Quantum simulation of strongly-correlated vortex phases with atoms in optical lattices

Marco Di Liberto

Quantum Information and Matter Theory Group University of Padua, Italy

M. Di Liberto and N. Goldman, Phys. Rev. Research 5, 023064 (2023)

Università degli Studi di Padova

Quantum Simulation with atoms

Engineered quantum systems (ultra cold atoms, Rydberg atoms, trapped ions)

Simulate quantum many-body models and phases

Feynman 1982; Lloyd Science 1996

Analog quantum simulation Encode Hilbert space of \hat{H} on atomic degrees of freedom

Fermi-Hubbard model

$$\hat{H} = -J \sum_{\langle ij \rangle, \sigma} \hat{c}^{\dagger}_{i,\sigma} \hat{c}_{j,\sigma} + U \sum_{i} \hat{n}_{i,\uparrow} \hat{n}_{i,\downarrow}$$

Bose-Hubbard model $\hat{H} = -J\sum_{\langle ii\rangle} \hat{b}_i^{\dagger} \hat{b}_j + \frac{U}{2}\sum_i \hat{n}_i (\hat{n}_i - 1) \qquad \qquad \hat{H} = -J\sum_i \hat{\sigma}_i^z \hat{\sigma}_j^z + h\sum_i \hat{\sigma}_i^x$

Quantum spin model

Jaksch PRL 1999 Greiner Nature 2002

Superfluid

 $J \gg U$

Mott insulator

 $U \gg J$

Achievements

- Strongly-correlated dynamics
- · SU(N) models
- Topological phases
- Lattice gauge theories
- Synthetic dimensions
- Quantum magnetism
- Dipolar quantum phases

Breaking time-reversal symmetry ${\mathcal T}$

Breaking \mathcal{T} opens the way to states of matter like Integer and Fractional **Quantum Hall** states for **charged particles**

Synthetic magnetic field

Complex hopping \leftrightarrow Aharonov-Bohm effect

 Circular/chiral lattice shaking Haldane model Esslinger Nature 2014

Atoms are **neutral** (no charge). How to simulate the effect of coupling to gauge fields? Jaksch Zoller NJP 2003 Celi PRL2014

Rotation

 $\text{Coriolis} \leftrightarrow \text{Lorentz force}$

Anomalous Floquet topological insulator Aidelsburger Nat. Phys. 2020

Interactions and ${\mathcal T}$ breaking

Simon Nature 2020 Greiner Nature 2023 Laughlin states of few particles

- Spontaneous ${\mathcal T}$ breaking through interactions

Topological Mott insulator Raghu PRL 2008 Rachel Rep. Prog. Phys. 2018

Higher bands Li and Wu PRA 2006 Hemmerich Nat. Phys. 2012

Intro: bosons in P bands

π -flux plaquette: the building block

MDL and N. Goldman, Phys. Rev. Research 5, 023064 (2023)

Goal: π -flux plaquettes as building blocks to simulate p-band physics

We project the **Bose-Hubbard** model onto the lowest two states d_1, d_2

 $\hat{H}_{\rm eff} \approx \hat{P}\hat{H}\hat{P} ~(U \ll J)$

$$\hat{H}_{\text{eff}} = \frac{3U}{16}\hat{n}^2 - \frac{U}{8}\hat{n} - \frac{U}{16}\hat{L}_z^2$$

Exps: Mukherjee (**MDL**) PRL 2018; Mittal Nature 2019; Kremer Nat. Comm. 2020; Jörg Light:Sci.App 2020; Caceres PRL 2022, Houck arXiv 2023

Many-body spectrum

$$\hat{H}_{\text{eff}} = \frac{3U}{16}\hat{n}^2 - \frac{U}{8}\hat{n} - \frac{U}{16}\hat{L}_z^2$$

BEC phase winding

$$|n_{+}, n_{-}\rangle = \frac{1}{\sqrt{n_{+}! n_{-}!}} (\hat{d}^{\dagger}_{+})^{n_{+}} (\hat{d}^{\dagger}_{-})^{n_{-}} |0\rangle$$

