multiple atoms close to each other (a = 2.87 µm < Rb). In this case, 
we observe Rabi oscillations between the ground state and a collective 

state with exactly one excitation ( = / ∑ | … … 〉W N g r g(1 ) i i N1 ) with 
the characteristic N  scaling of the collective Rabi frequency24,28,29. 
These observations enable us to quantify the coherence properties of 
our system (see Methods and Extended Data Fig. 3). In particular, the 
amplitude of Rabi oscillations in Fig. 1d is limited mostly by the state 
detection fidelity (93% for |r〉 and about 98% for |g〉; Methods). The 
individual Rabi frequencies are controlled to better than 3% across the 
array, whereas the coherence time is limited ultimately by the small 
probability of spontaneous emission from the intermediate state |e〉 
during the laser pulse (scattering rate 0.022 µs−1; Methods).

Programmable quantum simulator
In the case of homogeneous coherent coupling considered here, the 
Hamiltonian in equation (1) resembles closely the paradigmatic Ising 
model for effective spin-1/2 particles with variable interaction range. 
Its ground state exhibits a rich variety of many-body phases that break 
distinct spatial symmetries (Fig. 2a). Specifically, at large negative  
values of ∆/Ω, its ground state corresponds to all atoms in the state |g〉, 
corresponding to the paramagnetic or disordered phase. As ∆/Ω is 
increased towards large positive values, the number of atoms in |r〉 
increases and interactions between them become important. This gives 
rise to spatially ordered phases in which Rydberg atoms are arranged 
regularly across the array, resulting in ‘Rydberg crystals’ with different 
spatial symmetries30,31, as illustrated in Fig. 2a. The origin of these 
correlated states can be understood intuitively by first considering the 
situation in which ∆ Ω+ +≫ ≫ ≫V Vi i i i, 1 , 2, that is, with blockade for 
neighbouring atoms but negligible interaction between next-nearest 
neighbours. In this case, the ground state corresponds to a Rydberg 
crystal that breaks Z2 translational symmetry in a manner analogous 
to antiferromagnetic order in magnetic systems. Moreover, by  
tuning the parameters so that ∆ Ω+ + +≫ ≫ ≫V V V,i i i i i i, 1 , 2 , 3 and 

∆ Ω+ + + +≫ ≫ ≫V V V V, ,i i i i i i i i, 1 , 2 , 3 , 4  , we obtain arrays with broken Z3 
and Z4 symmetries, respectively (Fig. 2).

To prepare the system in these phases, we control the detuning ∆(t) 
of the driving lasers dynamically to transform the ground state of the 
Hamiltonian adiabatically from a product state of all atoms in |g〉 to 
crystalline states22,31. In contrast to previous work where Rydberg 
crystals are prepared via a sequence of avoided crossings22,31,32, the 
operation at a finite Ω and well-defined atom separation enables us to 
move across a single phase transition into the desired phase directly33.

In the experiment, we first prepare all atoms in state |g〉 = |5S1/2, F = 2, 
mF = −2〉 by optical pumping. We then switch on the laser fields and 
sweep the two-photon detuning from negative to positive values using 
the functional form shown in Fig. 3a. Figure 2b displays the resulting 
single-atom trajectories in a group of 13 atoms for three different inter-
action strengths as we vary the detuning ∆. In each of these instances, 
we observe a clear transition from the initial state |g1, …, g13〉 to an 
ordered state of different broken symmetry. The distance between the 
atoms determines the interaction strength, which leads to different 
crystalline order for a given final detuning. To achieve Z2 order,  
we arrange the atoms with a spacing of 5.74 µm, which results  
in a measured nearest-neighbour interaction strength (see Extended 
Data Fig. 4) of Ω= π× = π×+ ≫V 2 24 MHz 2 2 MHzi i, 1 , while the 
next-nearest-neighbour interaction is small (2π × 0.38 MHz). This 
results in a build-up of antiferromagnetic order whereby every other 
trap site is occupied by a Rydberg atom (Z2 order). By reducing the 
spacing between the atoms to 3.57 µm and 2.87 µm, Z3 and Z4 order is 
observed, respectively (Fig. 2b).

We benchmark the performance of the quantum simulator by com-
paring the measured build-up of Z2 order with theoretical predictions 
for a N = 7 atom system, obtained via exact numerical simulations. As 
shown in Fig. 3, this fully coherent simulation without free parameters 
yields excellent agreement with the observed data when the finite detec-
tion fidelity is accounted for. The evolution of the many-body states in 
Fig. 3c shows that we measure the perfect antiferromagnetic state with 
54(4)% probability (here and elsewhere, unless otherwise specified, the 
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Figure 1 | Experimental platform. a, Individual 87Rb atoms (green) are 
trapped using optical tweezers (vertical red beams) and arranged into 
defect-free arrays. Coherent interactions Vij between the atoms (arrows) 
are enabled by exciting them (horizontal blue and red beams) to a  
Rydberg state with strength Ω and detuning ∆ (inset). b, A two-photon 
process couples the ground state |g〉 = |5S1/2, F = 2, mF = −2〉 to the 
Rydberg state |r〉 = |70S1/2, J = 1/2, mJ = −1/2〉 via an intermediate  
state |e〉 = |6P3/2, F = 3, mF = −3〉 with detuning δ, using circularly 
polarized 420-nm and 1,013-nm lasers with single-photon Rabi 
frequencies of ΩB and ΩR, respectively. Typical experimental values are 
δ Ω Ω≈ π× ≈ π×≫2 560 MHz ( , ) 2 (60, 36) MHzB R . c, The experimental 
protocol consists of loading the atoms into a tweezer array (1) and then 
rearranging them into a preprogrammed configuration (2). After this, the 
system evolves under U(t) with tunable parameters ∆(t), Ω(t) and Vij. This 
evolution can be implemented in parallel on several non-interacting  
sub-systems (3). We then detect the final state using fluorescence  
imaging (4). Atoms in state |g〉 remain trapped, whereas atoms in state |r〉 
are ejected from the trap and detected as the absence of fluorescence 
(indicated with red circles). d, For resonant driving (∆ = 0), isolated atoms 
(blue circles) display Rabi oscillations between |g〉 and |r〉. Arranging the 
atoms into fully blockaded clusters of N = 2 (green circles) and N = 3  
(red circles) atoms results in only one excitation being shared between the 
atoms in the cluster, while the Rabi frequency is enhanced by N . The 
probability of detecting more than one excitation in the cluster is ≤5%. 
Error bars indicate 68% confidence intervals and are smaller than the 
marker size.

© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.
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j

(Ωσx
j + 2Δnj)BLOCKADE: 

Vjk ≫ Ω, Δ

term [16]. The key element of our mapping, which is
schematically illustrated in Fig. 1, is that gauge invariance
has a natural counterpart in the Rydberg blockade mecha-
nism, which constrains the Hilbert space in the sameway as
Gauss law does in gauge theories. This provides an
immediate interpretation of the recent experiment with
Rydberg-blockaded atom arrays in Ref. [14] as the first
large-scale quantum simulation of a LGT at the edge of
classical computational methods [7].
From a theoretical viewpoint, the mapping offers a

hitherto unexplored perspective on the anomalously slow
relaxation recently observed in experiments: the long-lived
oscillations in the population of excited Rydberg atoms
correspond to a string inversion, a phenomenon which is
directly tied to string breaking [6,17,18] prototypical of
gauge theories including dynamical matter [cf. Figs. 1(d)
and 1(e)]. Themapping indicates that this phenomenon has a
natural interpretation in the LGT framework and suggests
the occurrence of slow dynamics in other U(1) gauge
theories, such as higher-spin QLMs [19], Higgs theories
[20,21], and the Schwinger model [22,23]. These theories
have been widely discussed in the context of Schwinger pair
production taking place at high-intensity laser facilities, thus
providing a highly unexpected, direct link between appa-
rently unrelated experimental platforms [18,24–27].
We discuss the generality of this type of quantum

evolution by extending our analysis to other relevant

instances of “slow dynamics,” characterized by the absence
of relaxation on all timescales corresponding to any micro-
scopic coupling present in the system. As initial states, we
focus on those consisting of particle-antiparticle pairs,
corresponding to regular configurations of the Rydberg
atom arrays with localized defects, which are accessible
within the setup of Ref. [14]. We show that these defects
propagate ballistically with long-lived coherent interfer-
ence patterns. This behavior is found to be governed by
special bands of highly excited eigenstates characterized
by a regularity in the energy-momentum dispersion rela-
tion. These findings open up a novel perspective which
complements and extends toward gauge theories recent
approaches to slow relaxation in Rydberg-blockaded
atomic chains [28–33].

II. RYDBERG ATOM ARRAYS

We are interested here in the dynamics of a one-dimen-
sional array of L optical traps, each of them hosting a single
atom, as schematically illustrated in Fig. 1(a). The atoms
are trapped in their electronic ground state (black circle),
denoted by j↓ij, where j numbers the trap. These ground
states are quasiresonantly coupled to a single Rydberg
state, i.e., a highly excited electronic level, denoted by j↑ij.
The dynamics of this chain of qbits fj↑;↓ijgj¼1;…;L is
governed by the following Ising-type Hamiltonian [13,34]:

(b)

(c)
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Matter fields

Odd sites Even sites

=

=
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Quantum link model(a) Rydberg atom chain
Mapping

Rydberg Rydberg QLM
Odd-even bonds Even-odd bonds
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QLM

(d) (e)

=
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FIG. 1. Gauge-theory interpretation of Rydberg atom quantum simulations. (a) Schematics of a Rydberg atom chain. Each potential
well of the optical lattice hosts a single atom, which can be in either the ground (black) or excited Rydberg (yellow) state. These two
levels are coupled by a laser field. The Rydberg blockade prevents the simultaneous excitations of neighboring atoms. (b) Degrees of
freedom of a U(1) LGT in the spin-1=2 quantum link model (QLM) formulation. Gauge fields are represented by spin variables residing
on links. Matter fields are represented by Kogut-Susskind fermions: an occupied site corresponds to the vacuum on odd sites and to a
quark q on even sites. An empty site, instead, corresponds to the vacuum on even sites and to an antiquark q̄ on odd sites. (c): Mapping
between Rydberg-blockaded states and configurations of the electric field constrained by the Gauss law in the QLM. Because of the
staggered electric charge, the allowed configurations of the electric field depend on the link, as illustrated. The two so-called charge-
density wave configurations “CDW1” and “CDW2” of the Rydberg atom arrays are mapped onto the “string” and “antistring” states,
respectively, characterized by uniform rightward or leftward electric fluxes. The empty configuration with all Rydberg atoms in their
ground state is mapped to a state filled by adjacent particle-antiparticle pairs. (d) Time evolution of the Rydberg array governed by the
effective Hamiltonian HFSS in Eq. (2), starting from the CDW1 state. The plot shows the space and time resolved population hnji of the
excited Rydberg atoms. (e) Evolution of the expectation value of the electric field operator Êj;jþ1 in the QLM. These dynamics map
exactly onto the ones shown in (d) via the mapping illustrated in (c). The thin lines highlight the oscillation between CDW1, CDW2 [left,
bottom of (c)] or string and antistring (right) states. In these simulations, L ¼ 24 and δ ¼ m ¼ 0.
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larger than the detuning and the Rabi frequency, the system is mod-
elled by the following spin-1/2 Hamiltonian16,

∑=
=

+ +H PX P (1)
i

L

i i i
1

1 2

where Xi, Yi, Zi are the Pauli operators, L denotes the length of the 
chain and we work in units ħ =  1. In what follows, we use ∣∘⟩  to refer 
the ground state and ∣∙⟩  to refer to the Rydberg state of a single 
atom. The operator Xi =  ∣∘⟩ ⟨∙∣ + ∣∙⟩ ⟨∘∣  creates or removes an exci-
tation at a given site, and projectors = ∣∘⟩ ⟨∘∣Pi  =  (1 −  Zi)/2, written 
in terms of Zi =  ∣∙⟩ ⟨∙∣−∣∘⟩ ⟨∘∣ , ensure that the nearby atoms are not 
simultaneously in the excited state. For example, P1X2P3 acting on 
∣∘∘∘⟩  gives ∣∘∙∘⟩  (and vice versa), while it annihilates any of the con-
figurations ∣∙∘∘⟩ , ∣∘∘∙⟩ , ∣∙∘∙⟩ .

The presence of projectors in the Hamiltonian (equation (1)) 
does not allow for relaxation of several adjacent Rydberg atoms. 
In other words, configurations ∣…∙∙…⟩  are ‘dark states’ breaking 
our chain into two disconnected parts. Hence, such configura-
tions are excluded in what follows and we consider a constrained 
Hilbert space without any adjacent Rydberg atoms. Such a con-
straint makes the Hilbert space identical to that of chains of non-
Abelian Fibonacci anyons, rather than spins-1/2 or fermions. For 
periodic boundary conditions (PBC), the Hilbert space dimension 
is equal to D =  FL−1 +  FL+1, where Fn is the nth Fibonacci number. For 
instance, in the case of the L =  6 chain we have D =  18, as shown in 
Fig. 1. For open boundary conditions (OBC), D scales as FL+2. Thus, 
the Hilbert space is evidently very different from, for example, the  
spin-1

2
 chain where the number of states grows as 2L.

The model in equation (1) is particle–hole symmetric: an opera-
tor = ∏P Zi i anticommutes with the Hamiltonian, PH =  − HP, and 
therefore each eigenstate ψ∣ ⟩  with energy E ≠  0 has a partner ψ∣ ⟩P  
with energy − E. Furthermore, the model has spatial inversion 
symmetry I which maps i →  L −  i +  1. In addition, with PBC, this 
model has translation symmetry. In what follows, unless specified 
otherwise, we restrict ourselves to PBC (thus identifying i =  L +  1 
and i =  1) and explicitly resolve translation and inversion symme-
tries which allow us to fully diagonalize systems of up to L =  32 sites 
(with +D0  =  77,436 states in the zero-momentum inversion-sym-
metric sector).

Experiment25 and numerical simulations on small systems29 
revealed that the relaxation under unitary dynamics specified by 
the Hamiltonian (equation (1)) strongly depends on the initial state 
of the system. In particular, starting from period-2 charge density 
wave states

Z Z∣ ⟩ = ∣∙∘∙∘…⟩ ∣ ⟩ = ∣∘∙∘∙…⟩′, (2)2 2

that are related by a translation by one lattice period, the system 
shows surprising long-time oscillations of local observables for long 
chains of up to L =  51 sites. Although this might suggest that the sys-
tem is non-ergodic, it was also observed that the initial state with all 
atoms in the state ∣∘⟩  shows fast relaxation and no revivals, charac-
teristic of thermalizing systems. Given that the model in equation (1)  
is translation invariant and has no disorder, many-body localization 
cannot be at play. Below we explain the origin of the observed oscil-
lations and the apparent non-ergodic dynamics.

Dynamics
We start by characterizing the dynamical evolution of the model 
in equation (1) for different initial conditions. Motivated by 
experiment25, we consider a family of charge density wave states 
Z∣ ⟩k  =  ∣…∙∘…∘∙…⟩ , where the atoms in excited states are separated 

by k −  1 atoms in the ground state, as well as the fully polarized state 
∣…∘∘∘…⟩ ≡ ∣ ⟩0 . We use the infinite time evolving block decima-
tion (iTEBD) method, which provides results valid in the thermo-
dynamic limit up to some finite time30. The bond dimension used is 
400, which limits the evolution time to t ~ 30.

Figure 2a reveals linear growth of entanglement entropy evalu-
ated for the midpoint bipartition for all considered initial states. 
Yet, the slope of entanglement growth strongly depends on the 
initial state, with the slowest growth observed when the system is 
prepared in the period-2 density wave state, Z∣ ⟩2 , in equation (2).  
In addition, the entanglement growth has weak oscillations on 
top of the linear growth. Relative to the magnitude of entropy, the 
oscillations are most significant for the Z∣ ⟩2  initial state. Figure 2b  
illustrates the oscillations in entanglement by subtracting the lin-
ear component. We note that the oscillations are periodic with 
the period Z ≈ .T 2 35

2
, in agreement with ref. 25. Similarly, periodic 

oscillations are clearly visible in the local correlation function, 
⟨ ⟩+Z Zi i 1  (Fig. 2c). The oscillations that persist for long times when 
the entanglement light-cone reaches a distance of ≳ 20 sites, as evi-
denced by the correlation function, are highly unusual. Although 
experimental work25 presented a variational ansatz capturing these 
oscillations, below we demonstrate that the oscillations actually 
arise due to the existence of special eigenstates within the rest of the 
many-body spectrum.

