Entanglement in finite-temperature Rydberg arrays with tensor networks

Nora Reinić @ Quantum Computing @ INFN

University of Padova

Simulating quantum many-body systems

The quantum many-body problem

System:

- *N* particles on a lattice
- Local Hilbert space dimension d

Simulating quantum many-body systems

The quantum many-body problem

System:

- N particles on a lattice
- Local Hilbert space dimension *d*

Dimension of the total Hilbert space is d^N

Too big to be simulated exactly for large number of particles!

Number of degrees of freedom of quantum many-body state depends on the amount of entanglement in the system

Number of degrees of freedom of quantum many-body state depends on the amount of entanglement in the system

No entanglement

Easy to simulate

- •
- •
- •
- •
- •
- •
- •
- •
- •
- •
- •
- •
- •
- •
- •
- •
- •
- •
- •
- •
- •
- •
- •
- •
- •
- •
- •
- •
- •
- •

- A lot of entanglement
 - •
 •
 - •
 - •
 - •
 - •
 - •

Number of degrees of freedom of quantum many-body state depends on the amount of entanglement in the system

No entanglement

Easy to simulate

Mean field approximation

This scenario is usually not the case

- Many realistic physical systems:
- the amount of entanglement is sufficiently low
 - (area law of entanglement)
- •
- •
- •
- •
- •
- •
- •
- •
- •
- •
- •
- •
- •
- •
- •
- •
- •
- •
- •

Exponential number of degrees of freedom

This scenario is usually not the case

- •

Number of degrees of freedom of quantum many-body state depends on the amount of entanglement in the system

No entanglement

Easy to simulate

Mean field approximation

This scenario is usually not the case

- Many realistic physical systems:
- the amount of entanglement is sufficiently low
 - (area law of entanglement)

TENSOR NETWORK METHODS

Keep only certain amount of entanglement in the system and discard the rest

A lot of entanglement

Exponential number of degrees of freedom

This scenario is usually not the case

Tensor network ansatz idea

One vector of exponentially scaling dimension

Ansatz: multiple interconnected tensors of "small" dimensions

Matrix Product State

Tree Tensor Network

Pure states

Statevector description

 $|\psi>$

B

Mixed states

Density matrix description

 $\rho = \sum p_j |\psi_j \rangle < \psi_j|$

Pure states

Statevector description $|\psi >$

Well-defined via reduced density matrix entropies

Entanglement entropy

$$\mathcal{S} = Tr(\rho_A \ln \rho_A) = \sum_i \lambda_i \ln \lambda_i$$

Straightforward to measure!

B

Mixed states

Density matrix description

 $\rho = \sum p_j |\psi_j \rangle < \psi_j|$

Pure states

Statevector description $|\psi >$

Well-defined via reduced density matrix entropies

Entanglement entropy

$$\mathcal{S} = Tr(\rho_A \ln \rho_A) = \sum_i \lambda_i \ln \lambda_i$$

Straightforward to measure!

B

Mixed states

Density matrix description

$$\rho = \sum_{j} p_j |\psi_j \rangle \langle \psi_j |$$

No unique way to measure mixed-state entanglement!

Entanglement negativity: $E_N = \frac{\|\hat{\rho}^{\mathsf{T}_{N/2}}\|_1 - 1}{2}$ Entanglement of formation: $E_F \inf_{\{\psi_j, p_j\}} \left\{ \sum_i p_j \mathscr{S}_E(|\psi_j >) : \hat{\rho} = \sum_i p_j |\psi_j > \langle \psi_j | \right\}$

Not straightforward to measure!

Pure states

Statevector description $|\psi >$

Well-defined via reduced density matrix entropies

Entanglement entropy

$$\mathcal{S} = Tr(\rho_A \ln \rho_A) = \sum_i \lambda_i \ln \lambda_i$$

Straightforward to measure!

How to efficiently measure mixed-state entanglement of a quantum many-body system?

Mixed states

Density matrix description

$$\rho = \sum_{j} p_j |\psi_j \rangle \langle \psi_j |$$

No unique way to measure mixed-state entanglement!

Entanglement negativity: $E_N = \frac{\|\hat{\rho}^{\mathsf{T}_{N/2}}\|_1 - 1}{2}$ Entanglement of formation: $E_F \inf_{\{\psi_j, p_j\}} \left\{ \sum_i p_j \mathcal{S}_E(|\psi_j >) : \hat{\rho} = \sum_i p_j |\psi_j > \langle \psi_j | \right\}$

Not straightforward to measure!

Simulating systems at finite temperature

Talk plan:

Part 1.