Spectrum is made of eigenstates of angular momentum L_z

 $|\mathrm{GS}\rangle \to |N,0\rangle$

All particles in one angular momentum state

π -flux plaquettes as building blocks

Complex lattices with chiral order by assembling **dimerized** ($J' \ll J$) π -flux plaquettes

•

Chiral Superfluid - Vortices array

 $\hat{H}_{\text{eff}}^{(inter)} \propto -J' \sum_{\langle i,j \rangle} \left(\hat{d}_{1,i}^{\dagger} \hat{d}_{1,j} + \hat{d}_{2,i}^{\dagger} \hat{d}_{2,j} \right)$

• Bogoliubov dispersion ($ka \ll \pi$)

The collective mode is unstable towards decay into phonons

Strongly-correlated regime

• Strongly-interacting limit $\nu U \sim J'$

Phase transitions from superfluid to p-band Mott insulator Li and Liu Rep. Prog. Phys. 2015

Fidelity susceptibility and charge gap (DMRG) signals transition into a Mott phase

$$\begin{split} \mathcal{F}(\delta U) &= |\langle \Psi(U) \,| \, \Psi(U + \delta U) \rangle \\ \chi_{\mathcal{F}} &= - \frac{2}{L_x} \lim_{\delta U \to 0} \frac{\partial^2 \mathcal{F}}{\partial \delta U^2} \end{split}$$

Local angular momentum remains finite across the transition

Building the phase diagram

Cluster Gutzwiller variational ansatz

$$|\psi\rangle \equiv \bigotimes_p \left(\sum_{\{\vec{n}\}} A_p(n_1, n_2, n_3, n_4) | n_1, n_2, n_3, n_4\rangle_p\right)$$

M. Lanaro et al. (MDL), in preparation

- Identify quantum phases
- Ansatz for excitations and collective modes (chiral modes)
- Quantum dynamics

State-preparation and measurement

 Loop-current imprint via double well control Impertro et al. (Aidelsburger) PRL 2024

A. Stepanenko and **MDL**, arXiv:2410.06184

$$X_t^{ab} \equiv \exp\left(-i(-J_{ab}b_a^{\dagger}b_b + h.c.)t/\hbar\right) \qquad Z_t^{ab} \equiv \exp\left(-i\Delta(\hat{n}_a - \hat{n}_b)t/2\hbar\right)$$

· Chirality measurement via double well oscillations (in the presence of interactions)

- Measure density in a double well at different times
- Convert density meas. to current via continuity equation

$$\mathcal{J}_{0}^{(2)} = -\csc\left(\frac{U\pi}{2\omega}\right) \left[\frac{U}{4}\mathcal{N}_{0}^{(2)}\cos\left(\frac{U\pi}{2\omega}\right) + \frac{U}{4}\mathcal{N}_{2}^{(2)} - \frac{\omega}{2}\mathcal{N}_{1}^{(2)}\sin\left(\frac{3U\pi}{4\omega}\right) - \frac{\omega}{2}\mathcal{N}_{3}^{(2)}\sin\left(\frac{U\pi}{4\omega}\right)\right]$$

Weight with respect to occupation $\langle \hat{j}_{ab} \rangle(\tau_0) = p_{ab}^{(1)} \mathcal{J}_0^{(1)} + p_{ab}^{(2)} \mathcal{J}_0^{(2)}$

Conclusions and outlook

Università degli Studi di Padova

MDL and N. Goldman, Phys. Rev. Research 5, 023064 (2023) A. Stepanenko and MDL, arXiv:2410.06184 (2024) M. Lanaro et al. (MDL) (in preparation)

Nathan Goldman @ULB Bruxelles & LKB Paris

Andrei Stepanenko (postdoc) @LIMS London

Maria Lanaro (PhD) @U. Padova

Lorenzo Maffi (postdoc) @U. Padova

- Orbital-like order for bosons in dimerised lattices with π -flux
- Building chiral phases using spontaneous time-reversal symmetry breaking mechanism
- Make state preparation of the gapped phase two particles at a time with atoms and superconducting circuits
- Can there be topology in these systems?
- Exotic models with flux? 3D BBH?