Special states
The special eigenstates become clearly visible when one arranges 
the entire many-body spectrum according to the overlap with 
the density-wave Z∣ ⟩2  state, as shown in Fig. 3a. This reveals the  
‘Z2-band’ of special eigenstates, which are distinguished by atypically  

0 1 2 3 4 5 6 Dz2

Fig. 1 | The Hilbert space graph of the Fibonacci chain with L!=!6 sites. 
The nodes of the graph label the allowed product states, while the edges 
connect configurations that result from a given product state due to the 
action of the Hamiltonian. Nodes of the graph are grouped according to the 
Hamming distance ZD

2
 from the Z∣ ⟩2  state.
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Fig. 2 | Periodic revivals in the dynamics of entanglement entropy and 
local correlation function. a, Entanglement entropy for the midpoint 
bipartition displays linear growth starting from various initial density-wave 
product states, as well as the fully polarized ∣ ⟩ ∣ ∘∘∘ ⟩= … …0  state. b,c, For 
the Z∣ ⟩2  initial state the entanglement entropy oscillates around the linear 
growth with the same frequency as the local correlation functions.
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high overlaps with the Z∣ ⟩2  product state. The energy separation 
between states stays approximately constant near the centre of the 
band and is given by Ω ≈  1.33. This energy separation matches half 
the frequency of the real-time oscillations observed in the iTEBD 
numerical simulations in Fig. 2. The factor of two comes from the 
fact that the measured correlator does not distinguish between the 
Z∣ ⟩2  and Z∣ ⟩′

2  states.
Next, we show that it is possible to construct accurate approxi-

mations to the entire band of special states. This is surprising 
because the model in equation (1) is not frustration free; hence 
even its ground state cannot be exactly expressed as a matrix prod-
uct state with bond dimension equal to 2 (ref. 31). Remarkably, the 
eigenstates in the Z∣ ⟩2 -band can still be accurately described within 
an effective tight-binding approximation. In this effective descrip-
tion, a ‘site’ will turn out to be a superposition of product states at a 
fixed Hamming distance ZD

2
 from the Z∣ ⟩2  product state, which is 

defined as the minimum number of spin flips required to transform 
those states into Z∣ ⟩2  (see Fig. 1). Despite the apparent simplicity 
of this representation, special eigenstates have larger than area-law 
entanglement entropy and cannot be expressed as matrix product 
states of finite bond dimension, in contrast to the states considered 
in ref. 32.

We start by splitting the Hamiltonian as H =  H+ +  H−, where we 
have introduced the operator

∑ ∑σ σ= ++

∈
−

+
+

∈
−

−
+H P P P P (3)

i
i i i

i
i i i

even
1 1

odd
1 1

with σ = ∣∙⟩ ⟨∘∣+
i  and σ = ∣∘⟩ ⟨∙∣−

i . This decomposition reflects 
the fact that H+ increases ZD

2
 by one (similarly, H− lowers ZD

2
).  

To derive the tight-binding model, we want to construct a basis ∣ ⟩n{ }  
in which the Hamiltonian in equation (1) is tridiagonal. We pro-
ceed iteratively, starting from the initial state ∣ ⟩0  =  Z∣ ⟩2 , and prop-
agating forward by the application of H+; that is, ∣ ⟩n  =  Z∣ ⟩+H( ) n

2 / 
Z∥ ∣ ⟩∥+H( ) n

2 . We dub this method the ‘forward scattering 
approximation’ (FSA). As suggested by the notation, the basis vec-
tors of the FSA can be labelled by the Hamming distance n from 
the initial Z∣ ⟩2  state. This is possible because, for the model in 
equation (1) and the chosen initial state, there is no intersection 
between the product state supports of different FSA vectors ∣ ⟩n ,  
∣ ⟩m  for m ≠  n. Another special feature, due to the fact that the 
Hamming distance must be n ≤  L, is that the FSA basis must con-
tain exactly L +  1 vectors.

The FSA results in a tridiagonal matrix which is the effective 
tight-binding Hamiltonian that describes the band of special states 
in Fig. 3a,

∑ β= ∣ ⟩ ⟨ + ∣ + . .
=

H n n( 1 h c ) (4)
n

L

nFSA
0

where h.c. stands for Hermitian conjugate and the hopping ampli-
tude is given by

β = ⟨ + ∣ ∣ ⟩ = ⟨ ∣ ∣ + ⟩+ −n H n n H n1 1 (5)n

Although equations (4) and (5) are formally reminiscent of the 
Lanczos recurrence, in the latter case the initial vector can be 
arbitrary and the propagation is instead performed by the full 
Hamiltonian. In the Methods section we discuss the approximation 
involved in the FSA and estimate the associated errors to be less 
than 1% for chains of L =  32 sites.

Finally, we compare the eigenstates of HFSA with exact eigen-
states from the special band obtained numerically in the L =  32 
chain with PBC. In Fig. 3b we observe that the lowest-energy spe-
cial state has exactly the same overlaps with the basis states ∣ ⟩n  
as the FSA eigenstate. For the special eigenstates in the middle of 
the many-body band, such as the one shown in Fig. 3c, the FSA 
overestimates the overlap, yet captures the oscillations. The agree-
ment between the FSA and exact eigenstates is highly surprising, 
and it further supports the unusual nature of the special eigen-
states. Indeed, a basis that has only L +  1 states, each concentrated 
in small parts of the Hilbert space, would provide an extremely 
poor approximation for a generic highly excited eigenstate of a  
thermalizing system of size L.

To provide further insights into the structure of special eigen-
states, we study their participation ratios in the product state basis. 
The second participation ratio, PR2, of the eigenstate ψ∣ ⟩  is defined 
as a sum of all wavefunction coefficients, α ψ= ∑ ∣⟨ ∣ ⟩ ∣αPR 2

4, where 
α labels all distinct product states in the inversion symmetric zero-
momentum sector. For ergodic states, one expects that PR2 decreases 
as the inverse Hilbert space dimension of the corresponding sector. 
This is indeed what we observe in Fig. 3d for ⟨ ⟩PR 2 av averaged over 
all eigenstates (with E ≠  0, see below) in the middle two-thirds of the 
full energy band. At the same time, PR2 averaged over special eigen-
states from the same energy interval also decreases exponentially 
with the system size, yet being exponentially enhanced compared 
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Extended Data Figure 10 | Decay of oscillations after a quench and 
entropy growth. a, Dynamics of the domain-wall density under the 
constrained Hamiltonian Hc for different initial states. The red line shows 
the domain-wall density for a system of 25 atoms initially prepared in 
the electronic ground state. In this case, the domain-wall density relaxes 
quickly to a steady value corresponding to thermalization. In contrast,  
the blue line shows the dynamics if the system is initialized in the  
Z2-ordered state. In this case, the domain-wall density oscillates over 
several periods and even for very long times does not relax fully to a steady 
value. b, Same as in a, but taking into account the full 1/R6 interactions. 
While the dynamics for an initial state |g〉⊗N is very similar to the one 

obtained in the constrained case, for the crystalline initial state the decay 
of the oscillations is faster than in the constrained model. c, Growth of 
entanglement entropy in a bipartite splitting of the 25-atom array for 
the different cases displayed in a and b. The entropy is defined as the 
von Neumann entropy of the reduced state of the first 13 atoms of the 
array. The dashed lines correspond to dynamics under the constrained 
Hamiltonian, neglecting the 1/R6 tail, whereas the solid lines take the full 
interactions into account. Red lines correspond to the initial state |g〉⊗N, 
whereas blue lines correspond to crystalline initial states. In all panels we 
chose Ω = 2π × 2 MHz and, where applicable, interaction parameters such 
that the nearest-neighbour interaction evaluates to Vi,i+1 = 2π × 25.6 MHz.

© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.
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experiment, after such a slowly changing laser pulse, we observe long 
ordered chains where the atomic states alternate between the Rydberg 
and ground states. These ordered domains can be separated by domain 
walls that consist of two neighbouring atoms in the same electronic 
state (Fig. 5a)35. These features cannot be observed in the average 
excitation probability of the bulk (see Extended Data Fig. 6a).

The domain-wall density can be used to quantify the transition 
from the disordered phase to the ordered Z2 phase as a function of 
detuning ∆. As the system enters the Z2 phase, ordered domains 
grow in size, leading to a substantial reduction in the domain-wall 
density (blue points in Fig. 5b). Consistent with expectations for an 
Ising-type second-order quantum phase transition35, we observe 
domains of fluctuating length close to the transition point between 
the two phases, which is reflected by a pronounced peak in the  
variance of the domain-wall density. Consistent with predictions from 
finite-size scaling analysis30,36, this peak is shifted towards positive 
values of ∆/Ω. The measured position of the peak is ∆ ≈ 0.5Ω. The 
observed domain-wall density is in excellent agreement with fully 
coherent simulations of the quantum dynamics based on 51-atom 
matrix product states (blue line in Fig. 5b); however, these simula-
tions underestimate the variance at the phase transition (see Extended  
Data Fig. 6b).

At the end of the sweep, deep in the Z2 phase (∆ Ω/ ≫ 1) we can 
neglect Ω so that the Hamiltonian in equation (1) becomes essentially 
classical. In this regime, the measured domain-wall number distri-
bution enables us to infer directly the statistics of excitations that are 
created when crossing the phase transition. From 18,439 experimental 
realizations we obtain the distribution depicted in Fig. 5c with an 
average of 9.01(2) domain walls. From a maximum-likelihood esti-
mation we obtain the distribution corrected for detection fidelity (see 
Extended Data Fig. 7), which corresponds to a state that has on 
 average 5.4 domain walls. These domain walls are  probably created 
as a result of non-adiabatic transitions from the ground state when 
crossing the phase transition37, where the energy gap depends on the 
system size (and scales as 1/N)36. In addition, the preparation fidelity 
is limited by spontaneous emission during the laser pulse (an average 
of 1.1 photons are scattered per microsecond for the entire array; see 
Methods).

To further characterize the Z2-ordered state that is created, we eva-
luate the correlation function

= 〈 〉− 〈 〉〈 〉g n n n n (2)ij i j i j
(2)

where the average 〈…〉 is taken over experimental repetitions. We find 
that the correlations decay exponentially over distance with a decay 
length of ξ = 3.03(6) sites (see Fig. 5d and Methods; the error denotes 
the uncertainty in the fit). We note that this length does not characterize 
the system fully, as discussed below (see also Extended Data Fig. 8).

Finally, Fig. 6 demonstrates that our approach also enables the study 
of coherent dynamics of many-body systems far from equilibrium. 
Specifically, we focus on the quench dynamics of Rydberg crystals ini-
tially prepared deep in the Z2-ordered phase, as we change the detuning 
∆(t) suddenly to the single-atom resonance ∆ = 0 (Fig. 6a). After such 
a quench, we observe oscillations of many-body states between the ini-
tial crystal and a complementary crystal in which each internal atomic 
state is inverted (Fig. 6a). Remarkably, we find that these oscillations are 
robust, persisting over several periods with a frequency that is largely 
independent of the system size. This is confirmed by measuring the 
dynamics of the domain-wall density, which signals the appearance 
and disappearance of the crystalline states, shown in Fig. 6b for arrays 
of 9 and 51 atoms. We find that the initial crystal repeatedly revives 
with a period that is slower by a factor of 1.38(1) (error denotes the 
uncertainty in the fit) compared to the Rabi-oscillation period for inde-
pendent, non-interacting atoms.

Discussion
Several important features of these experimental observations should 
be noted. First, the Z2-ordered state cannot be characterized by a sim-
ple thermal ensemble. More specifically, if an effective temperature is 
estimated on the basis of the experimentally determined, corrected 
domain-wall density of 0.1, then the corresponding thermal ensemble 
predicts a correlation length of ξth = 4.48(3), which is significantly longer 
than the measured value of ξ = 3.03(6) (Methods). Such a discrepancy 
is also reflected in distinct probability distributions for the number of 
domain walls (Fig. 5c). These observations suggest that the system does 
not thermalize within the timescale of the Z2 state preparation.
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Figure 5 | Quantifying Z2 order in a 51-atom array after a slow detuning 
sweep. a, Single-shot fluorescence images of a 51-atom array before 
applying the adiabatic pulse (top row) and after the pulse (bottom three 
rows correspond to three separate instances). Red circles mark missing 
atoms, which are attributed to Rydberg excitations. Domain walls are 
identified as either two neighbouring atoms in the same state or a ground-
state atom at the edge of the array (Methods), and are indicated with blue 
ellipses. Long Z2-ordered chains between domain walls are observed. 
b, Blue circles show the mean domain-wall density as a function of 
detuning during the sweep. Error bars show the standard error of the mean 
and are smaller than the marker size. The red circles are the corresponding 
variances, and the error bars represent one standard deviation. The onset 
of the phase transition is indicated by a decrease in the domain-wall 

density and a peak in the variance (see main text for details). Each point is 
obtained from about 1,000 realizations. The solid blue curve is a fully 
coherent matrix product state (MPS) simulation without free parameters 
(bond dimension D = 256), taking measurement fidelities into account. 
c, Domain-wall number distribution for ∆ = 2π × 14 MHz, obtained from 
18,439 experimental realizations (blue bars, top). Error bars indicate 68% 
confidence intervals. Owing to the boundary conditions, only even 
numbers of domain walls appear (Methods). Green bars (bottom) show 
the distribution obtained by correcting for finite detection fidelity using a 
maximum-likelihood method (Methods), which results in an average of 
5.4 domain walls; red bars show the distribution of a thermal state with the 
same mean domain-wall density (Methods). d, Measured correlation 
function g ij

(2) (equation (2)) in the Z2 phase.
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Even more striking is the coherent and persistent oscillation 
of the crystalline order after the quantum quench. With respect 
to the quenched Hamiltonian (∆ = 0), the energy density of our  
Z2-ordered state corresponds to that of an infinite-temperature 
ensemble within the manifold constrained by Rydberg blockade. 
Also, our Hamiltonian does not have any explicitly conserved quan-
tities other than total energy. Nevertheless, the oscillations persist 
well beyond the natural timescale of local relaxation (1/Ω) and the 
fastest timescale (1/Vi,i+1).

To understand these observations, we consider a simplified model 
in which the effect of long-range interactions is neglected, and nearest- 
neighbour interactions are replaced by hard constraints on neigh-
bouring excitations of Rydberg states30. In this limit, the qualitative 
behaviour of the quench dynamics can be understood in terms of 
dimerized spins (Fig. 6c); owing to the blockade constraint, each dimer 
forms an effective spin-1 system with three states (|rg〉, |gg〉 and |gr〉), 
in which the resonant drive ‘rotates’ the three states over the period 

Ωπ/2 (2 ), which is close to that observed experimentally. Although 
this qualitative picture does not take into account the strong interac-
tions (constraints) between neighbouring dimers, it can be extended 
by considering a minimal variational ansatz for the many-body wave 
function based on matrix product states that respect all blockade con-
straints (Methods). Using the time-dependent variational principle, we 
derive analytical equations of motion and obtain a crystalline-order 
oscillation with a frequency of about Ω/1.51 (see Extended Data  
Fig. 9), which is within 10% of the experimental observations. These 
considerations are supported by various numerical simulations. The 
exact numerics predict that this simplified model exhibits crystal oscil-
lations with the observed frequency, while the entanglement entropy 
grows at a rate much smaller than Ω, indicating that the oscillation 
persists over many cycles (Fig. 6d and Methods). The addition of long-
range interactions leads to a faster decay of the oscillations, with a 

timescale that is determined by 1/Vi,i+2, in good agreement with experi-
mental observations (Fig. 6b); the entanglement entropy also grows on 
this timescale (Fig. 6d, see also Extended Data Fig. 10).

Our observations and analysis therefore indicate that the decay of 
crystal oscillation is governed by weak next-nearest-neighbour inter-
actions. This relatively slow thermalization is rather unexpected, 
because our Hamiltonian, with or without long-range interactions, is 
far from any known integrable system30, and features neither strong 
disorder nor explicitly conserved quantities38. Instead, our observations 
are probably associated with constrained dynamics due to Rydberg 
blockade and large separations of timescales ( Ω+ +≫ ≫V Vi i i i, 1 , 2 ;  
ref. 39) that result in an effective Hilbert-space dimension that is deter-
mined by the golden ratio + /(1 5 ) 2N N  (refs 40, 41). The evolution 
within such a constrained Hilbert space gives rise to the so-called quan-
tum dimer models, which are known to possess non-trivial dynamics42. 
Although these considerations provide important insights into the 
origin of robust emergent dynamics, our results challenge conventional 
theoretical concepts and so warrant further studies.

