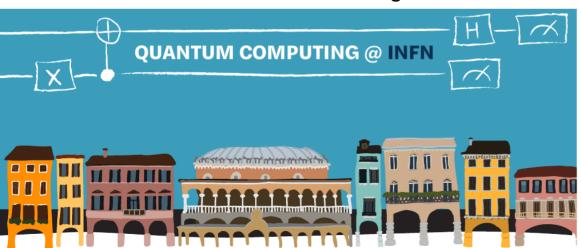
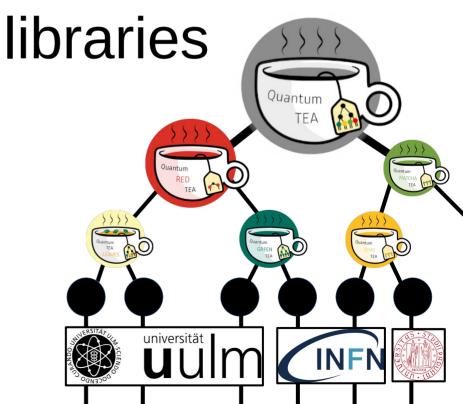
STIDES

Boost Quantum TEA performance via flexible choices for numerical

<u>Daniel Jaschke</u>, Marco Ballarin, Nora Reinić, Luka Pavešić, and Simone Montangero





Overview Quantum TEA

Quantum Tensor network **E**mulator **A**pplications

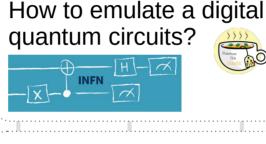
Can I just have tensor networks for quantum information?

How to emulate a digital quantum circuits?

Overview Quantum TEA

Quantum Tensor network Emulator Applications

Can I just have tensor networks for quantum information?



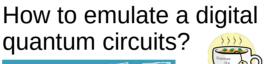
How to solve the Schrödinger equation?

Can we do tensor network machine learning? ... soon:

Overview Quantum TEA

Quantum Tensor network **E**mulator **A**pplications

Can I just have tensor networks for quantum information?



How to solve the Schrödinger equation?

Why do you need another tea flavor?

Can we do tensor network machine learning? ... soon:

Applications Schrödinger Equation

■ Davide Rattacaso (Istituto Nazionale di Fisica Nucleare)

10/30/24, 10:15 AM Technological aspects

arXiv:2408.00077

Compilation optimizes quantum algorithms performances on real-world quantum computers. To date, it is performed via

21. Optimisation of ultrafast singlet fission in 1D rings towards unit efficiency

♣ Francesco Campaioli (Istituto Nazionale di Fisica Nucleare)

① 10/31/24, 12:20 PM Quantum Simulation

Accepted in PRX Energy

Singlet fission (SF) is an electronic transition that in the last decade has been under the spotlight for its applications in

25. Entanglement in finite-temperature Rydberg atom arrays

▲ Nora Reinić (Istituto Nazionale di Fisica Nucleare)

O 10/31/24, 12:40 PM

Quantum Simulation

Phys. Rev. Research 6, 033322

Tensor network methods are a family of numerical techniques that efficiently compress the information of quantum

Applications Schrödinger Equation

14. Quantum circuit compilation with quantum computers

▲ Davide Rattacaso (Istituto Nazionale di Fisica Nucleare)

O 10/30/24, 10:15 AM

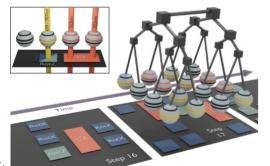
arXiv:2408.00077

Technological aspects

Compilation optimizes quantum algorithms performances on real-world quantum computers. To date, it is performed via

Digital twin on pulse level

D. Jaschke et al., QST 9, 035055



21. Optimisation of ultrafast singlet fission in 1D rings towards unit efficiency

♣ Francesco Campaioli (Istituto Nazionale di Fisica Nucleare)

O 10/31/24, 12:20 PM

Quantum Simulation

Accepted in PRX Energy

Singlet fission (SF) is an electronic transition that in the last decade has been under the spotlight for its applications in

25. Entanglement in finite-temperature Rydberg atom arrays

▲ Nora Reinić (Istituto Nazionale di Fisica Nucleare)

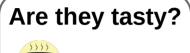
O 10/31/24, 12:40 PM

Quantum Simulation

Phys. Rev. Research 6, 033322

Tensor network methods are a family of numerical techniques that efficiently compress the information of quantum