Tensor network toolbox for Quantum TEA LEAVES finite-temperature systems

Simulating systems at finite temperature

Part 1.

Talk plan:

Simulating systems at finite temperature

Part 1.

Talk plan:

New project!

Extracting the energy spectrum of a quantum many-body system

Part 1: The algorithm

Part 1: Finite-temperature density matrix

Setup:

Quantum many-body sy

ystem +	Thermal equilibrium
---------	---------------------

Part 1: Finite-temperature density matrix

Setup:

Quantum many-body sy

ystem	+	Thermal equilibrium

- How do we know in which state will the physical system be?
- Statistical physics: we can assign a classical probability to finding a system in each of the Hamiltonian eigenstates

Part 1: Finite-temperature density matrix

Setup:

Quantum many-body system

How do we know in which state will the physical system be?

Statistical physics: we can assign a classical probability to finding a system in each of the Hamiltonian eigenstates

System is described with a density matrix

$$p_j |\psi_j \rangle < \psi_j|$$
$$= \frac{e^{-\beta E_j}}{Z}$$

 $|\psi_i\rangle$ = eigenstates of Hamiltonian E_i = eigenenergies of Hamiltonian

$$\beta = \frac{1}{k_B T} \qquad Z = \sum_{i=1}^{d^N} e^{-\beta E_i}$$

Matrix product operator (MPO)

Locally purified tensor network (LPTN)

Matrix product operator (MPO)

. . . .

Preserves positivity	
No restriction on mixedness	
Access to local observables	

Matrix product operator (MPO)

Preserves positivity	
No restriction on mixedness	
Access to local observables	
Access to entanglement	
Access to eigenvalues of density matrix	

Matrix product operator (MPO)

Preserves positivity	
No restriction on mixedness	
Access to local observables	
Access to entanglement	
Access to eigenvalues of density matrix	

Our proposal:

See: L. Arceci, P. Silvi, and S. Montangero Phys. Rev. Lett. 128, 040501 (2022)

 $\rho = \sum p_j |\psi_j \rangle < \psi_j|$

Tree tensor operator

 $\rho = X X^{\dagger}$

Columns of *X* are given with $\sqrt{p_j} | \psi_j >$

L. Arceci, P. Silvi, and S. Montangero Phys. Rev. Lett. 128, 040501 (2022)

Tree tensor operator

 $\rho = \sum p_j |\psi_j \rangle \langle \psi_j |$

(Assuming isometrization towards the orange tensor)

L. Arceci, P. Silvi, and S. Montangero Phys. Rev. Lett. 128, 040501 (2022)

 X^{\dagger}

Tree tensor operator

 X^{\dagger}

 $p_j | \psi_j > < \psi_j |$

(Assuming isometrization towards the orange tensor)

 K_0

Columns of *X* are given with $\sqrt{p_j} | \psi_j >$

 $\rho = XX^{\dagger}$

L. Arceci, P. Silvi, and S. Montangero Phys. Rev. Lett. 128, 040501 (2022)

 $p_j |\psi_j > \langle \psi_j |$

(Assuming isometrization towards the orange tensor)

 K_0

Columns of X are given with $\sqrt{p_j} |\psi_j >$

 $\rho = XX^{\dagger}$

Root tensor = compressed density matrix

 $p_j |\psi_j > \langle \psi_j |$

(Assuming isometrization towards the orange tensor)

Question: how to efficiently compute the thermal density matrix in a TTO ansatz?

Root tensor = compressed density matrix

2-step process:

N. Reinić, D. Jaschke, D. Wanisch, P. Silvi, S. Montangero Phys. Rev. Research 6, 033322 (2024)

2-step process:

Mathematically equivalent to **time evolution** with the substitution:

$$\frac{it}{\hbar} \to \frac{\beta}{2} = \frac{1}{2T}$$

N. Reinić, D. Jaschke, D. Wanisch, P. Silvi, S. Montangero Phys. Rev. Research 6, 033322 (2024)

2-step process:

Mathematically equivalent to time evolution with the substitution:

$$\frac{it}{\hbar} \to \frac{\beta}{2} = \frac{1}{2T}$$

Locally Purified Tensor Network

N. Reinić, D. Jaschke, D. Wanisch, P. Silvi, S. Montangero Phys. Rev. Research 6, 033322 (2024)

2-step process:

with the substitution:

$$\frac{it}{\hbar} \to \frac{\beta}{2} = \frac{1}{2T}$$

Locally Purified Tensor Network

N. Reinić, D. Jaschke, D. Wanisch, P. Silvi, S. Montangero Phys. Rev. Research 6, 033322 (2024)

> Conversion using an iterative procedure of tensor decompositions and manipulations