Outlook
Our observations demonstrate that Rydberg excitation of arrays of 
neutral atoms is a promising way of studying quantum dynamics and 
quantum simulations in large systems. Our method can be extended 
and improved in several ways. Individual qubit rotations around the z 
axis could be implemented using light shifts associated with trap light, 
and a second acousto-optic deflector could be used for individual con-
trol of coherent rotations around other directions. Further improve-
ment in coherence and controllability could be obtained by encoding 
qubits into hyperfine sublevels of the electronic ground state and using 
state-selective Rydberg excitation23. Implementing two-dimensional 
arrays could provide a path towards realizing thousands of traps. 
Such two-dimensional configurations could be realized by using a  
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Figure 6 | Emergent oscillations in many-body dynamics after sudden 
quench. a, A schematic of the sequence (top, showing ∆(t)), which 
involves adiabatic preparation and then a sudden quench to single-atom 
resonance. The single-atom trajectories are shown (bottom) for a 9-atom 
cluster, with the colour scale indicating the Rydberg probability. We 
observe that the initial crystal with a Rydberg excitation at every odd trap 
site (left inset) collapses after the quench, and a crystal with an excitation 
at every even site builds up (middle inset). At a later time, the initial crystal 
revives with a frequency of Ω/1.38(1) (right inset). Error bars denote 
68% confidence intervals. b, Domain-wall density after the quench. The 
dynamics decay slowly on a timescale of 0.88 µs. Shaded region represents 

the standard error of the mean. Solid blue line is a fully coherent matrix 
product state (MPS) simulation with bond dimension D = 256, taking into 
account measurement fidelity. c, Toy model of non-interacting dimers  
(see main text). Blue (white) circles represent atoms in state |g〉 (|r〉).  
d, Numerical calculations of the dynamics after a quench, starting from an 
ideal 25-atom crystal, obtained from exact diagonalization. Domain-wall 
density (red) and the growth of entanglement entropy of the half chain  
(13 atoms; blue) are shown as functions of time after the quench. Dashed 
lines take into account only the nearest-neighbour (NN) blockade 
constraint. Solid lines correspond to the full 1/R6 interaction potential.
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The strong, coherent interactions between Rydberg atoms provide 
an effective coherent constraint that prevents simultaneous excitation 
of nearby atoms into Rydberg states. This is the essence of the so-called 
Rydberg blockade15, demonstrated in Fig. 1d. When two atoms are 
sufficiently close that that their Rydberg–Rydberg interactions Vij 
exceed the effective Rabi frequency Ω, multiple Rydberg excitations are 
suppressed. This defines the Rydberg blockade radius Rb, at which 
Vij = Ω (Rb = 9 µm for |r〉 = |70S1/2〉 and Ω = 2π × 2 MHz, as used here). 
In the case of resonant driving of atoms separated by a = 23 µm, we 
observe Rabi oscillations associated with non-interacting atoms (blue 
curve in Fig. 1d). However, the dynamics changes substantially as we 
bring multiple atoms close to each other (a = 2.87 µm < Rb). In this case, 
we observe Rabi oscillations between the ground state and a collective 

state with exactly one excitation ( = / ∑ | … … 〉W N g r g(1 ) i i N1 ) with 
the characteristic N  scaling of the collective Rabi frequency24,28,29. 
These observations enable us to quantify the coherence properties of 
our system (see Methods and Extended Data Fig. 3). In particular, the 
amplitude of Rabi oscillations in Fig. 1d is limited mostly by the state 
detection fidelity (93% for |r〉 and about 98% for |g〉; Methods). The 
individual Rabi frequencies are controlled to better than 3% across the 
array, whereas the coherence time is limited ultimately by the small 
probability of spontaneous emission from the intermediate state |e〉 
during the laser pulse (scattering rate 0.022 µs−1; Methods).

Programmable quantum simulator
In the case of homogeneous coherent coupling considered here, the 
Hamiltonian in equation (1) resembles closely the paradigmatic Ising 
model for effective spin-1/2 particles with variable interaction range. 
Its ground state exhibits a rich variety of many-body phases that break 
distinct spatial symmetries (Fig. 2a). Specifically, at large negative  
values of ∆/Ω, its ground state corresponds to all atoms in the state |g〉, 
corresponding to the paramagnetic or disordered phase. As ∆/Ω is 
increased towards large positive values, the number of atoms in |r〉 
increases and interactions between them become important. This gives 
rise to spatially ordered phases in which Rydberg atoms are arranged 
regularly across the array, resulting in ‘Rydberg crystals’ with different 
spatial symmetries30,31, as illustrated in Fig. 2a. The origin of these 
correlated states can be understood intuitively by first considering the 
situation in which ∆ Ω+ +≫ ≫ ≫V Vi i i i, 1 , 2, that is, with blockade for 
neighbouring atoms but negligible interaction between next-nearest 
neighbours. In this case, the ground state corresponds to a Rydberg 
crystal that breaks Z2 translational symmetry in a manner analogous 
to antiferromagnetic order in magnetic systems. Moreover, by  
tuning the parameters so that ∆ Ω+ + +≫ ≫ ≫V V V,i i i i i i, 1 , 2 , 3 and 

∆ Ω+ + + +≫ ≫ ≫V V V V, ,i i i i i i i i, 1 , 2 , 3 , 4  , we obtain arrays with broken Z3 
and Z4 symmetries, respectively (Fig. 2).

To prepare the system in these phases, we control the detuning ∆(t) 
of the driving lasers dynamically to transform the ground state of the 
Hamiltonian adiabatically from a product state of all atoms in |g〉 to 
crystalline states22,31. In contrast to previous work where Rydberg 
crystals are prepared via a sequence of avoided crossings22,31,32, the 
operation at a finite Ω and well-defined atom separation enables us to 
move across a single phase transition into the desired phase directly33.

In the experiment, we first prepare all atoms in state |g〉 = |5S1/2, F = 2, 
mF = −2〉 by optical pumping. We then switch on the laser fields and 
sweep the two-photon detuning from negative to positive values using 
the functional form shown in Fig. 3a. Figure 2b displays the resulting 
single-atom trajectories in a group of 13 atoms for three different inter-
action strengths as we vary the detuning ∆. In each of these instances, 
we observe a clear transition from the initial state |g1, …, g13〉 to an 
ordered state of different broken symmetry. The distance between the 
atoms determines the interaction strength, which leads to different 
crystalline order for a given final detuning. To achieve Z2 order,  
we arrange the atoms with a spacing of 5.74 µm, which results  
in a measured nearest-neighbour interaction strength (see Extended 
Data Fig. 4) of Ω= π× = π×+ ≫V 2 24 MHz 2 2 MHzi i, 1 , while the 
next-nearest-neighbour interaction is small (2π × 0.38 MHz). This 
results in a build-up of antiferromagnetic order whereby every other 
trap site is occupied by a Rydberg atom (Z2 order). By reducing the 
spacing between the atoms to 3.57 µm and 2.87 µm, Z3 and Z4 order is 
observed, respectively (Fig. 2b).

We benchmark the performance of the quantum simulator by com-
paring the measured build-up of Z2 order with theoretical predictions 
for a N = 7 atom system, obtained via exact numerical simulations. As 
shown in Fig. 3, this fully coherent simulation without free parameters 
yields excellent agreement with the observed data when the finite detec-
tion fidelity is accounted for. The evolution of the many-body states in 
Fig. 3c shows that we measure the perfect antiferromagnetic state with 
54(4)% probability (here and elsewhere, unless otherwise specified, the 
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Figure 1 | Experimental platform. a, Individual 87Rb atoms (green) are 
trapped using optical tweezers (vertical red beams) and arranged into 
defect-free arrays. Coherent interactions Vij between the atoms (arrows) 
are enabled by exciting them (horizontal blue and red beams) to a  
Rydberg state with strength Ω and detuning ∆ (inset). b, A two-photon 
process couples the ground state |g〉 = |5S1/2, F = 2, mF = −2〉 to the 
Rydberg state |r〉 = |70S1/2, J = 1/2, mJ = −1/2〉 via an intermediate  
state |e〉 = |6P3/2, F = 3, mF = −3〉 with detuning δ, using circularly 
polarized 420-nm and 1,013-nm lasers with single-photon Rabi 
frequencies of ΩB and ΩR, respectively. Typical experimental values are 
δ Ω Ω≈ π× ≈ π×≫2 560 MHz ( , ) 2 (60, 36) MHzB R . c, The experimental 
protocol consists of loading the atoms into a tweezer array (1) and then 
rearranging them into a preprogrammed configuration (2). After this, the 
system evolves under U(t) with tunable parameters ∆(t), Ω(t) and Vij. This 
evolution can be implemented in parallel on several non-interacting  
sub-systems (3). We then detect the final state using fluorescence  
imaging (4). Atoms in state |g〉 remain trapped, whereas atoms in state |r〉 
are ejected from the trap and detected as the absence of fluorescence 
(indicated with red circles). d, For resonant driving (∆ = 0), isolated atoms 
(blue circles) display Rabi oscillations between |g〉 and |r〉. Arranging the 
atoms into fully blockaded clusters of N = 2 (green circles) and N = 3  
(red circles) atoms results in only one excitation being shared between the 
atoms in the cluster, while the Rabi frequency is enhanced by N . The 
probability of detecting more than one excitation in the cluster is ≤5%. 
Error bars indicate 68% confidence intervals and are smaller than the 
marker size.
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INTRODUCTION

term [16]. The key element of our mapping, which is
schematically illustrated in Fig. 1, is that gauge invariance
has a natural counterpart in the Rydberg blockade mecha-
nism, which constrains the Hilbert space in the sameway as
Gauss law does in gauge theories. This provides an
immediate interpretation of the recent experiment with
Rydberg-blockaded atom arrays in Ref. [14] as the first
large-scale quantum simulation of a LGT at the edge of
classical computational methods [7].
From a theoretical viewpoint, the mapping offers a

hitherto unexplored perspective on the anomalously slow
relaxation recently observed in experiments: the long-lived
oscillations in the population of excited Rydberg atoms
correspond to a string inversion, a phenomenon which is
directly tied to string breaking [6,17,18] prototypical of
gauge theories including dynamical matter [cf. Figs. 1(d)
and 1(e)]. Themapping indicates that this phenomenon has a
natural interpretation in the LGT framework and suggests
the occurrence of slow dynamics in other U(1) gauge
theories, such as higher-spin QLMs [19], Higgs theories
[20,21], and the Schwinger model [22,23]. These theories
have been widely discussed in the context of Schwinger pair
production taking place at high-intensity laser facilities, thus
providing a highly unexpected, direct link between appa-
rently unrelated experimental platforms [18,24–27].
We discuss the generality of this type of quantum

evolution by extending our analysis to other relevant

instances of “slow dynamics,” characterized by the absence
of relaxation on all timescales corresponding to any micro-
scopic coupling present in the system. As initial states, we
focus on those consisting of particle-antiparticle pairs,
corresponding to regular configurations of the Rydberg
atom arrays with localized defects, which are accessible
within the setup of Ref. [14]. We show that these defects
propagate ballistically with long-lived coherent interfer-
ence patterns. This behavior is found to be governed by
special bands of highly excited eigenstates characterized
by a regularity in the energy-momentum dispersion rela-
tion. These findings open up a novel perspective which
complements and extends toward gauge theories recent
approaches to slow relaxation in Rydberg-blockaded
atomic chains [28–33].

II. RYDBERG ATOM ARRAYS

We are interested here in the dynamics of a one-dimen-
sional array of L optical traps, each of them hosting a single
atom, as schematically illustrated in Fig. 1(a). The atoms
are trapped in their electronic ground state (black circle),
denoted by j↓ij, where j numbers the trap. These ground
states are quasiresonantly coupled to a single Rydberg
state, i.e., a highly excited electronic level, denoted by j↑ij.
The dynamics of this chain of qbits fj↑;↓ijgj¼1;…;L is
governed by the following Ising-type Hamiltonian [13,34]:
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FIG. 1. Gauge-theory interpretation of Rydberg atom quantum simulations. (a) Schematics of a Rydberg atom chain. Each potential
well of the optical lattice hosts a single atom, which can be in either the ground (black) or excited Rydberg (yellow) state. These two
levels are coupled by a laser field. The Rydberg blockade prevents the simultaneous excitations of neighboring atoms. (b) Degrees of
freedom of a U(1) LGT in the spin-1=2 quantum link model (QLM) formulation. Gauge fields are represented by spin variables residing
on links. Matter fields are represented by Kogut-Susskind fermions: an occupied site corresponds to the vacuum on odd sites and to a
quark q on even sites. An empty site, instead, corresponds to the vacuum on even sites and to an antiquark q̄ on odd sites. (c): Mapping
between Rydberg-blockaded states and configurations of the electric field constrained by the Gauss law in the QLM. Because of the
staggered electric charge, the allowed configurations of the electric field depend on the link, as illustrated. The two so-called charge-
density wave configurations “CDW1” and “CDW2” of the Rydberg atom arrays are mapped onto the “string” and “antistring” states,
respectively, characterized by uniform rightward or leftward electric fluxes. The empty configuration with all Rydberg atoms in their
ground state is mapped to a state filled by adjacent particle-antiparticle pairs. (d) Time evolution of the Rydberg array governed by the
effective Hamiltonian HFSS in Eq. (2), starting from the CDW1 state. The plot shows the space and time resolved population hnji of the
excited Rydberg atoms. (e) Evolution of the expectation value of the electric field operator Êj;jþ1 in the QLM. These dynamics map
exactly onto the ones shown in (d) via the mapping illustrated in (c). The thin lines highlight the oscillation between CDW1, CDW2 [left,
bottom of (c)] or string and antistring (right) states. In these simulations, L ¼ 24 and δ ¼ m ¼ 0.
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Compared to the opposite strategy of integrating out the
gauge fields, our procedure based on integrating out matter
degrees of freedom has major experimental implications.
With the first approach, one would obtain linearly raising
potentials which do not appear easily in the synthetic
quantum systems, and lead to very large energy scales (of
the order of the system size). Since the overall timescale of
most experiments is limited by noise, having couplings
with relative ratios of order L is a severe limitation for
analog experiments and partially affects also digital efforts.
With our approach, the only states that would violate Gauss
law are nearest-neighbor occupied sites which are strongly
suppressed by the Rydberg blockade. Additional terms in
the Hamiltonian, such as next-nearest neighbor interactions
of Rydberg excitations, are mapped to gauge-invariant
terms (e.g., next-nearest neighbor interactions between
electric fields). From a theoretical viewpoint, the line of
thought of our scheme is similar to the one used in hybrid
Monte Carlo schemes, where one first integrates out the
matter fields and then deals with a purely bosonic action.
Beyond providing a direct link between Gauss law and

the Rydberg blockade mechanism, the most important
feature of the mapping is that, differently from other
remarkable relations between ĤFSS and lattice models with
gauge symmetries [40,41], it provides an immediate con-
nection between Rydberg experiments and particle physics
phenomena, as we describe below.

IV. REAL-TIME DYNAMICS OF LATTICE
GAUGE THEORIES IN RYDBERG

ATOM EXPERIMENTS

A. Gauge-theory interpretation of slow dynamics

The exact description of Rydberg-blockaded chains in
terms of a U(1) LGT allows us to shed a new light on the
slow dynamics reported in Ref. [14], by interpreting them
in terms of well-studied phenomena in high-energy phys-
ics, related to the production of particle-antiparticle pairs
after a quench akin to the Schwinger mechanism.
In the experiment, the system was initialized in a charge-

density wave state [CDW1 in Fig. 1(c)], and subsequently,
the Hamiltonian was quenched, inducing slowly decaying
oscillations between CDW1 and CDW2. As shown in
Fig. 1(c), CDW1 and CDW2 are mapped onto the two
states of the S ¼ 1=2 QLM with uniform electric field
Ŝzj;jþ1 ¼ #1=2. The experimental results in Ref. [14] may
thus be interpreted as the evolution starting from one of the
two degenerate bare particle vacua j0#i (i.e., the vacua in
the absence of quantum fluctuations, w ¼ 0) of the gauge
theory. In Fig. 1(d) and in the first column of Fig. 2, we
illustrate these dynamics as it would be observed in the
excitation density hnji along the Rydberg atom quantum
simulators (“Rydberg”) and compare it with that of the
electric field hEj;jþ1i within its gauge-theory description
(“Quantum link model”) in Fig. 1(e) and in the second

column of Fig. 2, respectively, utilizing exact diagonaliza-
tion [42].
The qualitative features of this evolution are strongly

affected by quantum fluctuations, whose impact is quanti-
fied by the ratio between the coupling constant w and the
particles massm. For small values ofm=w [Figs. 2(a) and 2
(b)], production of particle-antiparticle pairs occurs at a
finite rate. We remark that this effect is reminiscent of the
Schwinger mechanism [6], which, however, concerns pair
creation from the true (and not the bare) vacuum. These
particles get accelerated by the electric field and progres-
sively screen it, until coherent pair annihilation takes place

(a) Rydberg Quantum link Schwinger

(b)

(c)

(d)