Applications quantum circuits



⟨ **\uantum**the open journal for quantum science

APERS PERSPECTIVES

Entanglement entropy production in Quantum Neural Networks

Marco Ballarin^{1,2,3}, Stefano Mangini^{1,4,5}, Simone Montangero^{2,3,6}, Chiara Macchiavello^{4,5,7}, and Riccardo Mengoni⁸

Citation

Ouantum 7, 1023 (2023)

DEDS DEDSDECTIVE

Digital quantum simulation of lattice fermion theories with local encoding

Marco Ballarin^{1,2,3}, Giovanni Cataldi^{1,2,3}, Giuseppe Magnifico^{2,3,4}, Daniel Jaschke^{2,3,5}, Marco Di Liberto^{2,3,6}, Ilaria Siloi^{2,3,6}, Simone Montangero^{2,3,6}, and Pietro Silvi^{2,3,6}

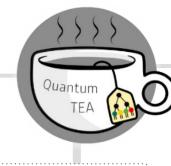
Citation:

Ouantum 8, 1460 (2024),

Quantum red TEA

How to integrate new technology in a library?

Can we use GPUs? ... no, because ...



Can we use jax? ... no, ...

Quantum red TEA

How to integrate new technology in a library?

Can we use GPUs? ... no, because ...

Can we use jax? ... no, ...

Qtea simulation

Qtea simulation

Dependency

User

Abstract class

Algorithms

Algorithms

Tensor
backend

Major update qtealeaves v1.0.0+

Quantum red TEA

How to integrate new technology in a library?

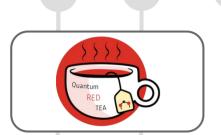
Can we use GPUs? ... no, because ...

Can we use jax? ... no, ...

Legend gtealeaves aredtea Otea simulation Dependency OteaAbelianTensor [any] User **OteaJaxTensor** [iax] Tensor network Abstract class algorithms OteaTfTensor [tensorflow] OteaTensor Algorithms [numpy/cupy] OteaTorchTensor [pytorch] Tensor AbstractTensor backend

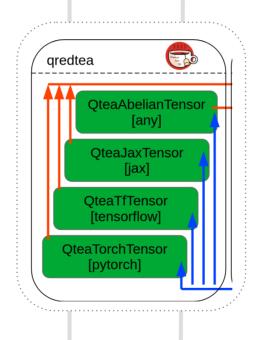
Major update qtealeaves v1.0.0+

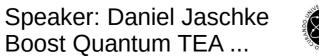
Benefits of Quantum red TEA



Switch linear algebra backend in "one" line

Switch between dense and symmetric tensors in a few lines

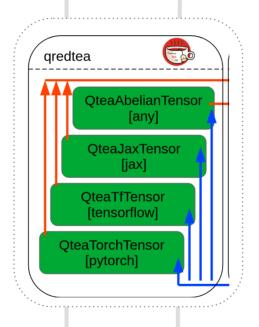




Benefits of Quantum red TEA

Switch linear algebra backend in "one" line

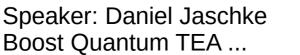
Switch between dense and symmetric tensors in a few lines



Automatic differentiation

Jitted function via jit (just-in-time compilation)

New hardware support Example: TPUs



The benchmark: quantum Ising 2d

Quantum Ising model in 2d Ground state search

$$H = -J\sum_{\langle i,j\rangle} \sigma_i^x \sigma_j^x - g\sum_i \sigma_i^z$$

Key facts: - 16x16 svstems (256 aubits)

- 16x16 systems (256 qubits)
Sweep 1 Sweep 2

$$|\psi\rangle =$$

Sweep order via single tensor optimizations

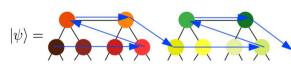
The benchmark: quantum Ising 2d

Quantum Ising model in 2d Ground state search

$$H = -J \sum_{\langle i,j \rangle} \sigma_i^x \sigma_j^x - g \sum_i \sigma_i^z$$

Key facts:

- 16x16 systems (256 qubits)



$$E(|\psi\rangle) \gg E_0$$
 $E(|\psi\rangle) \approx E_0$

Sweep order via single tensor optimizations

Leonardo (CINECA)

