Optimisation of ultrafast singlet fission in 1D rings towards unit efficiency

MSCA PF: 101063375 SpinSC | Spin-mediated spectral conversion for efficient photovoltaics

- 1. Excitons in organic semiconductors
- 2. Overview of singlet fission
- 3. Optimising singlet fission in 1D rings

Inorganic materials Wannier-Mott excitons

Organic materials Frenkel excitons

Excitons in organic molecules

Excitons in organic molecules

$$H = H_{\rm ex} + H_{\rm ph} + H_{\rm ex-ph} \rightarrow \dot{\rho}_t = -i[H, \rho_t] + \mathcal{D}_\beta[\rho_t] \rightarrow$$

Exciton diffusion

$$H = H_{\rm ex} + H_{\rm ph} + H_{\rm ex-ph} \rightarrow \dot{\rho}_t = -i[H, \rho_t] + \mathcal{D}_\beta[\rho_t] \rightarrow$$

Exciton diffusion

Nature Physics, volume 13, pages182–188 (2017) J. Phys. Chem. Lett. 2015, 6, 2367–2378

ACS Energy Lett. 2017, 2, 2, 476–480

Optimal SF in molecular dimers

<u>Nature Communications</u> **10**, Article number: 4207 (2019) <u>Nature Communications</u> **10**, Article number: 1062 (2019)

Optimal SF in molecular dimers

Tree Tensor Networks with TDVP Dynamics

Non-perturbative excitonphonon dynamics

<u>Nature Communications</u> **10**, Article number: 4207 (2019) <u>Nature Communications</u> **10**, Article number: 1062 (2019) Challenges in extended solids

 ${
m dim}{\cal H}\propto 3^N$

- Exciton delocalisation
- Exciton-exciton interactions
- Strong exciton-phonon couplings
- Non-Markovian exciton dynamics

PRX Energy 3, 043003 – 30 October 2024

Optimisation of ultrafast singlet fission in 1D rings towards unit efficiency

Francesco Campaioli, Alice Pagano, Daniel Jaschke, Simone Montangero

The system: 1D rings

Delocalized excitons in natural light-harvesting complexes

Seogjoo J. Jang and Benedetta Mennucci Rev. Mod. Phys. **90**, 035003 – Published 21 August 2018

Many-body model of singlet fission

Conserved quantity **Excitons:** $H_{\text{ex}} = H_S + H_T + H_{\text{int}}$ $\mathcal{C} := 2\mathcal{N}_S + \mathcal{N}_T$ $= \sum_{i=1}^{N} \varepsilon_{S} S_{i}^{\dagger} S_{i} + \sum_{i=1}^{N} \left(J_{S} S_{i}^{\dagger} S_{i+1} + h.c. \right)$ **T**₁ hopping T₁ energy T_1T_1 interactions $+\sum_{i=1}^{N}\varepsilon_{T}\mathcal{T}_{i}^{\dagger}\mathcal{T}_{i}+\sum_{i=1}^{N}\left(J_{T}\mathcal{T}_{i}^{\dagger}\mathcal{T}_{i+1}+h.c.\right)+\sum_{i=1}^{N}\chi\mathcal{T}_{i}^{\dagger}\mathcal{T}_{i+1}^{\dagger}\mathcal{T}_{i+1}\mathcal{T}_{i},$ S1- T_1T_1 coupling $+\sum_{i=1}^{N} \gamma \left(\mathcal{T}_{i}^{\dagger} \mathcal{T}_{i+1}^{\dagger} \mathcal{S}_{i} + \mathcal{T}_{i}^{\dagger} \mathcal{T}_{i+1}^{\dagger} \mathcal{S}_{i+1} + h.c. \right).$ J. Chem. Phys. 143, 044118 (2015)

Open dynamics (exciton-phonon couplings)

Vibrational modes: $H = H_{ex} + H_{ph} + H_{ex-ph}$

$$H_{\rm ph} = \sum_{i=1}^{N} \sum_{l} \omega_{i,l} \hat{a}_{i,l}^{\dagger} \hat{a}_{i,l}$$

$$H_{\text{ex-ph}} = \sum_{i=1}^{N} g_{i,l} A_{i,l} \otimes (\hat{a}_{i,l}^{\dagger} + \hat{a}_{i,l})$$

1. system

bjective function:
$$\eta(t):=rac{1}{2}rac{\langle\mathcal{N}_T
angle_t}{\langle\mathcal{N}_S
angle_0}$$

- Singlet delocalisation
- Fast triplets
- Repulsive triplet-triplet interaction
- Disorder in triplet hopping

Scaling with the system size

- Singlet delocalisation = more pairs of sites where to split
- **More sites** = triplet re-encounters are less likely

Scaling with the system size

• Singlet delocalisation = more pairs of sites where to split

• **More sites** = triplet re-encounters are less likely

Effect of disorder

- **Poincare return theorem:** Initial singlet state must reform.
- Disorder makes recurrences less likely in the **ultrafast** time scale.