FIG. 2. Slow dynamics in Rydberg atoms, the U(1) quantum
link model (QLM), and the lattice Schwinger model. Coherent
quantum evolution of the local Rydberg excitation density profile
(first column) njðtÞ ¼ hn̂jðtÞi in the FSS model [see Eq. (2)],
starting from a charge-density wave, of the local electric field
profile (second column) Ej;jþ1ðtÞ ¼ hŜzj;jþ1ðtÞi in the QLM, and
(third column) hL̂j;jþ1ðtÞ − θ=ð2πÞi (see main text) in the lattice
Schwinger model [see Eq. (3)] with J=w ¼ 1.5 and θ ¼ π. The
four rows correspond to increasing values of the detuning δ
(Rydberg) or, equivalently, of the particles mass m ¼ −δ (QLM
and Schwinger model). Figures 1(d) and 1(e) correspond to the
first two plots in (a) here. Data in the first and second columns are
connected by a unitary transformation, while a remarkable
similarity is manifest between the second and third column
despite the larger Hilbert space of the gauge degrees of freedom in
the Schwinger model. The persistent string inversions observed
within the symmetric phase with m < mc ¼ 0.655jwj in rows (a)
and (b) are suppressed as the quantum critical point is ap-
proached. The dynamics in the third column feature edge effects
due to the imposed open boundary conditions.
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term [16]. The key element of our mapping, which is
schematically illustrated in Fig. 1, is that gauge invariance
has a natural counterpart in the Rydberg blockade mecha-
nism, which constrains the Hilbert space in the sameway as
Gauss law does in gauge theories. This provides an
immediate interpretation of the recent experiment with
Rydberg-blockaded atom arrays in Ref. [14] as the first
large-scale quantum simulation of a LGT at the edge of
classical computational methods [7].
From a theoretical viewpoint, the mapping offers a

hitherto unexplored perspective on the anomalously slow
relaxation recently observed in experiments: the long-lived
oscillations in the population of excited Rydberg atoms
correspond to a string inversion, a phenomenon which is
directly tied to string breaking [6,17,18] prototypical of
gauge theories including dynamical matter [cf. Figs. 1(d)
and 1(e)]. Themapping indicates that this phenomenon has a
natural interpretation in the LGT framework and suggests
the occurrence of slow dynamics in other U(1) gauge
theories, such as higher-spin QLMs [19], Higgs theories
[20,21], and the Schwinger model [22,23]. These theories
have been widely discussed in the context of Schwinger pair
production taking place at high-intensity laser facilities, thus
providing a highly unexpected, direct link between appa-
rently unrelated experimental platforms [18,24–27].
We discuss the generality of this type of quantum

evolution by extending our analysis to other relevant

instances of “slow dynamics,” characterized by the absence
of relaxation on all timescales corresponding to any micro-
scopic coupling present in the system. As initial states, we
focus on those consisting of particle-antiparticle pairs,
corresponding to regular configurations of the Rydberg
atom arrays with localized defects, which are accessible
within the setup of Ref. [14]. We show that these defects
propagate ballistically with long-lived coherent interfer-
ence patterns. This behavior is found to be governed by
special bands of highly excited eigenstates characterized
by a regularity in the energy-momentum dispersion rela-
tion. These findings open up a novel perspective which
complements and extends toward gauge theories recent
approaches to slow relaxation in Rydberg-blockaded
atomic chains [28–33].

II. RYDBERG ATOM ARRAYS

We are interested here in the dynamics of a one-dimen-
sional array of L optical traps, each of them hosting a single
atom, as schematically illustrated in Fig. 1(a). The atoms
are trapped in their electronic ground state (black circle),
denoted by j↓ij, where j numbers the trap. These ground
states are quasiresonantly coupled to a single Rydberg
state, i.e., a highly excited electronic level, denoted by j↑ij.
The dynamics of this chain of qbits fj↑;↓ijgj¼1;…;L is
governed by the following Ising-type Hamiltonian [13,34]:

(b)

(c)
Gauge fields

Matter fields

Odd sites Even sites

=

=

=

=

Quantum link model(a) Rydberg atom chain
Mapping

Rydberg Rydberg QLM
Odd-even bonds Even-odd bonds

CDW1

CDW2

Empty

QLM

(d) (e)

=
=

FIG. 1. Gauge-theory interpretation of Rydberg atom quantum simulations. (a) Schematics of a Rydberg atom chain. Each potential
well of the optical lattice hosts a single atom, which can be in either the ground (black) or excited Rydberg (yellow) state. These two
levels are coupled by a laser field. The Rydberg blockade prevents the simultaneous excitations of neighboring atoms. (b) Degrees of
freedom of a U(1) LGT in the spin-1=2 quantum link model (QLM) formulation. Gauge fields are represented by spin variables residing
on links. Matter fields are represented by Kogut-Susskind fermions: an occupied site corresponds to the vacuum on odd sites and to a
quark q on even sites. An empty site, instead, corresponds to the vacuum on even sites and to an antiquark q̄ on odd sites. (c): Mapping
between Rydberg-blockaded states and configurations of the electric field constrained by the Gauss law in the QLM. Because of the
staggered electric charge, the allowed configurations of the electric field depend on the link, as illustrated. The two so-called charge-
density wave configurations “CDW1” and “CDW2” of the Rydberg atom arrays are mapped onto the “string” and “antistring” states,
respectively, characterized by uniform rightward or leftward electric fluxes. The empty configuration with all Rydberg atoms in their
ground state is mapped to a state filled by adjacent particle-antiparticle pairs. (d) Time evolution of the Rydberg array governed by the
effective Hamiltonian HFSS in Eq. (2), starting from the CDW1 state. The plot shows the space and time resolved population hnji of the
excited Rydberg atoms. (e) Evolution of the expectation value of the electric field operator Êj;jþ1 in the QLM. These dynamics map
exactly onto the ones shown in (d) via the mapping illustrated in (c). The thin lines highlight the oscillation between CDW1, CDW2 [left,
bottom of (c)] or string and antistring (right) states. In these simulations, L ¼ 24 and δ ¼ m ¼ 0.
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Compared to the opposite strategy of integrating out the
gauge fields, our procedure based on integrating out matter
degrees of freedom has major experimental implications.
With the first approach, one would obtain linearly raising
potentials which do not appear easily in the synthetic
quantum systems, and lead to very large energy scales (of
the order of the system size). Since the overall timescale of
most experiments is limited by noise, having couplings
with relative ratios of order L is a severe limitation for
analog experiments and partially affects also digital efforts.
With our approach, the only states that would violate Gauss
law are nearest-neighbor occupied sites which are strongly
suppressed by the Rydberg blockade. Additional terms in
the Hamiltonian, such as next-nearest neighbor interactions
of Rydberg excitations, are mapped to gauge-invariant
terms (e.g., next-nearest neighbor interactions between
electric fields). From a theoretical viewpoint, the line of
thought of our scheme is similar to the one used in hybrid
Monte Carlo schemes, where one first integrates out the
matter fields and then deals with a purely bosonic action.
Beyond providing a direct link between Gauss law and

the Rydberg blockade mechanism, the most important
feature of the mapping is that, differently from other
remarkable relations between ĤFSS and lattice models with
gauge symmetries [40,41], it provides an immediate con-
nection between Rydberg experiments and particle physics
phenomena, as we describe below.

IV. REAL-TIME DYNAMICS OF LATTICE
GAUGE THEORIES IN RYDBERG

ATOM EXPERIMENTS

A. Gauge-theory interpretation of slow dynamics

The exact description of Rydberg-blockaded chains in
terms of a U(1) LGT allows us to shed a new light on the
slow dynamics reported in Ref. [14], by interpreting them
in terms of well-studied phenomena in high-energy phys-
ics, related to the production of particle-antiparticle pairs
after a quench akin to the Schwinger mechanism.
In the experiment, the system was initialized in a charge-

density wave state [CDW1 in Fig. 1(c)], and subsequently,
the Hamiltonian was quenched, inducing slowly decaying
oscillations between CDW1 and CDW2. As shown in
Fig. 1(c), CDW1 and CDW2 are mapped onto the two
states of the S ¼ 1=2 QLM with uniform electric field
Ŝzj;jþ1 ¼ #1=2. The experimental results in Ref. [14] may
thus be interpreted as the evolution starting from one of the
two degenerate bare particle vacua j0#i (i.e., the vacua in
the absence of quantum fluctuations, w ¼ 0) of the gauge
theory. In Fig. 1(d) and in the first column of Fig. 2, we
illustrate these dynamics as it would be observed in the
excitation density hnji along the Rydberg atom quantum
simulators (“Rydberg”) and compare it with that of the
electric field hEj;jþ1i within its gauge-theory description
(“Quantum link model”) in Fig. 1(e) and in the second

column of Fig. 2, respectively, utilizing exact diagonaliza-
tion [42].
The qualitative features of this evolution are strongly

affected by quantum fluctuations, whose impact is quanti-
fied by the ratio between the coupling constant w and the
particles massm. For small values ofm=w [Figs. 2(a) and 2
(b)], production of particle-antiparticle pairs occurs at a
finite rate. We remark that this effect is reminiscent of the
Schwinger mechanism [6], which, however, concerns pair
creation from the true (and not the bare) vacuum. These
particles get accelerated by the electric field and progres-
sively screen it, until coherent pair annihilation takes place

(a) Rydberg Quantum link Schwinger

(b)

(c)

(d)

FIG. 2. Slow dynamics in Rydberg atoms, the U(1) quantum
link model (QLM), and the lattice Schwinger model. Coherent
quantum evolution of the local Rydberg excitation density profile
(first column) njðtÞ ¼ hn̂jðtÞi in the FSS model [see Eq. (2)],
starting from a charge-density wave, of the local electric field
profile (second column) Ej;jþ1ðtÞ ¼ hŜzj;jþ1ðtÞi in the QLM, and
(third column) hL̂j;jþ1ðtÞ − θ=ð2πÞi (see main text) in the lattice
Schwinger model [see Eq. (3)] with J=w ¼ 1.5 and θ ¼ π. The
four rows correspond to increasing values of the detuning δ
(Rydberg) or, equivalently, of the particles mass m ¼ −δ (QLM
and Schwinger model). Figures 1(d) and 1(e) correspond to the
first two plots in (a) here. Data in the first and second columns are
connected by a unitary transformation, while a remarkable
similarity is manifest between the second and third column
despite the larger Hilbert space of the gauge degrees of freedom in
the Schwinger model. The persistent string inversions observed
within the symmetric phase with m < mc ¼ 0.655jwj in rows (a)
and (b) are suppressed as the quantum critical point is ap-
proached. The dynamics in the third column feature edge effects
due to the imposed open boundary conditions.
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term [16]. The key element of our mapping, which is
schematically illustrated in Fig. 1, is that gauge invariance
has a natural counterpart in the Rydberg blockade mecha-
nism, which constrains the Hilbert space in the sameway as
Gauss law does in gauge theories. This provides an
immediate interpretation of the recent experiment with
Rydberg-blockaded atom arrays in Ref. [14] as the first
large-scale quantum simulation of a LGT at the edge of
classical computational methods [7].
From a theoretical viewpoint, the mapping offers a

hitherto unexplored perspective on the anomalously slow
relaxation recently observed in experiments: the long-lived
oscillations in the population of excited Rydberg atoms
correspond to a string inversion, a phenomenon which is
directly tied to string breaking [6,17,18] prototypical of
gauge theories including dynamical matter [cf. Figs. 1(d)
and 1(e)]. Themapping indicates that this phenomenon has a
natural interpretation in the LGT framework and suggests
the occurrence of slow dynamics in other U(1) gauge
theories, such as higher-spin QLMs [19], Higgs theories
[20,21], and the Schwinger model [22,23]. These theories
have been widely discussed in the context of Schwinger pair
production taking place at high-intensity laser facilities, thus
providing a highly unexpected, direct link between appa-
rently unrelated experimental platforms [18,24–27].
We discuss the generality of this type of quantum

evolution by extending our analysis to other relevant

instances of “slow dynamics,” characterized by the absence
of relaxation on all timescales corresponding to any micro-
scopic coupling present in the system. As initial states, we
focus on those consisting of particle-antiparticle pairs,
corresponding to regular configurations of the Rydberg
atom arrays with localized defects, which are accessible
within the setup of Ref. [14]. We show that these defects
propagate ballistically with long-lived coherent interfer-
ence patterns. This behavior is found to be governed by
special bands of highly excited eigenstates characterized
by a regularity in the energy-momentum dispersion rela-
tion. These findings open up a novel perspective which
complements and extends toward gauge theories recent
approaches to slow relaxation in Rydberg-blockaded
atomic chains [28–33].

II. RYDBERG ATOM ARRAYS

We are interested here in the dynamics of a one-dimen-
sional array of L optical traps, each of them hosting a single
atom, as schematically illustrated in Fig. 1(a). The atoms
are trapped in their electronic ground state (black circle),
denoted by j↓ij, where j numbers the trap. These ground
states are quasiresonantly coupled to a single Rydberg
state, i.e., a highly excited electronic level, denoted by j↑ij.
The dynamics of this chain of qbits fj↑;↓ijgj¼1;…;L is
governed by the following Ising-type Hamiltonian [13,34]:
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FIG. 1. Gauge-theory interpretation of Rydberg atom quantum simulations. (a) Schematics of a Rydberg atom chain. Each potential
well of the optical lattice hosts a single atom, which can be in either the ground (black) or excited Rydberg (yellow) state. These two
levels are coupled by a laser field. The Rydberg blockade prevents the simultaneous excitations of neighboring atoms. (b) Degrees of
freedom of a U(1) LGT in the spin-1=2 quantum link model (QLM) formulation. Gauge fields are represented by spin variables residing
on links. Matter fields are represented by Kogut-Susskind fermions: an occupied site corresponds to the vacuum on odd sites and to a
quark q on even sites. An empty site, instead, corresponds to the vacuum on even sites and to an antiquark q̄ on odd sites. (c): Mapping
between Rydberg-blockaded states and configurations of the electric field constrained by the Gauss law in the QLM. Because of the
staggered electric charge, the allowed configurations of the electric field depend on the link, as illustrated. The two so-called charge-
density wave configurations “CDW1” and “CDW2” of the Rydberg atom arrays are mapped onto the “string” and “antistring” states,
respectively, characterized by uniform rightward or leftward electric fluxes. The empty configuration with all Rydberg atoms in their
ground state is mapped to a state filled by adjacent particle-antiparticle pairs. (d) Time evolution of the Rydberg array governed by the
effective Hamiltonian HFSS in Eq. (2), starting from the CDW1 state. The plot shows the space and time resolved population hnji of the
excited Rydberg atoms. (e) Evolution of the expectation value of the electric field operator Êj;jþ1 in the QLM. These dynamics map
exactly onto the ones shown in (d) via the mapping illustrated in (c). The thin lines highlight the oscillation between CDW1, CDW2 [left,
bottom of (c)] or string and antistring (right) states. In these simulations, L ¼ 24 and δ ¼ m ¼ 0.
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and eventually brings the system to a state with opposite
electric flux. This process, referred to as string inversion,
occurs several times in a coherent fashion; similarly to what
is observed in string-breaking scenarios (e.g., in other
LGTs [26,43]), this causes a dramatic slowdown of
thermalization and of quantum information propagation.
As a further evidence, we compute both the total electric
flux and the vacuum persistence amplitude (or Loschmidt
echo), defined as GþðtÞ ¼ jh0þje−iĤtj0þij2, whose large
value ≃1 was already noted in Ref. [44]. The anomalous
long-lived oscillations of these quantities experimentally
detected with Rydberg atom arrays in Ref. [14] show a clear
analogy with several previous numerical studies of the real-
time dynamics of higher-spin QLMs [26] as well as of the
Schwinger model [24,25,45] and Higgs theories [21]. In
addition, as noted in Ref. [38], the dynamics discussed here
describes the coherent oscillations of the parity-symmetric
order parameter (in our case, hÊj;jþ1i) as a function of time,
reminiscent of the decay of a chiral condensate in QCD
[27]. We thus provide here a bridge among all these
observations.
However, if fermionic particles are sufficiently heavy,

with m=w exceeding a critical threshold, pair production is
a virtual process and string inversion cannot be triggered, as
shown in Figs. 2(c) and 2(d). We find that this behavior is
related to the quantum phase transition occurring in the FSS
model at δc ¼ −0.655jΩj [36]. This transition corresponds
to the spontaneous breaking of the chiral symmetry in the
LGT Eq. (4) at mc ¼ 0.655jwj [46]. Figure 2 shows the
temporal evolution of the same initial uniform flux con-
figuration [CDW or “string” in Fig. 1(c)] upon increasing
values of the mass m=w ¼ 0, 0.25, 0.655, 1.5 correspond-
ing to the dynamics at m < mc [Figs. 2(a) and 2(b)], at the
quantum critical point m ¼ mc [Fig. 2(c)], and at m > mc
[Fig. 2(d)].
Figure 3 further illustrates the appearance of string

inversions for m < mc and the corresponding slow dynam-
ics. Figure 3(a) shows the long-lived revivals of the many-
body wave function in terms of the evolution of the
probability G%ðtÞ of finding the system at time t in the
initial bare vacuum state j0þi or in the opposite one j0−i,
corresponding to Gþ or G−, respectively, as well as in terms
of the time-dependent density ρ of particle-antiparticle pairs.
The entanglement entropy of half system also displays an
oscillatory behavior (see Appendix A). Figure 3(b) shows
the scaling of the collective oscillations of the electric field
with respect to the system size L, as well as their persistence
with a small but nonvanishing fermion mass m < mc.