DCGP: dual-socket, 112 cores Booster: nvidia A100 GPU

Computation challenges: tensor contractions and linear algebra decompositions

Biggest tensor:

$$\chi \times \chi \times \chi$$

Tensor networks in a nutshell

- Choose tree tensor network
 (TTN) over matrix product
 states (MPS)
- Higher bond dimensions χ capture more entanglement (better approximation)

The ideas: what features to benchmark

Numpy-cupy versus torch versus tensorflow versus jax

Parallelization via CPU threads (BLAS / LAPACK / EIGEN)

Parallelization via single GPU (CUDA)

Parallelization via single TPU (Tensor processing unit)

The ideas: what features to benchmark

Numpy-cupy versus torch versus tensorflow versus jax

Parallelization via CPU threads (BLAS / LAPACK / EIGEN)

Parallelization via single GPU (CUDA)

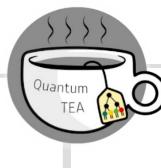
Parallelization via single TPU (Tensor processing unit)

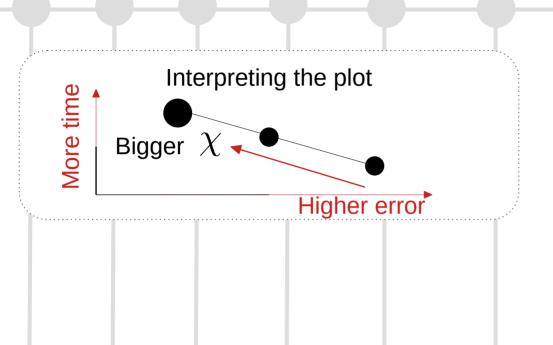
"Mixed precision" approach

Skipping tensors

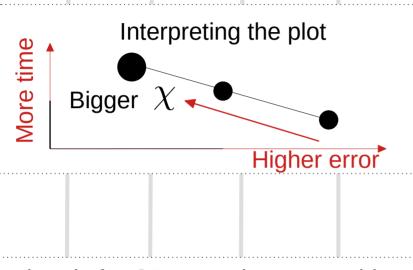
Enforce bond dimension to fit hardware suggestions (memory blocksize)

CPU benchmark in details (baseline)



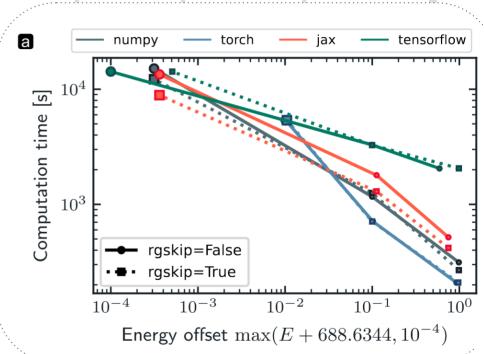


CPU benchmark in details (baseline)

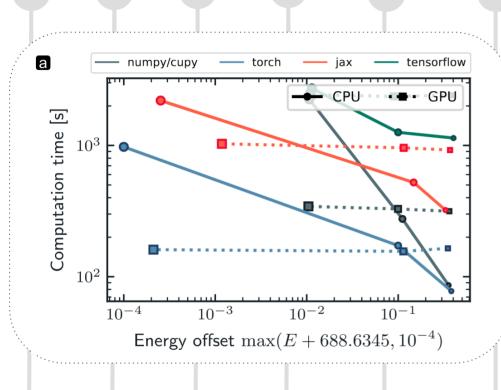


Backends for CPU mostly comparable

Precision fluctuates a bit within one order of magnitude



CPU versus GPU benchmark in details



Backends for GPU show differences now!

Check out the slope of the curve ... the advantage of the GPU grows with the bond dimension.

Jax runtime includes compiling jit.

The winner in a nutshell: torch backend

Machine learning library supporting linear algebra similar to numpy

Torch **speedup** with all optimization over initial starting point without optimizations:

34x

Torch speedup GPU over best CPU:

2.76x

Conclusions and outlook

Speed-up is application dependent, but has already paid off

Torch has the best performance; most of our new projects use it now from the beginning

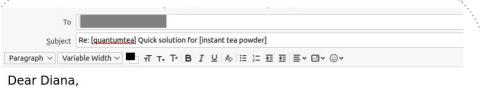
Omatcha TEA benchmarks for all backends are ahead

Also: Quantum Circuits as a Service platform running via qiskit backend in CloudVeneto: www.quantumtea.it

Ref: DJ et al., arXiv 2409.03818

Backup slides Quantum Speaker: Daniel Jaschke

What is "Quantum TEA" not?



