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* Many-body quantum systems are hard to simulate on classical computers
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* Large-scale quantum computers would be immediately useful
for several tasks, e.g.:

* Real-time digital quantum simulation

* Many-body quantum-state preparation



* Example: quantum-state preparation
* Even when wavefunction is known, correlations could be hard to compute
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* Target wavefunction encoded in output qubits of guantum computation

Cirac and Zoller, Nature Phys. (2012)



* Some tasks remain hard, even with access to ideal quantum device

e Ex: full qguantum-state tomography
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* Full tomography not necessary to

probe observables, but in many-body

physics we are often interested in more complicated quantities



* Typical quantities of interest beyond simple observables:

* overlaps and fidelities
F — |<l1,target|l:[,0ut>|2

* bipartite entanglement entropy of extended systems
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Entanglement in many-body physics
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 Define reduced state
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 Rényi and von Neumann entanglement entropies
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 They answer the question:

“how far is ’¢> from a (classical) product state”?
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Entanglement in many-body physics
* Entanglement entropy important both in and out of equilibrium

* Famous example: diagnose criticality in ground-states of local Hamiltonians
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Calabrese and Cardy, J. Stat. Mech. (2004)



* Entanglement entropies are famously hard do measure. Two strategies:

1. Full-state tomography — reconstruct pa & compute Sz(éln) 1

2. Quantum-interference experiments
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Islam et al. Nature (2015); Kaufman et al. Science (2016)
Linke et al. PRA (2018)

1

— N

log|Tr(ps)]

Direct measure of purity

Tr[p?] = Pa(0) — Pa(1)



Classical shadows
* Collect classical “snapshots” (shadows)
from which to reconstruct
properties of the quantum state
 “Measure first, ask questions later”

* Naturally tailored for digital devices

e Suitable to probe both observables,
entanglement-related quantities & more

The randomized measurement toolbox,
Elben et al. Nature Rev. Phys. (2022)
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The recipe

1. Apply random unitary U |

2. Perform on-site projective measurements with outcomes
3. Repeatruns r =1, ..., M, and classically store {by)}, U

4. Define classical shadows

p" = @Y+ U (@507 6]) Ut ~1

e Claim:
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* From M measurements (shadows), construct desired estimators
1 M
Flde“ty - F(E) - ﬂ Z<qltal'g€t|p(?ﬂ)|lptarget>
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* From M measurements (shadows), construct desired estimators

1 M

Flde“ty - F(E) - ﬂ Z<iptarg€t|p(?ﬂ)|q’target>

r=1

I e) 1 ( r’
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* The efficiency of the method controlled by the estimator variances
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Var | F© | ~ O(1) Var [P©)] ~

* Exponential improvement over traditional tomographic methods



* Unfortunately, hard to realize random global unitaries in current NISQ era



* Unfortunately, hard to realize random global unitaries in current NISQ era

* Our work: replace global unitary with shallow random quantum circuits
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Bertoni et al. PRL 2024; Akhtar et al. Quantum 2023
Arienzo et al. QIC 2023



* Challenges:
* bound depth of the circuit (quantum computations should be fast)
* bound the variance of observables (avoid too many measurements)
* bound postprocessing computational cost

* We propose simple postprocessing scheme of shadows to solve the problem

* Showing that the suggested protocol works requires answering questions on
the behavior of random quantum circuits



* Main result:
to any error 0, efficient measurement scheme is achieved by

D ~1og(N/d) (fidelity)
D~N (purity)



* Main result:
to any error 0, efficient measurement scheme is achieved by

D ~1og(N/d) (fidelity)
D~N (purity)

* Results derived studying “ statistical mechanics’”” of random quantum
circuits
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Dalzell et al. PRX Quantum (2022)
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Outlook

* Our work exploits and contributes to recent developments of statistical
mechanics ideas in quantum information/computation

* Much room for improvements: our protocol could be combined with other
schemes to speed up entanglement detection in many-body systems, see e.g.

Vermersch, Ljubotina, Cirac, Zoller, Serbyn, LP,
Many-Body Entropies and Entanglement from Polynomially Many Local
Measurements, PRX (2024)

* To do: systematic study of noise and decoherence, and error mitigation strategies



Thank you for your attention!
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