B. Slow dynamics in the Schwinger model

The above phenomenology is not restricted to QLMs, but
is expected to be a generic feature of LGTs including
dynamical matter. We show this in the context of a
Wilsonian LGT, i.e., the lattice version of the Schwinger
model in Eq. (3). As discussed below, the model dynamics

is, at the lattice level, remarkably different from the FSS
model (no constraints when written in spin language,
different Hilbert space scaling, different interactions,
etc.). The key aspect is, instead, the common field-theo-
retical framework.
In this case, Ûj;jþ1 ¼ eiϑ̂j;jþ1 are U(1) parallel transport-

ers with vector potential ϑ̂j;jþ1, and the corresponding
electric field operator is Êj;jþ1 ¼ L̂j;jþ1 − θ=ð2πÞ, where
L̂j;jþ1 have integer spectrum and θ=ð2πÞ represents
a uniform classical background field parametrized by the
θ angle. Canonical commutation relations for the gauge
degrees of freedom read ½ϑ̂j;jþ1; L̂p;pþ1' ¼ iδjp. In our
numerical simulations, we utilize the spin formulation of
the model obtained upon integration of the gauge fields
under open boundary conditions [47,48].
We consider the case of a θ angle with θ ¼ π, such that

the electric field Êj;jþ1 has half-integer spectrum. Then, in
the limit J=w → ∞, the term JÊ2

j;jþ1 in the Hamiltonian
suppresses all the values of the electric field that are
different from %1=2. This implies that the electric field
can be represented by a spin-1=2 Ŝz operator and that the
lattice Schwinger model is equivalent to the spin-1=2 QLM
discussed above. We find evidence that the corresponding
behavior persists qualitatively down to J ≃ w, when the
electrostatic energy competes with the matter-field inter-
action, as shown in the third column of Fig. 2. Despite the
strong quantum fluctuations allowed in principle by the
exploration of a locally infinite-dimensional Hilbert space,
a qualitative similarity with the case of the locally finite-
dimensional Hilbert space of the QLM is manifest in the
second column of Fig. 2, related to the observed dynamics
in Ref. [14]. At a more quantitative level, we see that the
periods of the oscillations in the lattice Schwinger model
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FIG. 3. Characterization of slow dynamics in the FSS model.
(a) Hilbert space characterization of the persistent string inver-
sions (m ¼ 0, L ¼ 28): alternating strong revivals of the overlaps
G%ðtÞ ¼ jh0%je−iĤtj0þij2 with the two bare vacuum states j0%i,
corresponding to the two charge-density wave configurations of
Rydberg atom arrays. Both the total density ρ ¼ hρ̂ji of particle-
antiparticle pairs, with ρ̂j ¼ ð−1ÞjΦ̂†

j Φ̂j þ ½1 − ð−1Þj'=2, and the
half-chain entanglement entropy (see the Appendix A) have
regularly spaced maxima between the peaks. (b) Persistent
oscillations of electric field for two values of the mass and of
the system size.
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Compared to the opposite strategy of integrating out the
gauge fields, our procedure based on integrating out matter
degrees of freedom has major experimental implications.
With the first approach, one would obtain linearly raising
potentials which do not appear easily in the synthetic
quantum systems, and lead to very large energy scales (of
the order of the system size). Since the overall timescale of
most experiments is limited by noise, having couplings
with relative ratios of order L is a severe limitation for
analog experiments and partially affects also digital efforts.
With our approach, the only states that would violate Gauss
law are nearest-neighbor occupied sites which are strongly
suppressed by the Rydberg blockade. Additional terms in
the Hamiltonian, such as next-nearest neighbor interactions
of Rydberg excitations, are mapped to gauge-invariant
terms (e.g., next-nearest neighbor interactions between
electric fields). From a theoretical viewpoint, the line of
thought of our scheme is similar to the one used in hybrid
Monte Carlo schemes, where one first integrates out the
matter fields and then deals with a purely bosonic action.
Beyond providing a direct link between Gauss law and

the Rydberg blockade mechanism, the most important
feature of the mapping is that, differently from other
remarkable relations between ĤFSS and lattice models with
gauge symmetries [40,41], it provides an immediate con-
nection between Rydberg experiments and particle physics
phenomena, as we describe below.

IV. REAL-TIME DYNAMICS OF LATTICE
GAUGE THEORIES IN RYDBERG

ATOM EXPERIMENTS

A. Gauge-theory interpretation of slow dynamics

The exact description of Rydberg-blockaded chains in
terms of a U(1) LGT allows us to shed a new light on the
slow dynamics reported in Ref. [14], by interpreting them
in terms of well-studied phenomena in high-energy phys-
ics, related to the production of particle-antiparticle pairs
after a quench akin to the Schwinger mechanism.
In the experiment, the system was initialized in a charge-

density wave state [CDW1 in Fig. 1(c)], and subsequently,
the Hamiltonian was quenched, inducing slowly decaying
oscillations between CDW1 and CDW2. As shown in
Fig. 1(c), CDW1 and CDW2 are mapped onto the two
states of the S ¼ 1=2 QLM with uniform electric field
Ŝzj;jþ1 ¼ #1=2. The experimental results in Ref. [14] may
thus be interpreted as the evolution starting from one of the
two degenerate bare particle vacua j0#i (i.e., the vacua in
the absence of quantum fluctuations, w ¼ 0) of the gauge
theory. In Fig. 1(d) and in the first column of Fig. 2, we
illustrate these dynamics as it would be observed in the
excitation density hnji along the Rydberg atom quantum
simulators (“Rydberg”) and compare it with that of the
electric field hEj;jþ1i within its gauge-theory description
(“Quantum link model”) in Fig. 1(e) and in the second

column of Fig. 2, respectively, utilizing exact diagonaliza-
tion [42].
The qualitative features of this evolution are strongly

affected by quantum fluctuations, whose impact is quanti-
fied by the ratio between the coupling constant w and the
particles massm. For small values ofm=w [Figs. 2(a) and 2
(b)], production of particle-antiparticle pairs occurs at a
finite rate. We remark that this effect is reminiscent of the
Schwinger mechanism [6], which, however, concerns pair
creation from the true (and not the bare) vacuum. These
particles get accelerated by the electric field and progres-
sively screen it, until coherent pair annihilation takes place

(a) Rydberg Quantum link Schwinger

(b)

(c)

(d)

FIG. 2. Slow dynamics in Rydberg atoms, the U(1) quantum
link model (QLM), and the lattice Schwinger model. Coherent
quantum evolution of the local Rydberg excitation density profile
(first column) njðtÞ ¼ hn̂jðtÞi in the FSS model [see Eq. (2)],
starting from a charge-density wave, of the local electric field
profile (second column) Ej;jþ1ðtÞ ¼ hŜzj;jþ1ðtÞi in the QLM, and
(third column) hL̂j;jþ1ðtÞ − θ=ð2πÞi (see main text) in the lattice
Schwinger model [see Eq. (3)] with J=w ¼ 1.5 and θ ¼ π. The
four rows correspond to increasing values of the detuning δ
(Rydberg) or, equivalently, of the particles mass m ¼ −δ (QLM
and Schwinger model). Figures 1(d) and 1(e) correspond to the
first two plots in (a) here. Data in the first and second columns are
connected by a unitary transformation, while a remarkable
similarity is manifest between the second and third column
despite the larger Hilbert space of the gauge degrees of freedom in
the Schwinger model. The persistent string inversions observed
within the symmetric phase with m < mc ¼ 0.655jwj in rows (a)
and (b) are suppressed as the quantum critical point is ap-
proached. The dynamics in the third column feature edge effects
due to the imposed open boundary conditions.
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term [16]. The key element of our mapping, which is
schematically illustrated in Fig. 1, is that gauge invariance
has a natural counterpart in the Rydberg blockade mecha-
nism, which constrains the Hilbert space in the sameway as
Gauss law does in gauge theories. This provides an
immediate interpretation of the recent experiment with
Rydberg-blockaded atom arrays in Ref. [14] as the first
large-scale quantum simulation of a LGT at the edge of
classical computational methods [7].
From a theoretical viewpoint, the mapping offers a

hitherto unexplored perspective on the anomalously slow
relaxation recently observed in experiments: the long-lived
oscillations in the population of excited Rydberg atoms
correspond to a string inversion, a phenomenon which is
directly tied to string breaking [6,17,18] prototypical of
gauge theories including dynamical matter [cf. Figs. 1(d)
and 1(e)]. Themapping indicates that this phenomenon has a
natural interpretation in the LGT framework and suggests
the occurrence of slow dynamics in other U(1) gauge
theories, such as higher-spin QLMs [19], Higgs theories
[20,21], and the Schwinger model [22,23]. These theories
have been widely discussed in the context of Schwinger pair
production taking place at high-intensity laser facilities, thus
providing a highly unexpected, direct link between appa-
rently unrelated experimental platforms [18,24–27].
We discuss the generality of this type of quantum

evolution by extending our analysis to other relevant

instances of “slow dynamics,” characterized by the absence
of relaxation on all timescales corresponding to any micro-
scopic coupling present in the system. As initial states, we
focus on those consisting of particle-antiparticle pairs,
corresponding to regular configurations of the Rydberg
atom arrays with localized defects, which are accessible
within the setup of Ref. [14]. We show that these defects
propagate ballistically with long-lived coherent interfer-
ence patterns. This behavior is found to be governed by
special bands of highly excited eigenstates characterized
by a regularity in the energy-momentum dispersion rela-
tion. These findings open up a novel perspective which
complements and extends toward gauge theories recent
approaches to slow relaxation in Rydberg-blockaded
atomic chains [28–33].

II. RYDBERG ATOM ARRAYS

We are interested here in the dynamics of a one-dimen-
sional array of L optical traps, each of them hosting a single
atom, as schematically illustrated in Fig. 1(a). The atoms
are trapped in their electronic ground state (black circle),
denoted by j↓ij, where j numbers the trap. These ground
states are quasiresonantly coupled to a single Rydberg
state, i.e., a highly excited electronic level, denoted by j↑ij.
The dynamics of this chain of qbits fj↑;↓ijgj¼1;…;L is
governed by the following Ising-type Hamiltonian [13,34]:

(b)

(c)
Gauge fields

Matter fields

Odd sites Even sites

=

=

=

=

Quantum link model(a) Rydberg atom chain
Mapping

Rydberg Rydberg QLM
Odd-even bonds Even-odd bonds

CDW1

CDW2

Empty

QLM

(d) (e)

=
=

FIG. 1. Gauge-theory interpretation of Rydberg atom quantum simulations. (a) Schematics of a Rydberg atom chain. Each potential
well of the optical lattice hosts a single atom, which can be in either the ground (black) or excited Rydberg (yellow) state. These two
levels are coupled by a laser field. The Rydberg blockade prevents the simultaneous excitations of neighboring atoms. (b) Degrees of
freedom of a U(1) LGT in the spin-1=2 quantum link model (QLM) formulation. Gauge fields are represented by spin variables residing
on links. Matter fields are represented by Kogut-Susskind fermions: an occupied site corresponds to the vacuum on odd sites and to a
quark q on even sites. An empty site, instead, corresponds to the vacuum on even sites and to an antiquark q̄ on odd sites. (c): Mapping
between Rydberg-blockaded states and configurations of the electric field constrained by the Gauss law in the QLM. Because of the
staggered electric charge, the allowed configurations of the electric field depend on the link, as illustrated. The two so-called charge-
density wave configurations “CDW1” and “CDW2” of the Rydberg atom arrays are mapped onto the “string” and “antistring” states,
respectively, characterized by uniform rightward or leftward electric fluxes. The empty configuration with all Rydberg atoms in their
ground state is mapped to a state filled by adjacent particle-antiparticle pairs. (d) Time evolution of the Rydberg array governed by the
effective Hamiltonian HFSS in Eq. (2), starting from the CDW1 state. The plot shows the space and time resolved population hnji of the
excited Rydberg atoms. (e) Evolution of the expectation value of the electric field operator Êj;jþ1 in the QLM. These dynamics map
exactly onto the ones shown in (d) via the mapping illustrated in (c). The thin lines highlight the oscillation between CDW1, CDW2 [left,
bottom of (c)] or string and antistring (right) states. In these simulations, L ¼ 24 and δ ¼ m ¼ 0.
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and eventually brings the system to a state with opposite
electric flux. This process, referred to as string inversion,
occurs several times in a coherent fashion; similarly to what
is observed in string-breaking scenarios (e.g., in other
LGTs [26,43]), this causes a dramatic slowdown of
thermalization and of quantum information propagation.
As a further evidence, we compute both the total electric
flux and the vacuum persistence amplitude (or Loschmidt
echo), defined as GþðtÞ ¼ jh0þje−iĤtj0þij2, whose large
value ≃1 was already noted in Ref. [44]. The anomalous
long-lived oscillations of these quantities experimentally
detected with Rydberg atom arrays in Ref. [14] show a clear
analogy with several previous numerical studies of the real-
time dynamics of higher-spin QLMs [26] as well as of the
Schwinger model [24,25,45] and Higgs theories [21]. In
addition, as noted in Ref. [38], the dynamics discussed here
describes the coherent oscillations of the parity-symmetric
order parameter (in our case, hÊj;jþ1i) as a function of time,
reminiscent of the decay of a chiral condensate in QCD
[27]. We thus provide here a bridge among all these
observations.
However, if fermionic particles are sufficiently heavy,

with m=w exceeding a critical threshold, pair production is
a virtual process and string inversion cannot be triggered, as
shown in Figs. 2(c) and 2(d). We find that this behavior is
related to the quantum phase transition occurring in the FSS
model at δc ¼ −0.655jΩj [36]. This transition corresponds
to the spontaneous breaking of the chiral symmetry in the
LGT Eq. (4) at mc ¼ 0.655jwj [46]. Figure 2 shows the
temporal evolution of the same initial uniform flux con-
figuration [CDW or “string” in Fig. 1(c)] upon increasing
values of the mass m=w ¼ 0, 0.25, 0.655, 1.5 correspond-
ing to the dynamics at m < mc [Figs. 2(a) and 2(b)], at the
quantum critical point m ¼ mc [Fig. 2(c)], and at m > mc
[Fig. 2(d)].
Figure 3 further illustrates the appearance of string

inversions for m < mc and the corresponding slow dynam-
ics. Figure 3(a) shows the long-lived revivals of the many-
body wave function in terms of the evolution of the
probability G%ðtÞ of finding the system at time t in the
initial bare vacuum state j0þi or in the opposite one j0−i,
corresponding to Gþ or G−, respectively, as well as in terms
of the time-dependent density ρ of particle-antiparticle pairs.
The entanglement entropy of half system also displays an
oscillatory behavior (see Appendix A). Figure 3(b) shows
the scaling of the collective oscillations of the electric field
with respect to the system size L, as well as their persistence
with a small but nonvanishing fermion mass m < mc.