I think you got the wrong idea about Quantum TEA ...

On 02.08.24 12:13. Diana wrote:

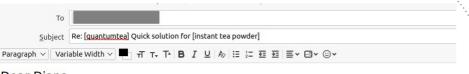
Hi quantumtea,

This might sound impossible but this is [Instant Tea Powder] made easy. Our highquality instant tea powder is designed to ensure convenience and taste, all in one. You can enjoy the rich flavor and health benefits of tea in an instant.

In addition to this, our product offers:

- **High Solubility:** Dissolves quickly and completely in both hot and cold water.
- Rich Flavor: Maintains the authentic taste of freshly brewed tea.
- Health Benefits: Preserves the natural antioxidants and nutrients.
- Customizable: We can adjust the content of ingredients based on your needs and produce in various forms such as capsules or pills.

What is "Quantum TEA"?



Dear Diana,

I think you got the wrong idea about Quantum TEA ...

On 02.08.24 12:13, Diana wrote:

Hi quantumtea,

This might sound impossible but this is [Instant Tea Powder] made easy. Our high-quality instant tea powder is designed to ensure convenience and taste, all in one. You can enjoy the rich flavor and health benefits of tea in an instant.

In addition to this, our product offers:

- High Solubility: Dissolves quickly and completely in both hot and cold water.
- Rich Flavor: Maintains the authentic taste of freshly brewed tea.
- Health Benefits: Preserves the natural antioxidants and nutrients.
- Customizable: We can adjust the content of ingredients based on your needs and produce in various forms such as capsules or pills.

QuantumTensor network Emulator Applications

This might sound impossible, but we have ... High "solutionability" for many models Rich flavors possible, e.g., flavorful bosons Health benefits as it is pure python Customizable, e.g., with numpy or torch

Applications Schrödinger Equation

Digital twin on pulse level, D. Jaschke et al., QST 9, 035055

- Digital circuit translated to pulses
- Single-site addressing & scheduling
- Cross-talk of long-range interactions

Quantum-inspired integer factorization up to 100-bit RSA number in polynomial time,

M. Tesoro, ..., DJ, et al., arxiv 2410.16355

 Uses tensor network for ground state problem and sampling

Mixed precision & optimization flags

Ground states converge in sweeps.

First sweep does not need high precision as we optimize a random guess.

Try sweep patterns with ... S: single real

D: double real

Z : double complex

Sweeps	torch
SSSSSS	627s - 688.62502
SSSSDD	976s - 688.6344 6
SSSDDD	1515s -688.62908
DDDDDD	2031s -688.63394
ZZZZZZ	5379s - 688.623 95

Mixed precision & optimization flags

Ground states converge in sweeps.

First sweep does not need high precision as we optimize a random guess.

Try sweep patterns with ...

S: single real

D: double real

Z : double complex

b	
Sweeps	torch
SSSSS	627s - 688.62502
SSSSDD	976s - 688.63446
SSSDDD	1515s -688.62908
DDDDDD	2031s -688.63394
ZZZZZZ	5379s - 688.62395

Approaches without success

Skip exact RG tensors ... these tensors are small anyway, so skipping them does not save use enough for a significant speedup.

Enforcing bond dimensions did not have any effect unlike in the nvidia GEMM docs. Not even for jax with its jit-compilation.

Open science: source code and zenodo

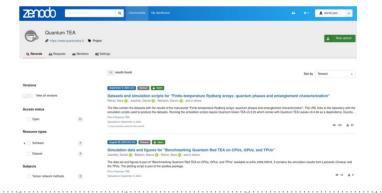
Source code lives on INFN platform baltig

https://baltig.infn.it/groups/quantum_tea/-/shared

Module on Leonardo (CINECA)

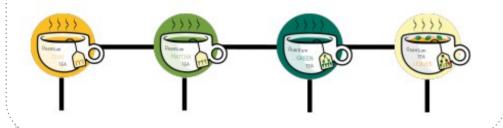
Available via pip install

Zenodo group for software and research examples

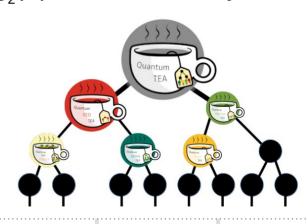


Tensor network ansätze

Matrix Product States (MPS)



Tree Tensor Networks (TTN) 2 log₂(N) links connect any two tensors

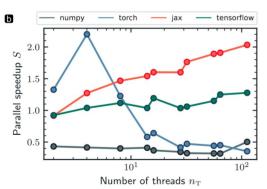


Difference (solver etc.)