Dissipative dynamics (exciton-phonon couplings)

Dissipative dynamics (exciton-phonon couplings)

a Optimised dissipative solution

Can reach 100% efficiency

C Efficiency beyond perturbative regime

- Why non-perturbative approach: Efficiency depends on coupling strength
- **Computationally demanding:** Equivalent number of qubits

$$N_{\rm qbit} = N \log_2(d_{\rm ex}d_{\rm ph})$$

Summary

Singlet fission efficiency in extended solids increases with:

- singlet delocalization,
- triplet-triplet repulsive interaction,
- disorder in triplet hopping.

If exciton-phonon couplings can be tuned, unit efficiency maybe achieved.

Outlooks

- Towards thin films (2D) and molecular crystal (3D)
- Optimisation of other optoelectronic devices
- Quantum analog simulations

Trapped ion simulations of electron transfer

Article Published: 28 August 2023

Direct observation of geometric-phase interference in dynamics around a conical intersection

C. H. Valahu, V. C. Olaya-Agudelo, R. J. MacDonell, T. Navickas, A. D. Rao, M. J. Millican, J. B. Pérez-Sánchez, J. Yuen-Zhou, M. J. Biercuk, C. Hempel, T. R. Tan 🖾 & I. Kassal 🖾

Nature Chemistry 15, 1503–1508 (2023) Cite this article

Phys. Rev. Lett. **126**, 233404 (2021)

Trapped-Ion Quantum Simulation of Electron Transfer Models with Tunable Dissipation

Visal So,^{1, *} Midhuna Duraisamy Suganthi,^{1,2, *} Abhishek Menon,¹ Mingjian Zhu,¹ Roman Zhuravel,¹ Han Pu,¹ Peter G. Wolynes,^{1,3,4,5} José N. Onuchic,^{1,3,4,5} and Guido Pagano^{1,†}

arXiv: 2405.10368

Dr Roslyn Forecast

Prof Jared Cole

Dr Anjay Manian Prof S

Prof Dane McCamey

Prof Tim Schmidt

NEW

SYDNEY

Dr Daniel Jaschke Prof Simone Montangero

PRX Energy 3, 043003 – 30 October 2024

Optimisation of ultrafast singlet fission in 1D rings towards unit efficiency

Francesco Campaioli, Alice Pagano, Daniel Jaschke, Simone Montangero

3—6 June 2025 PADOVA - ITALY

Theme 1.

Energy advantage and cost of quantum technology.

Theme 2.

Quantum effects in energy processes and materials.

Theme 3.

Theoretical and experimenal methods for quantum effects in energy processes.

3—6 June 2025

PADOVA - ITALY

Prof Sabrina Maniscalco

University of Turku · Finland

CEO and Co-Founder 🖉 algorithmiq

Prof Ferdinand Schmidt-Kaler University of Mainz · Germany

Co-Founder and Scientific Advisor

NE�T

Prof **Giulio Cerullo** Politecnico di Milano · Italy

Founder

CRI

Dr Loïc Henriet Pasqal · France

Co-CEO 🛞 Pasqal

icqe.com.au

Exciton in molecular aggregates

J-aggregate

3/5

Exciton in molecular aggregates: Vibrational modes

$$H = H_{\text{ex}} + H_{\text{ph}} + H_{\text{ex-ph}}$$
$$= \frac{\varepsilon}{2}\sigma_z + \omega_0 a^{\dagger}a + \sum_k A_k \otimes (a^{\dagger} + a)$$

Franck-Condon Principle $|S_0
angle \otimes |arphi_0
angle o |S_1
angle \otimes |arphi_0
angle$

4/5

Model parameters, range, and solution efficiency														
	ε_S	ε_T	J_S	J_T	X	γ	σ_{J_T}	σ_{χ}	ω_0	x_0	g_S	g_T	η	
Parameter range	je l													
Minimum	1	0.35	-0.2	0	0	0.001	0	0	0	-0.1	0	0		
Maximum	1	0.65	0.2	0.5	0.3	0.6	0.2	0.2	0.5	0.1	0.5	0.5		
Solution														
Resonant triplet-pair	1	$\varepsilon_S/2 - J_S $	$J_S < 0$	0	0	γ	0	0	-	-	-	-	0.50 ± 0.35	
Optimised non-dissipative	1	0.515	-0.001	0.3	0.068	0.437	0.114	0.005	-	-	-	-	0.85 ± 0.04	
Optimised dissipative	1	0.372	-0.001	0	0	0.0103	0	0	0.25	-0.035	0	0.0038	0.99 ± 0.01	

Brightness of singlet eigenstates

- tangentially aligned dipoles
- transverse dipoles
- tilted dipoles

Triplet separation dynamics

limited separation = low efficiency

large separation = high efficiency