B. Slow dynamics in the Schwinger model

The above phenomenology is not restricted to QLMs, but
is expected to be a generic feature of LGTs including
dynamical matter. We show this in the context of a
Wilsonian LGT, i.e., the lattice version of the Schwinger
model in Eq. (3). As discussed below, the model dynamics

is, at the lattice level, remarkably different from the FSS
model (no constraints when written in spin language,
different Hilbert space scaling, different interactions,
etc.). The key aspect is, instead, the common field-theo-
retical framework.
In this case, Ûj;jþ1 ¼ eiϑ̂j;jþ1 are U(1) parallel transport-

ers with vector potential ϑ̂j;jþ1, and the corresponding
electric field operator is Êj;jþ1 ¼ L̂j;jþ1 − θ=ð2πÞ, where
L̂j;jþ1 have integer spectrum and θ=ð2πÞ represents
a uniform classical background field parametrized by the
θ angle. Canonical commutation relations for the gauge
degrees of freedom read ½ϑ̂j;jþ1; L̂p;pþ1' ¼ iδjp. In our
numerical simulations, we utilize the spin formulation of
the model obtained upon integration of the gauge fields
under open boundary conditions [47,48].
We consider the case of a θ angle with θ ¼ π, such that

the electric field Êj;jþ1 has half-integer spectrum. Then, in
the limit J=w → ∞, the term JÊ2

j;jþ1 in the Hamiltonian
suppresses all the values of the electric field that are
different from %1=2. This implies that the electric field
can be represented by a spin-1=2 Ŝz operator and that the
lattice Schwinger model is equivalent to the spin-1=2 QLM
discussed above. We find evidence that the corresponding
behavior persists qualitatively down to J ≃ w, when the
electrostatic energy competes with the matter-field inter-
action, as shown in the third column of Fig. 2. Despite the
strong quantum fluctuations allowed in principle by the
exploration of a locally infinite-dimensional Hilbert space,
a qualitative similarity with the case of the locally finite-
dimensional Hilbert space of the QLM is manifest in the
second column of Fig. 2, related to the observed dynamics
in Ref. [14]. At a more quantitative level, we see that the
periods of the oscillations in the lattice Schwinger model
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FIG. 3. Characterization of slow dynamics in the FSS model.
(a) Hilbert space characterization of the persistent string inver-
sions (m ¼ 0, L ¼ 28): alternating strong revivals of the overlaps
G%ðtÞ ¼ jh0%je−iĤtj0þij2 with the two bare vacuum states j0%i,
corresponding to the two charge-density wave configurations of
Rydberg atom arrays. Both the total density ρ ¼ hρ̂ji of particle-
antiparticle pairs, with ρ̂j ¼ ð−1ÞjΦ̂†

j Φ̂j þ ½1 − ð−1Þj'=2, and the
half-chain entanglement entropy (see the Appendix A) have
regularly spaced maxima between the peaks. (b) Persistent
oscillations of electric field for two values of the mass and of
the system size.
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Compared to the opposite strategy of integrating out the
gauge fields, our procedure based on integrating out matter
degrees of freedom has major experimental implications.
With the first approach, one would obtain linearly raising
potentials which do not appear easily in the synthetic
quantum systems, and lead to very large energy scales (of
the order of the system size). Since the overall timescale of
most experiments is limited by noise, having couplings
with relative ratios of order L is a severe limitation for
analog experiments and partially affects also digital efforts.
With our approach, the only states that would violate Gauss
law are nearest-neighbor occupied sites which are strongly
suppressed by the Rydberg blockade. Additional terms in
the Hamiltonian, such as next-nearest neighbor interactions
of Rydberg excitations, are mapped to gauge-invariant
terms (e.g., next-nearest neighbor interactions between
electric fields). From a theoretical viewpoint, the line of
thought of our scheme is similar to the one used in hybrid
Monte Carlo schemes, where one first integrates out the
matter fields and then deals with a purely bosonic action.
Beyond providing a direct link between Gauss law and

the Rydberg blockade mechanism, the most important
feature of the mapping is that, differently from other
remarkable relations between ĤFSS and lattice models with
gauge symmetries [40,41], it provides an immediate con-
nection between Rydberg experiments and particle physics
phenomena, as we describe below.

IV. REAL-TIME DYNAMICS OF LATTICE
GAUGE THEORIES IN RYDBERG

ATOM EXPERIMENTS

A. Gauge-theory interpretation of slow dynamics

The exact description of Rydberg-blockaded chains in
terms of a U(1) LGT allows us to shed a new light on the
slow dynamics reported in Ref. [14], by interpreting them
in terms of well-studied phenomena in high-energy phys-
ics, related to the production of particle-antiparticle pairs
after a quench akin to the Schwinger mechanism.
In the experiment, the system was initialized in a charge-

density wave state [CDW1 in Fig. 1(c)], and subsequently,
the Hamiltonian was quenched, inducing slowly decaying
oscillations between CDW1 and CDW2. As shown in
Fig. 1(c), CDW1 and CDW2 are mapped onto the two
states of the S ¼ 1=2 QLM with uniform electric field
Ŝzj;jþ1 ¼ #1=2. The experimental results in Ref. [14] may
thus be interpreted as the evolution starting from one of the
two degenerate bare particle vacua j0#i (i.e., the vacua in
the absence of quantum fluctuations, w ¼ 0) of the gauge
theory. In Fig. 1(d) and in the first column of Fig. 2, we
illustrate these dynamics as it would be observed in the
excitation density hnji along the Rydberg atom quantum
simulators (“Rydberg”) and compare it with that of the
electric field hEj;jþ1i within its gauge-theory description
(“Quantum link model”) in Fig. 1(e) and in the second

column of Fig. 2, respectively, utilizing exact diagonaliza-
tion [42].
The qualitative features of this evolution are strongly

affected by quantum fluctuations, whose impact is quanti-
fied by the ratio between the coupling constant w and the
particles massm. For small values ofm=w [Figs. 2(a) and 2
(b)], production of particle-antiparticle pairs occurs at a
finite rate. We remark that this effect is reminiscent of the
Schwinger mechanism [6], which, however, concerns pair
creation from the true (and not the bare) vacuum. These
particles get accelerated by the electric field and progres-
sively screen it, until coherent pair annihilation takes place

(a) Rydberg Quantum link Schwinger

(b)

(c)

(d)

FIG. 2. Slow dynamics in Rydberg atoms, the U(1) quantum
link model (QLM), and the lattice Schwinger model. Coherent
quantum evolution of the local Rydberg excitation density profile
(first column) njðtÞ ¼ hn̂jðtÞi in the FSS model [see Eq. (2)],
starting from a charge-density wave, of the local electric field
profile (second column) Ej;jþ1ðtÞ ¼ hŜzj;jþ1ðtÞi in the QLM, and
(third column) hL̂j;jþ1ðtÞ − θ=ð2πÞi (see main text) in the lattice
Schwinger model [see Eq. (3)] with J=w ¼ 1.5 and θ ¼ π. The
four rows correspond to increasing values of the detuning δ
(Rydberg) or, equivalently, of the particles mass m ¼ −δ (QLM
and Schwinger model). Figures 1(d) and 1(e) correspond to the
first two plots in (a) here. Data in the first and second columns are
connected by a unitary transformation, while a remarkable
similarity is manifest between the second and third column
despite the larger Hilbert space of the gauge degrees of freedom in
the Schwinger model. The persistent string inversions observed
within the symmetric phase with m < mc ¼ 0.655jwj in rows (a)
and (b) are suppressed as the quantum critical point is ap-
proached. The dynamics in the third column feature edge effects
due to the imposed open boundary conditions.
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term [16]. The key element of our mapping, which is
schematically illustrated in Fig. 1, is that gauge invariance
has a natural counterpart in the Rydberg blockade mecha-
nism, which constrains the Hilbert space in the sameway as
Gauss law does in gauge theories. This provides an
immediate interpretation of the recent experiment with
Rydberg-blockaded atom arrays in Ref. [14] as the first
large-scale quantum simulation of a LGT at the edge of
classical computational methods [7].
From a theoretical viewpoint, the mapping offers a

hitherto unexplored perspective on the anomalously slow
relaxation recently observed in experiments: the long-lived
oscillations in the population of excited Rydberg atoms
correspond to a string inversion, a phenomenon which is
directly tied to string breaking [6,17,18] prototypical of
gauge theories including dynamical matter [cf. Figs. 1(d)
and 1(e)]. Themapping indicates that this phenomenon has a
natural interpretation in the LGT framework and suggests
the occurrence of slow dynamics in other U(1) gauge
theories, such as higher-spin QLMs [19], Higgs theories
[20,21], and the Schwinger model [22,23]. These theories
have been widely discussed in the context of Schwinger pair
production taking place at high-intensity laser facilities, thus
providing a highly unexpected, direct link between appa-
rently unrelated experimental platforms [18,24–27].
We discuss the generality of this type of quantum

evolution by extending our analysis to other relevant

instances of “slow dynamics,” characterized by the absence
of relaxation on all timescales corresponding to any micro-
scopic coupling present in the system. As initial states, we
focus on those consisting of particle-antiparticle pairs,
corresponding to regular configurations of the Rydberg
atom arrays with localized defects, which are accessible
within the setup of Ref. [14]. We show that these defects
propagate ballistically with long-lived coherent interfer-
ence patterns. This behavior is found to be governed by
special bands of highly excited eigenstates characterized
by a regularity in the energy-momentum dispersion rela-
tion. These findings open up a novel perspective which
complements and extends toward gauge theories recent
approaches to slow relaxation in Rydberg-blockaded
atomic chains [28–33].

II. RYDBERG ATOM ARRAYS

We are interested here in the dynamics of a one-dimen-
sional array of L optical traps, each of them hosting a single
atom, as schematically illustrated in Fig. 1(a). The atoms
are trapped in their electronic ground state (black circle),
denoted by j↓ij, where j numbers the trap. These ground
states are quasiresonantly coupled to a single Rydberg
state, i.e., a highly excited electronic level, denoted by j↑ij.
The dynamics of this chain of qbits fj↑;↓ijgj¼1;…;L is
governed by the following Ising-type Hamiltonian [13,34]:

(b)

(c)
Gauge fields

Matter fields

Odd sites Even sites

=

=

=

=

Quantum link model(a) Rydberg atom chain
Mapping

Rydberg Rydberg QLM
Odd-even bonds Even-odd bonds

CDW1

CDW2

Empty

QLM

(d) (e)

=
=

FIG. 1. Gauge-theory interpretation of Rydberg atom quantum simulations. (a) Schematics of a Rydberg atom chain. Each potential
well of the optical lattice hosts a single atom, which can be in either the ground (black) or excited Rydberg (yellow) state. These two
levels are coupled by a laser field. The Rydberg blockade prevents the simultaneous excitations of neighboring atoms. (b) Degrees of
freedom of a U(1) LGT in the spin-1=2 quantum link model (QLM) formulation. Gauge fields are represented by spin variables residing
on links. Matter fields are represented by Kogut-Susskind fermions: an occupied site corresponds to the vacuum on odd sites and to a
quark q on even sites. An empty site, instead, corresponds to the vacuum on even sites and to an antiquark q̄ on odd sites. (c): Mapping
between Rydberg-blockaded states and configurations of the electric field constrained by the Gauss law in the QLM. Because of the
staggered electric charge, the allowed configurations of the electric field depend on the link, as illustrated. The two so-called charge-
density wave configurations “CDW1” and “CDW2” of the Rydberg atom arrays are mapped onto the “string” and “antistring” states,
respectively, characterized by uniform rightward or leftward electric fluxes. The empty configuration with all Rydberg atoms in their
ground state is mapped to a state filled by adjacent particle-antiparticle pairs. (d) Time evolution of the Rydberg array governed by the
effective Hamiltonian HFSS in Eq. (2), starting from the CDW1 state. The plot shows the space and time resolved population hnji of the
excited Rydberg atoms. (e) Evolution of the expectation value of the electric field operator Êj;jþ1 in the QLM. These dynamics map
exactly onto the ones shown in (d) via the mapping illustrated in (c). The thin lines highlight the oscillation between CDW1, CDW2 [left,
bottom of (c)] or string and antistring (right) states. In these simulations, L ¼ 24 and δ ¼ m ¼ 0.
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and eventually brings the system to a state with opposite
electric flux. This process, referred to as string inversion,
occurs several times in a coherent fashion; similarly to what
is observed in string-breaking scenarios (e.g., in other
LGTs [26,43]), this causes a dramatic slowdown of
thermalization and of quantum information propagation.
As a further evidence, we compute both the total electric
flux and the vacuum persistence amplitude (or Loschmidt
echo), defined as GþðtÞ ¼ jh0þje−iĤtj0þij2, whose large
value ≃1 was already noted in Ref. [44]. The anomalous
long-lived oscillations of these quantities experimentally
detected with Rydberg atom arrays in Ref. [14] show a clear
analogy with several previous numerical studies of the real-
time dynamics of higher-spin QLMs [26] as well as of the
Schwinger model [24,25,45] and Higgs theories [21]. In
addition, as noted in Ref. [38], the dynamics discussed here
describes the coherent oscillations of the parity-symmetric
order parameter (in our case, hÊj;jþ1i) as a function of time,
reminiscent of the decay of a chiral condensate in QCD
[27]. We thus provide here a bridge among all these
observations.
However, if fermionic particles are sufficiently heavy,

with m=w exceeding a critical threshold, pair production is
a virtual process and string inversion cannot be triggered, as
shown in Figs. 2(c) and 2(d). We find that this behavior is
related to the quantum phase transition occurring in the FSS
model at δc ¼ −0.655jΩj [36]. This transition corresponds
to the spontaneous breaking of the chiral symmetry in the
LGT Eq. (4) at mc ¼ 0.655jwj [46]. Figure 2 shows the
temporal evolution of the same initial uniform flux con-
figuration [CDW or “string” in Fig. 1(c)] upon increasing
values of the mass m=w ¼ 0, 0.25, 0.655, 1.5 correspond-
ing to the dynamics at m < mc [Figs. 2(a) and 2(b)], at the
quantum critical point m ¼ mc [Fig. 2(c)], and at m > mc
[Fig. 2(d)].
Figure 3 further illustrates the appearance of string

inversions for m < mc and the corresponding slow dynam-
ics. Figure 3(a) shows the long-lived revivals of the many-
body wave function in terms of the evolution of the
probability G%ðtÞ of finding the system at time t in the
initial bare vacuum state j0þi or in the opposite one j0−i,
corresponding to Gþ or G−, respectively, as well as in terms
of the time-dependent density ρ of particle-antiparticle pairs.
The entanglement entropy of half system also displays an
oscillatory behavior (see Appendix A). Figure 3(b) shows
the scaling of the collective oscillations of the electric field
with respect to the system size L, as well as their persistence
with a small but nonvanishing fermion mass m < mc.

B. Slow dynamics in the Schwinger model

The above phenomenology is not restricted to QLMs, but
is expected to be a generic feature of LGTs including
dynamical matter. We show this in the context of a
Wilsonian LGT, i.e., the lattice version of the Schwinger
model in Eq. (3). As discussed below, the model dynamics

is, at the lattice level, remarkably different from the FSS
model (no constraints when written in spin language,
different Hilbert space scaling, different interactions,
etc.). The key aspect is, instead, the common field-theo-
retical framework.
In this case, Ûj;jþ1 ¼ eiϑ̂j;jþ1 are U(1) parallel transport-

ers with vector potential ϑ̂j;jþ1, and the corresponding
electric field operator is Êj;jþ1 ¼ L̂j;jþ1 − θ=ð2πÞ, where
L̂j;jþ1 have integer spectrum and θ=ð2πÞ represents
a uniform classical background field parametrized by the
θ angle. Canonical commutation relations for the gauge
degrees of freedom read ½ϑ̂j;jþ1; L̂p;pþ1' ¼ iδjp. In our
numerical simulations, we utilize the spin formulation of
the model obtained upon integration of the gauge fields
under open boundary conditions [47,48].
We consider the case of a θ angle with θ ¼ π, such that

the electric field Êj;jþ1 has half-integer spectrum. Then, in
the limit J=w → ∞, the term JÊ2

j;jþ1 in the Hamiltonian
suppresses all the values of the electric field that are
different from %1=2. This implies that the electric field
can be represented by a spin-1=2 Ŝz operator and that the
lattice Schwinger model is equivalent to the spin-1=2 QLM
discussed above. We find evidence that the corresponding
behavior persists qualitatively down to J ≃ w, when the
electrostatic energy competes with the matter-field inter-
action, as shown in the third column of Fig. 2. Despite the
strong quantum fluctuations allowed in principle by the
exploration of a locally infinite-dimensional Hilbert space,
a qualitative similarity with the case of the locally finite-
dimensional Hilbert space of the QLM is manifest in the
second column of Fig. 2, related to the observed dynamics
in Ref. [14]. At a more quantitative level, we see that the
periods of the oscillations in the lattice Schwinger model
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FIG. 3. Characterization of slow dynamics in the FSS model.
(a) Hilbert space characterization of the persistent string inver-
sions (m ¼ 0, L ¼ 28): alternating strong revivals of the overlaps
G%ðtÞ ¼ jh0%je−iĤtj0þij2 with the two bare vacuum states j0%i,
corresponding to the two charge-density wave configurations of
Rydberg atom arrays. Both the total density ρ ¼ hρ̂ji of particle-
antiparticle pairs, with ρ̂j ¼ ð−1ÞjΦ̂†

j Φ̂j þ ½1 − ð−1Þj'=2, and the
half-chain entanglement entropy (see the Appendix A) have
regularly spaced maxima between the peaks. (b) Persistent
oscillations of electric field for two values of the mass and of
the system size.
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OSCILLATING FIDELITY & 
ENTANGLEMENT ENTROPY

Compared to the opposite strategy of integrating out the
gauge fields, our procedure based on integrating out matter
degrees of freedom has major experimental implications.
With the first approach, one would obtain linearly raising
potentials which do not appear easily in the synthetic
quantum systems, and lead to very large energy scales (of
the order of the system size). Since the overall timescale of
most experiments is limited by noise, having couplings
with relative ratios of order L is a severe limitation for
analog experiments and partially affects also digital efforts.
With our approach, the only states that would violate Gauss
law are nearest-neighbor occupied sites which are strongly
suppressed by the Rydberg blockade. Additional terms in
the Hamiltonian, such as next-nearest neighbor interactions
of Rydberg excitations, are mapped to gauge-invariant
terms (e.g., next-nearest neighbor interactions between
electric fields). From a theoretical viewpoint, the line of
thought of our scheme is similar to the one used in hybrid
Monte Carlo schemes, where one first integrates out the
matter fields and then deals with a purely bosonic action.
Beyond providing a direct link between Gauss law and

the Rydberg blockade mechanism, the most important
feature of the mapping is that, differently from other
remarkable relations between ĤFSS and lattice models with
gauge symmetries [40,41], it provides an immediate con-
nection between Rydberg experiments and particle physics
phenomena, as we describe below.