CPU linear algebra

Numpy & torch: BLAS & LAPACK Jax and tensorflow: EIGEN

CPU threading (not scalable)



Lanczos

Numpy: Arpack Torch, jax, tensorflow: qtea eigensolver

Decompositions

Tuned based on hardware / device

Plotting logic: error plot without exact result

١	7	
	į	1

Sweeps	numpy	torch	jax	tensorflow
SSSSSS	t = 977s	627s	1365s	1914s
	E = -688.62346	-688 62502	- 688.60703	-688.59615
SSSSDD	t = 2249s	976s	2198s	2721s
	E = -688.62380	- 688.63446	-688.63420	-688.62307
SSSDDD	t = 3249s	15158	2352s	3101s
	E = -688.62382	-688.62908	-688.63421	-688.63315
DDDDDD	t = 5046s	2031s	3394s	4050s
	E = -688.63382	-688.63394	-688.62370	-688.63370
ZZZZZZ	t = 12207s	5379s	8881s	14233s
	E = -688.63413	- 688.62395	- 688.63408	-688.63394

Set error of the best simulation to a value ϵ .

Other simulations calculate their error towards the best simulation.

Generalization to Abelian symmetries

Challenge: symmetric tensors are basically sparse tensors formed of smaller dense tensors.

Our symmetric tensors support all methods for a ground state search.

The dense tensors inside the symmetric Tensors are numpy, torch, tensorflow or jax.

Physical systems conserve symmetries: Z2

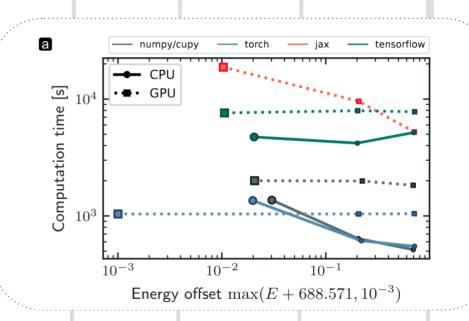
Generalization to Abelian symmetries

Challenge: symmetric tensors are basically sparse tensors formed of smaller dense tensors.

Our symmetric tensors support all methods for a ground state search.

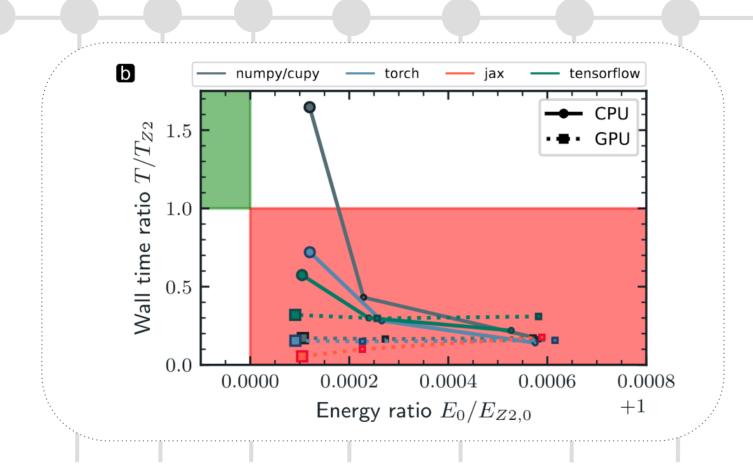
The dense tensors inside the symmetric Tensors are numpy, torch, tensorflow or jax.

Physical systems conserve symmetries: Z2



Break-even for GPU at larger bond dimension

Symmetries versus no symmetries



TPU data (jax only)

Bond dimension	CPU	XLA	XLA + tile=128
$\chi = 32$	t=1065s	1131s	n.a.
	E= -688.51693	- 68 7.98895	n.a.
$\chi = 64$	t=1823s	1180s	1625s
	E= -688.61092	- 687 .06878	- 68 4.32439
$\chi = 128$	t=4692s	1244s	1701s
	E= -688.57309	- 68 6.84771	- 6 68.38448