IV. REAL-TIME DYNAMICS OF LATTICE
GAUGE THEORIES IN RYDBERG

ATOM EXPERIMENTS

A. Gauge-theory interpretation of slow dynamics

The exact description of Rydberg-blockaded chains in
terms of a U(1) LGT allows us to shed a new light on the
slow dynamics reported in Ref. [14], by interpreting them
in terms of well-studied phenomena in high-energy phys-
ics, related to the production of particle-antiparticle pairs
after a quench akin to the Schwinger mechanism.
In the experiment, the system was initialized in a charge-

density wave state [CDW1 in Fig. 1(c)], and subsequently,
the Hamiltonian was quenched, inducing slowly decaying
oscillations between CDW1 and CDW2. As shown in
Fig. 1(c), CDW1 and CDW2 are mapped onto the two
states of the S ¼ 1=2 QLM with uniform electric field
Ŝzj;jþ1 ¼ #1=2. The experimental results in Ref. [14] may
thus be interpreted as the evolution starting from one of the
two degenerate bare particle vacua j0#i (i.e., the vacua in
the absence of quantum fluctuations, w ¼ 0) of the gauge
theory. In Fig. 1(d) and in the first column of Fig. 2, we
illustrate these dynamics as it would be observed in the
excitation density hnji along the Rydberg atom quantum
simulators (“Rydberg”) and compare it with that of the
electric field hEj;jþ1i within its gauge-theory description
(“Quantum link model”) in Fig. 1(e) and in the second

column of Fig. 2, respectively, utilizing exact diagonaliza-
tion [42].
The qualitative features of this evolution are strongly

affected by quantum fluctuations, whose impact is quanti-
fied by the ratio between the coupling constant w and the
particles massm. For small values ofm=w [Figs. 2(a) and 2
(b)], production of particle-antiparticle pairs occurs at a
finite rate. We remark that this effect is reminiscent of the
Schwinger mechanism [6], which, however, concerns pair
creation from the true (and not the bare) vacuum. These
particles get accelerated by the electric field and progres-
sively screen it, until coherent pair annihilation takes place

(a) Rydberg Quantum link Schwinger

(b)

(c)

(d)

FIG. 2. Slow dynamics in Rydberg atoms, the U(1) quantum
link model (QLM), and the lattice Schwinger model. Coherent
quantum evolution of the local Rydberg excitation density profile
(first column) njðtÞ ¼ hn̂jðtÞi in the FSS model [see Eq. (2)],
starting from a charge-density wave, of the local electric field
profile (second column) Ej;jþ1ðtÞ ¼ hŜzj;jþ1ðtÞi in the QLM, and
(third column) hL̂j;jþ1ðtÞ − θ=ð2πÞi (see main text) in the lattice
Schwinger model [see Eq. (3)] with J=w ¼ 1.5 and θ ¼ π. The
four rows correspond to increasing values of the detuning δ
(Rydberg) or, equivalently, of the particles mass m ¼ −δ (QLM
and Schwinger model). Figures 1(d) and 1(e) correspond to the
first two plots in (a) here. Data in the first and second columns are
connected by a unitary transformation, while a remarkable
similarity is manifest between the second and third column
despite the larger Hilbert space of the gauge degrees of freedom in
the Schwinger model. The persistent string inversions observed
within the symmetric phase with m < mc ¼ 0.655jwj in rows (a)
and (b) are suppressed as the quantum critical point is ap-
proached. The dynamics in the third column feature edge effects
due to the imposed open boundary conditions.
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HU(1)
QLM = −w∑

j,μ
[ψ†

j Uj,j+μψj+μ + H.c.] + m∑
j

(−1) jψ†
j ψj + J∑

j

E2
j,j+μHFSS = ∑

j

(Ωσx
j + 2Δnj)

SCARS IN 
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HALIMEH ET AL, PRB 107, L201105 (2023) 
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FIG. 2. Model encoding into ions qudit.– The six states needed
for the model (6) are encoded within the eight Zeeman sub-
levels of the S1�2 and D5�2 states of 40Ca+ ions. By encoding
the states �3� and �4� into the S1�2 manifold all matrix ele-
ments can be implemented via direct transitions. The boxes
on the left show the driving scheme to implement the Â(k)
and B̂(k) matrices, k = 1,2, while the boxes on the right show
the implementation of the ↵̂(k) and �̂(k) matrices. The rela-
tive Rabi frequencies needed for each transition are indicated
next to the corresponding arrows with two di↵erent colors,
red for ⌦ and dark red for

√
2⌦ .

the motional sideband with frequency ⌫, i.e., �� − ⌫�� �.
A hopping block for two target ions n and n+1 can then
be implemented via the generalized MS Hamiltonian

H̄
(k)
AB
= �h⌘⌦

2
�Â(k)

n
+ B̂(k)

n+1� [â†
e
i(⌫−�)t + âe−i(⌫−�)t], (9)

where â (â†) is the phonon annihilation (creation) oper-
ator. In the regime of weak driving, ⌘⌦ � �⌫ − ��, the
phononic bath dispersively mediates interactions among
the two ions according to the e↵ective Hamiltonian

H̄
(k)
AB
� �h (⌘⌦)2

4(⌫ − �) �Â(k)n
+ B̂(k)

n+1�2 , (10)

where, in order to minimize the population of the mo-
tional mode, we assumed to let the system evolve for
a time dt̄ = 2⇡`��⌫ − ��, with ` being a positive inte-
ger [68, 74]. To perform the dynamics in natural units,
as in Eq. (6), we re-scale this time by the rate associated
with the MS gate, i.e. dt̄ → dt = ⇡(⌘⌦��⌫ − ��)2. The
Hamiltonian (10), once re-scaled, exactly reproduces the
desired hopping block up to unwanted single qudit rota-

tions coming from the terms (Â(k)n )2 and (B̂(k)
n+1)2. Upon

aggregating contributions from all transitions, these ro-
tations simplify to straightforward diagonal matrices.
These terms can then be combined with the mass and
gauge Hamiltonians of Eq. (6), resulting in the following
single qudit Hamiltonian:

Hn =m(−1)nM̂ + g2Ĉ −HA2 −HB2 (11)

where the diagonal terms in natural units read

HA2 = diag(2,1,2,4,2,1)
HB2 = diag(2,1,4,2,2,1) . (12)

Note that, for n = 1, besides the gauge and mass terms,
only HA2 contributes to Hamiltonian (11), while for
n = N only the HB2 term does. The Hamiltonian terms
given in Eq. (10) and Eq. (11) constitute the fundamen-
tal building block of the digital quantum simulation to be
discussed in Section IV. Importantly, with this procedure
involving generalized MS gates based on the simultaneous
driving of four transitions, only 2 entangling operations
(one per each hopping block) are necessary to implement
the hopping between two neighboring sites.

B. Intermediate scheme

The native qudit-gate scheme outlined in the previous
section, o↵ers the advantage of achieving an exception-
ally short circuit depth. Nevertheless, the implementa-
tion of this method presents technical challenges, primar-
ily stemming from the requirement for fine-tuned calibra-
tion of all driven transitions, see Sec. V. Fortunately, this
demand can be released by an intermediate scheme re-
lying on the simultaneous driving of only two distinct
disjoint transitions. The core idea involves decompos-

ing the interaction matrices as Â
(k) = ↵̂

(k)
1
+ ↵̂

(k)
2

and

B̂
(k) = �̂(k)

1
+ �̂(k)

2
, where k = 1,2 and

↵̂
(1)
1
= �̃2,3

x
+√2�̃1,4

x
↵̂
(2)
1
= −(�̃2,3

y
+√2�̃1,4

y
)

↵̂
(1)
2
= �̃3,6

x
+√2�̃4,5

x
↵̂
(2)
2
= −(�̃3,6

y
+√2�̃4,5

y
)

�̂
(1)
1
= �̃4,6

y
+√2�̃1,3

y
�̂
(2)
1
= �̃4,6

x
+√2�̃1,3

x

�̂
(1)
2
= �̃2,4

y
+√2�̃3,5

y
�̂
(2)
2
= �̃2,4

x
+√2�̃3,5

x

.

(13)

For this decomposition, in contrast to the earlier ap-
proach involving only two entangling gates, a total of
8 operations are required to reproduce the hopping be-
tween two neighboring sites. The di↵erent contributions
can be once again implemented by simultaneously driv-
ing the two target transitions with a pair of bi-chromatic
pulses characterized by Rabi frequencies (⌦,

√
2⌦), as il-

lustrated in Fig. 2. Assuming the validity of the same
assumptions employed in the preceding section, we de-
rive the e↵ective Hamiltonian

H̄
(k)
↵q�q′ � �h (⌘⌦)

2

4(⌫ − �) �↵̂(k)q,n
+ �̂(k)

q′,n+1�2 , (14)

where q, q
′ = 1,2 and we again set the time step to dt̄ =

2⇡`��⌫ − ��. As before, the phonon-mediated interaction
induces unwanted single qudit transitions that reduce,
after re-scaling in the natural units, to twice the same
diagonal matrices of in Eq. (12), Hn =m(−1)nM̂ +g2Ĉ −
2HA2 − 2HB2 .

40Ca+

CALAJO’ ET AL, ARXIV:2402.07987 (2024)
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ΔE ≈ 2π/T
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FIG. 2. Model encoding into ions qudit.– The six states needed
for the model (6) are encoded within the eight Zeeman sub-
levels of the S1�2 and D5�2 states of 40Ca+ ions. By encoding
the states �3� and �4� into the S1�2 manifold all matrix ele-
ments can be implemented via direct transitions. The boxes
on the left show the driving scheme to implement the Â(k)
and B̂(k) matrices, k = 1,2, while the boxes on the right show
the implementation of the ↵̂(k) and �̂(k) matrices. The rela-
tive Rabi frequencies needed for each transition are indicated
next to the corresponding arrows with two di↵erent colors,
red for ⌦ and dark red for

√
2⌦ .

the motional sideband with frequency ⌫, i.e., �� − ⌫�� �.
A hopping block for two target ions n and n+1 can then
be implemented via the generalized MS Hamiltonian

H̄
(k)
AB
= �h⌘⌦

2
�Â(k)

n
+ B̂(k)

n+1� [â†
e
i(⌫−�)t + âe−i(⌫−�)t], (9)

where â (â†) is the phonon annihilation (creation) oper-
ator. In the regime of weak driving, ⌘⌦ � �⌫ − ��, the
phononic bath dispersively mediates interactions among
the two ions according to the e↵ective Hamiltonian

H̄
(k)
AB
� �h (⌘⌦)2

4(⌫ − �) �Â(k)n
+ B̂(k)

n+1�2 , (10)

where, in order to minimize the population of the mo-
tional mode, we assumed to let the system evolve for
a time dt̄ = 2⇡`��⌫ − ��, with ` being a positive inte-
ger [68, 74]. To perform the dynamics in natural units,
as in Eq. (6), we re-scale this time by the rate associated
with the MS gate, i.e. dt̄ → dt = ⇡(⌘⌦��⌫ − ��)2. The
Hamiltonian (10), once re-scaled, exactly reproduces the
desired hopping block up to unwanted single qudit rota-

tions coming from the terms (Â(k)n )2 and (B̂(k)
n+1)2. Upon

aggregating contributions from all transitions, these ro-
tations simplify to straightforward diagonal matrices.
These terms can then be combined with the mass and
gauge Hamiltonians of Eq. (6), resulting in the following
single qudit Hamiltonian:

Hn =m(−1)nM̂ + g2Ĉ −HA2 −HB2 (11)

where the diagonal terms in natural units read

HA2 = diag(2,1,2,4,2,1)
HB2 = diag(2,1,4,2,2,1) . (12)

Note that, for n = 1, besides the gauge and mass terms,
only HA2 contributes to Hamiltonian (11), while for
n = N only the HB2 term does. The Hamiltonian terms
given in Eq. (10) and Eq. (11) constitute the fundamen-
tal building block of the digital quantum simulation to be
discussed in Section IV. Importantly, with this procedure
involving generalized MS gates based on the simultaneous
driving of four transitions, only 2 entangling operations
(one per each hopping block) are necessary to implement
the hopping between two neighboring sites.

B. Intermediate scheme

The native qudit-gate scheme outlined in the previous
section, o↵ers the advantage of achieving an exception-
ally short circuit depth. Nevertheless, the implementa-
tion of this method presents technical challenges, primar-
ily stemming from the requirement for fine-tuned calibra-
tion of all driven transitions, see Sec. V. Fortunately, this
demand can be released by an intermediate scheme re-
lying on the simultaneous driving of only two distinct
disjoint transitions. The core idea involves decompos-

ing the interaction matrices as Â
(k) = ↵̂

(k)
1
+ ↵̂

(k)
2

and

B̂
(k) = �̂(k)

1
+ �̂(k)

2
, where k = 1,2 and

↵̂
(1)
1
= �̃2,3

x
+√2�̃1,4

x
↵̂
(2)
1
= −(�̃2,3

y
+√2�̃1,4

y
)

↵̂
(1)
2
= �̃3,6

x
+√2�̃4,5

x
↵̂
(2)
2
= −(�̃3,6

y
+√2�̃4,5

y
)

�̂
(1)
1
= �̃4,6

y
+√2�̃1,3

y
�̂
(2)
1
= �̃4,6

x
+√2�̃1,3

x

�̂
(1)
2
= �̃2,4

y
+√2�̃3,5

y
�̂
(2)
2
= �̃2,4

x
+√2�̃3,5

x

.

(13)

For this decomposition, in contrast to the earlier ap-
proach involving only two entangling gates, a total of
8 operations are required to reproduce the hopping be-
tween two neighboring sites. The di↵erent contributions
can be once again implemented by simultaneously driv-
ing the two target transitions with a pair of bi-chromatic
pulses characterized by Rabi frequencies (⌦,

√
2⌦), as il-

lustrated in Fig. 2. Assuming the validity of the same
assumptions employed in the preceding section, we de-
rive the e↵ective Hamiltonian

H̄
(k)
↵q�q′ � �h (⌘⌦)

2

4(⌫ − �) �↵̂(k)q,n
+ �̂(k)

q′,n+1�2 , (14)

where q, q
′ = 1,2 and we again set the time step to dt̄ =

2⇡`��⌫ − ��. As before, the phonon-mediated interaction
induces unwanted single qudit transitions that reduce,
after re-scaling in the natural units, to twice the same
diagonal matrices of in Eq. (12), Hn =m(−1)nM̂ +g2Ĉ −
2HA2 − 2HB2 .

40Ca+

CALAJO’ ET AL, ARXIV:2402.07987 (2024)

https://arxiv.org/abs/2402.07987
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FIG. 2. Model encoding into ions qudit.– The six states needed
for the model (6) are encoded within the eight Zeeman sub-
levels of the S1�2 and D5�2 states of 40Ca+ ions. By encoding
the states �3� and �4� into the S1�2 manifold all matrix ele-
ments can be implemented via direct transitions. The boxes
on the left show the driving scheme to implement the Â(k)
and B̂(k) matrices, k = 1,2, while the boxes on the right show
the implementation of the ↵̂(k) and �̂(k) matrices. The rela-
tive Rabi frequencies needed for each transition are indicated
next to the corresponding arrows with two di↵erent colors,
red for ⌦ and dark red for
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the motional sideband with frequency ⌫, i.e., �� − ⌫�� �.
A hopping block for two target ions n and n+1 can then
be implemented via the generalized MS Hamiltonian

H̄
(k)
AB
= �h⌘⌦

2
�Â(k)

n
+ B̂(k)

n+1� [â†
e
i(⌫−�)t + âe−i(⌫−�)t], (9)

where â (â†) is the phonon annihilation (creation) oper-
ator. In the regime of weak driving, ⌘⌦ � �⌫ − ��, the
phononic bath dispersively mediates interactions among
the two ions according to the e↵ective Hamiltonian

H̄
(k)
AB
� �h (⌘⌦)2

4(⌫ − �) �Â(k)n
+ B̂(k)

n+1�2 , (10)

where, in order to minimize the population of the mo-
tional mode, we assumed to let the system evolve for
a time dt̄ = 2⇡`��⌫ − ��, with ` being a positive inte-
ger [68, 74]. To perform the dynamics in natural units,
as in Eq. (6), we re-scale this time by the rate associated
with the MS gate, i.e. dt̄ → dt = ⇡(⌘⌦��⌫ − ��)2. The
Hamiltonian (10), once re-scaled, exactly reproduces the
desired hopping block up to unwanted single qudit rota-

tions coming from the terms (Â(k)n )2 and (B̂(k)
n+1)2. Upon

aggregating contributions from all transitions, these ro-
tations simplify to straightforward diagonal matrices.
These terms can then be combined with the mass and
gauge Hamiltonians of Eq. (6), resulting in the following
single qudit Hamiltonian:

Hn =m(−1)nM̂ + g2Ĉ −HA2 −HB2 (11)

where the diagonal terms in natural units read

HA2 = diag(2,1,2,4,2,1)
HB2 = diag(2,1,4,2,2,1) . (12)

Note that, for n = 1, besides the gauge and mass terms,
only HA2 contributes to Hamiltonian (11), while for
n = N only the HB2 term does. The Hamiltonian terms
given in Eq. (10) and Eq. (11) constitute the fundamen-
tal building block of the digital quantum simulation to be
discussed in Section IV. Importantly, with this procedure
involving generalized MS gates based on the simultaneous
driving of four transitions, only 2 entangling operations
(one per each hopping block) are necessary to implement
the hopping between two neighboring sites.

B. Intermediate scheme

The native qudit-gate scheme outlined in the previous
section, o↵ers the advantage of achieving an exception-
ally short circuit depth. Nevertheless, the implementa-
tion of this method presents technical challenges, primar-
ily stemming from the requirement for fine-tuned calibra-
tion of all driven transitions, see Sec. V. Fortunately, this
demand can be released by an intermediate scheme re-
lying on the simultaneous driving of only two distinct
disjoint transitions. The core idea involves decompos-

ing the interaction matrices as Â
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For this decomposition, in contrast to the earlier ap-
proach involving only two entangling gates, a total of
8 operations are required to reproduce the hopping be-
tween two neighboring sites. The di↵erent contributions
can be once again implemented by simultaneously driv-
ing the two target transitions with a pair of bi-chromatic
pulses characterized by Rabi frequencies (⌦,

√
2⌦), as il-

lustrated in Fig. 2. Assuming the validity of the same
assumptions employed in the preceding section, we de-
rive the e↵ective Hamiltonian
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↵q�q′ � �h (⌘⌦)
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4(⌫ − �) �↵̂(k)q,n
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where q, q
′ = 1,2 and we again set the time step to dt̄ =

2⇡`��⌫ − ��. As before, the phonon-mediated interaction
induces unwanted single qudit transitions that reduce,
after re-scaling in the natural units, to twice the same
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ΔE = ⟨H2⟩ − ⟨H⟩2 ≪ Ē
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are no general theoretical arguments supporting the ETH, some
results do exist for restricted classes of systems. For instance, the
ETH holds12 in the case of an integrable hamiltonian weakly per-
turbed by a single matrix taken from a random gaussian ensemble.
Furthermore, nuclear shell model calculations have shown that
individual wavefunctions reproduce thermodynamic predictions20.
There are also rigorous proofs that some quantum systems, whose
classical counterparts are chaotic, satisfy the ETH in the semiclassical
limit21–24. More generally, for low-density billiards in the semi-
classical regime, the ETH follows from Berry’s conjecture13,25, which
in turn is believed to hold in semiclassical classically chaotic sys-
tems26. Finally, at the other end of the chaos–integrability spectrum,
in systems solvable by Bethe ansatz, observables are smooth functions
of the integrals of motion. This allows for the construction of indi-
vidual energy eigenstates that reproduce thermal predictions27.

In Fig. 3a–c we demonstrate that the ETH is in fact the mechanism
responsible for thermal behaviour in our non-integrable system.
Figure 3c additionally shows that the second scenario mentioned
above does not occur, because the fluctuations in the EONs jCaj2
are large. Thermal behaviour also requires that both the diagonal
and the chosen thermal ensemble have sufficiently narrow energy
distributions r(E) (the product of the probability distribution and
the density of states), meaning that in the energy region where the
energy distributions r(E) are appreciable, the slope of the curve of the
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Figure 2 | Thermalization in classical versus quantum mechanics. a, In
classical mechanics, time evolution constructs the thermal state from an
initial state that generally bears no resemblance to the former. b, In quantum
mechanics, according to the ETH, every eigenstate of the hamiltonian always
implicitly contains a thermal state. The coherence between the eigenstates
initially hides it, but time dynamics reveals it through dephasing.
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Figure 3 | Eigenstate thermalization hypothesis. a, In our non-integrable
system, the momentum distribution n(kx) for two typical eigenstates with
energies close to E0 is identical to the microcanonical result, in accordance
with the ETH. b, Upper panel: the EEV n(kx 5 0), considered as a function of
the eigenstate energy resembles a smooth curve. Lower panel: the energy
distributions r(E) (in units of J21) of the three ensembles we consider here.
c, Detailed view of n(kx 5 0) (left-hand scale) and | Ca | 2 (right-hand scale)
for 20 eigenstates around E0. d, In the integrable system, the values of n(kx)
for two eigenstates, a and b, with energies close to E0 and for the

microcanonical and diagonal ensembles are very different from each other;
that is, the ETH fails. e, Upper panel: the EEV n(kx 5 0), considered as a
function of the eigenstate energy gives a thick cloud of points rather than
resembling a smooth curve. Lower panel: the energy distributions in the
integrable system are similar to the non-integrable ones depicted in b. f,
Correlation between n(kx 5 0) and | Ca | 2 for 20 eigenstates around E0. This
correlation explains why in d the microcanonical prediction for n(kx 5 0) is
larger than the diagonal one.
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NON-INTEGRABLE MODEL OF 
N BODY SYSTEM: WITH  

NON-DEGENERATE SPECTRUM

H = ∑
α

Eα |Φα⟩

⟨H⟩ = Ē

ΔE = ⟨H2⟩ − ⟨H⟩2 ≪ Ē

|ψ(t)⟩ = ∑
α

Cαe−iEαt |Φα⟩

HYPOTHESIS I

Oαα = ⟨Φα | Ô |Φα⟩ = ⟨Ô⟩thm + Δα

Δ̄α = 0 Δ2
α ∼ ⟨Ô2⟩MC,αe−S(E)

 IS THERMAL ~ CONSTANT 
VALUE IN A SMALL WINDOW 

Oαα

∀α with |Eα − Ē | < ΔE

HYPOTHESIS II

⟨O(t)⟩ =
N

∑
α

|cα |2 Oαα ∼ ⟨O⟩thm

N

∑
α

|cα |2 = ⟨O⟩thm

⟨O⟩MC =
NE,ΔE

∑
α

Oαα

NE,ΔE
∼ ⟨O⟩thm

NE,ΔE

∑
α

1
NE,ΔE

= ⟨O⟩thm

CONSEQUENCE

DIAGONAL = MICROCANONICAL 
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Vertices depict the boundary @I of I with surface area s(I) = |@I|.

of the region I , the state will not be pure in general and will
have a non-vanishing von-Neumann entropy S(⇢I). 1

In contrast to thermal states this entropy does not originate
from a lack of knowledge about the microstate of the sys-
tem. Even at zero temperature we will encounter a non-zero
entropy! This entropy arises because of a very fundamental
property of quantum mechanics: Entanglement. This quite in-
triguing trait of quantum mechanics gives rise to correlations
even in situations where the randomness cannot be traced back
to a mere lack of knowledge. The mentioned quantity, the en-
tropy of a subregion is called entanglement entropy or geomet-
ric entropy and, in quantum information, entropy of entangle-
ment, which represents an operationally defined entanglement
measure for pure states (for recent reviews see refs.125,186).

In the context of quantum field theory, questions of scal-
ing of entanglement entropies in the size of I have some tra-
dition. Seminal work on the geometric entropy of the free
Klein-Gordon field23,207 and subsequent work on conformal
field theories36,43,118,122,226 was driven in part by the intriguing
suggested connection to the Bekenstein-Hawking black hole
entropy17,18,117.

In recent years, studies of properties of the entanglement
entropy in this sense have enjoyed a revival initiated in
refs.7,171,172,223. Importantly, this renewed activity is benefit-
ting from the new perspectives and ideas of quantum informa-
tion theory, and from the realisation of their significance for
the understanding of numerical methods and especially their
efficiency for describing quantum many-body physics. Quan-
tum information theory also provides novel conceptual and
mathematical techniques for determining properties of the ge-
ometric entropy analytically.

At the heart of these studies are questions like: What role do
genuine quantum correlations—entanglement—play in quan-
tum many-body systems? Typically, in such investigations,
one abstracts to a large extent from the microscopic specifics
of the system: Quite in the spirit of studies of critical phe-

1 Of interest are also other entropies, such as the Renyi entropies, S↵(⇢) =
(1 � ↵)�1 log2 tr[⇢↵] with ↵ � 0. For ↵ & 1 the usual von-Neumann
entropy is recovered. In particular in the context of simulatability, Renyi
entropies for arbitrary ↵ play an important role.

nomena, one thinks less of very detailed properties, but is
rather interested in the scaling of the entanglement entropy
when the distinguished region grows in size. In fact, for quan-
tum chains, this scaling of entanglement as genuine quantum
correlations—a priori very different from the scaling of two-
point correlation functions—reflects to a large extent the crit-
ical behavior of the quantum many-body system, and shares
some relationship to conformal charges.

At first sight one might be tempted to think that the entropy
of a distinguished region I , will always possess an extensive
character. Such a behavior is referred to as a volume scaling
and is observed for thermal states. Intriguingly, for typical
ground states, however, this is not at all what one encounters:
Instead, one typically finds an area law, or an area law with
a small (often logarithmic) correction: This means that if one
distinguishes a region, the scaling of the entropy is merely
linear in the boundary area of the region. The entanglement
entropy is then said to fulfill an area law. It is the purpose of
this article to review studies on area laws and the scaling of
the entanglement entropy in a non-technical manner.

The main four motivations to approach this question
(known to the authors) are as follows:

• The holographic principle and black hole entropy:
The historical motivation to study the entanglement or
geometric entropy stems from considerations of black
hole physics: It has been suggested in the seminal work
of refs.23,207 that the area law of the geometric entropy
for a discrete version of a massless free scalar field—
then numerically found for an imaginary sphere in a ra-
dial symmetry—could be related to the physics of black
holes,118 in particular the Bekenstein-Hawking entropy
of a black hole which is proportional to its bound-
ary surface. It has been muted that the holographic
principle29—the conjecture that the information con-
tained in a volume of space can be represented by a the-
ory which lives in the boundary of that region—could
be related to the area law behavior of the entanglement
entropy in microscopic theories.

• Distribution of quantum correlations in quantum
many-body systems: Area laws also say something
quite profound on how quantum correlations are
distributed in ground states of local quantum many-
body systems. Interactions in quantum many-body
systems are typically local, which means that sys-
tems interact only over a short distance with a finite
number of neighbors. The emergence of an area
law then provides support for the intuition that short
ranged interactions require that quantum correlations
between a distinguished region and its exterior are
established via its boundary surface. That a strict
area law emerges is by no means obvious from
the decay of two-point correlators, as we will see.
Quantum phase transitions are governed by quantum
fluctuations at zero temperature, so it is more than
plausible to observe signatures of criticality on the
level of entanglement and quantum correlations. This
situation is now particularly clear in one-dimensional

EISERT, (2010)

HOW MUCH ENTANGLEMENT?
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FIG. 1 A lattice L with a distinguished set I ⇢ L (shaded area).
Vertices depict the boundary @I of I with surface area s(I) = |@I|.

of the region I , the state will not be pure in general and will
have a non-vanishing von-Neumann entropy S(⇢I). 1

In contrast to thermal states this entropy does not originate
from a lack of knowledge about the microstate of the sys-
tem. Even at zero temperature we will encounter a non-zero
entropy! This entropy arises because of a very fundamental
property of quantum mechanics: Entanglement. This quite in-
triguing trait of quantum mechanics gives rise to correlations
even in situations where the randomness cannot be traced back
to a mere lack of knowledge. The mentioned quantity, the en-
tropy of a subregion is called entanglement entropy or geomet-
ric entropy and, in quantum information, entropy of entangle-
ment, which represents an operationally defined entanglement
measure for pure states (for recent reviews see refs.125,186).

In the context of quantum field theory, questions of scal-
ing of entanglement entropies in the size of I have some tra-
dition. Seminal work on the geometric entropy of the free
Klein-Gordon field23,207 and subsequent work on conformal
field theories36,43,118,122,226 was driven in part by the intriguing
suggested connection to the Bekenstein-Hawking black hole
entropy17,18,117.

In recent years, studies of properties of the entanglement
entropy in this sense have enjoyed a revival initiated in
refs.7,171,172,223. Importantly, this renewed activity is benefit-
ting from the new perspectives and ideas of quantum informa-
tion theory, and from the realisation of their significance for
the understanding of numerical methods and especially their
efficiency for describing quantum many-body physics. Quan-
tum information theory also provides novel conceptual and
mathematical techniques for determining properties of the ge-
ometric entropy analytically.

At the heart of these studies are questions like: What role do
genuine quantum correlations—entanglement—play in quan-
tum many-body systems? Typically, in such investigations,
one abstracts to a large extent from the microscopic specifics
of the system: Quite in the spirit of studies of critical phe-

1 Of interest are also other entropies, such as the Renyi entropies, S↵(⇢) =
(1 � ↵)�1 log2 tr[⇢↵] with ↵ � 0. For ↵ & 1 the usual von-Neumann
entropy is recovered. In particular in the context of simulatability, Renyi
entropies for arbitrary ↵ play an important role.

nomena, one thinks less of very detailed properties, but is
rather interested in the scaling of the entanglement entropy
when the distinguished region grows in size. In fact, for quan-
tum chains, this scaling of entanglement as genuine quantum
correlations—a priori very different from the scaling of two-
point correlation functions—reflects to a large extent the crit-
ical behavior of the quantum many-body system, and shares
some relationship to conformal charges.

At first sight one might be tempted to think that the entropy
of a distinguished region I , will always possess an extensive
character. Such a behavior is referred to as a volume scaling
and is observed for thermal states. Intriguingly, for typical
ground states, however, this is not at all what one encounters:
Instead, one typically finds an area law, or an area law with
a small (often logarithmic) correction: This means that if one
distinguishes a region, the scaling of the entropy is merely
linear in the boundary area of the region. The entanglement
entropy is then said to fulfill an area law. It is the purpose of
this article to review studies on area laws and the scaling of
the entanglement entropy in a non-technical manner.

The main four motivations to approach this question
(known to the authors) are as follows:

• The holographic principle and black hole entropy:
The historical motivation to study the entanglement or
geometric entropy stems from considerations of black
hole physics: It has been suggested in the seminal work
of refs.23,207 that the area law of the geometric entropy
for a discrete version of a massless free scalar field—
then numerically found for an imaginary sphere in a ra-
dial symmetry—could be related to the physics of black
holes,118 in particular the Bekenstein-Hawking entropy
of a black hole which is proportional to its bound-
ary surface. It has been muted that the holographic
principle29—the conjecture that the information con-
tained in a volume of space can be represented by a the-
ory which lives in the boundary of that region—could
be related to the area law behavior of the entanglement
entropy in microscopic theories.

• Distribution of quantum correlations in quantum
many-body systems: Area laws also say something
quite profound on how quantum correlations are
distributed in ground states of local quantum many-
body systems. Interactions in quantum many-body
systems are typically local, which means that sys-
tems interact only over a short distance with a finite
number of neighbors. The emergence of an area
law then provides support for the intuition that short
ranged interactions require that quantum correlations
between a distinguished region and its exterior are
established via its boundary surface. That a strict
area law emerges is by no means obvious from
the decay of two-point correlators, as we will see.
Quantum phase transitions are governed by quantum
fluctuations at zero temperature, so it is more than
plausible to observe signatures of criticality on the
level of entanglement and quantum correlations. This
situation is now particularly clear in one-dimensional
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a ⋅ H2D
SU(2) =

1
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∑
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j
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γα Uβγ
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COLOR VACUUM PERMITTIVITY 

 [ϵc] =
charge2 ⋅ length2−D

energy

COLOR-ELECTRIC FIELD 
 [ℰ] =

energy
charge ⋅ length

QUARK RATIO 
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q2

c

2m0c2ϵc
∝
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qca2

2ℏcϵc
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E2
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HAMILTONIAN 
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3 − D
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It is possible to check that -Rishons transform covariantly under .  ζ ⃗T

[ ⃗T , ζa] = −
1
2 ∑

b

⃗σabζb [ ⃗T , ζ†
a] = − [ ⃗T , ζa]

†
=

1
2 ∑

b

ζ†
b ⃗σba

-Rishons have a unique gauge transformation algebra,  

generated by 

ζ
⃗T =

1
2 ∑

a,b

⃗σabc†
acb

 is genuinely local ⃗T

[ ⃗T 1, ζ2,a] = [ ⃗T 1, ψ2,a] = 0

 transforms like  do 
with  and  generators!
ζaζb† Uab

⃗L ⃗R

Left- and Right-generators of the gauge field at link  can be expressed like( j, j + μ)
⃗L j,μ = ⃗T j,+μ ⊗ 1j+μ,−μ

⃗R j,μ = 1j,+μ ⊗ ⃗T j+μ,−μ