> > **Tree Tensor Operator**

Part 2: Application to finite temperature Rydberg arrays

$$n_z = \frac{1}{2}(\sigma_z + 1)$$

 Ω - Rabi frequency

 Δ - Detuning

$$\hat{H} = \frac{\Omega}{2} \sum_{i}^{N} \sigma_{x}^{i} - \frac{1}{2} \sum_{i}^{N} \sigma_{x}^{i}$$

1D chain with open boundaries

N. Reinić, D. Jaschke, D. Wanisch, P. Silvi, S. Montangero, Phys. Rev. Research 6, 033322 (2024)

 $-\Delta \sum_{i}^{N} n_{z}^{i} + \sum_{i \neq j} \frac{C_{6}}{R_{ij}^{6}} n_{z}^{i} n_{z}^{j}$

Laser terms

Rydberg blockade mechanism

$$n_z = \frac{1}{2}(\sigma_z + 1)$$

 Ω - Rabi frequency

Laser terms

$$-\Delta \sum_{i}^{N} n_{z}^{i} + \sum_{i \neq j} \frac{C_{6}}{R_{ij}^{6}} n_{z}^{i} n_{z}^{j}$$

Rydberg blockade mechanism

1D chain with open boundaries

Entanglement

$$R_B = \sqrt[6]{\frac{C}{\Omega}}$$

$$-\Delta \sum_{i}^{N} n_{z}^{i} + \sum_{i \neq j} \frac{C_{6}}{R_{ij}^{6}} n_{z}^{i} n_{z}^{j}$$

Rydberg blockade mechanism

Entanglement

Blockade radius:

$$R_B = \sqrt[6]{\frac{C}{\Omega}}$$

$$-\Delta \sum_{i}^{N} n_{z}^{i} + \sum_{i \neq j} \frac{C_{6}}{R_{ij}^{6}} n_{z}^{i} n_{z}^{j}$$

Rydberg blockade mechanism

Blockade radius:

$$R_B = \sqrt[6]{\frac{C}{\Omega}}$$

Entanglement

$$-\Delta \sum_{i}^{N} n_{z}^{i} + \sum_{i \neq j} \frac{C_{6}}{R_{ij}^{6}} n_{z}^{i} n_{z}^{j}$$

Rydberg blockade mechanism

Entanglement

Blockade radius:

$$R_B = \sqrt[6]{\frac{C}{\Omega}}$$

Zero temperature:

Pure-state entanglement:

entanglement entropy \mathcal{S}

At quantum critical points:

$$S \propto \frac{c}{6} log(N)$$

Conformal field theory result for 1D with open boundaries

Entanglement between the system's halves

Zero temperature:

Pure-state entanglement:

entanglement entropy \mathcal{S}

At quantum critical points:

$$S \propto \frac{c}{6} log(N)$$

Conformal field theory result for 1D with open boundaries

Entanglement between the system's halves

Finite temperature:

Assumption: the scaling extends to the low-temperature regime

$$E_F = \frac{c}{6}log(N) + g_F(TN^z)$$

Zero temperature:

Pure-state entanglement:

entanglement entropy \mathcal{S}

At quantum critical points:

$$S \propto \frac{c}{6} log(N)$$

Conformal field theory result for 1D with open boundaries

Entanglement between the system's halves

Finite temperature:

Assumption: the scaling extends to the low-temperature regime

$$E_F = \frac{c}{6}log(N) + g_F(TN^z)$$

We measure:

- entanglement negativity
- entanglement of formation

At **Ising** and **Potts** quantum critical points

N. Reinić, D. Jaschke, D. Wanisch, P. Silvi, S. Montangero Phys. Rev. Research 6, 033322 (2024)

We developed the tree tensor \bullet operator numerical toolbox

Mixed state entanglement, thermal probabilities Applicable to a general quantum manybody model

Part 1& 2 - Conclusions

Applied the algorithm on **Rydberg atom systems**

Confirmed the **finite-temperature** entanglement scaling law at quantum critical points

Part 3: Energy spectrum extraction (Preliminary)

Excited states from thermal density matrix

With tree tensor operator algorithm we have:

thermal probabilities p_i

Idea:

We know:

$$p_j = \frac{e^{-\beta E_j}}{Z} \qquad \beta = \frac{1}{T}$$

 E_i = eigenenergies of Hamiltonian

Excited states from thermal density matrix

With tree tensor operator algorithm we have:

thermal probabilities p_i

 $\frac{p_{j+1}}{-} = e^{-\frac{1}{T}(E_{j+1} - E_j)}$ p_j

Idea:

We know:

$$p_j = \frac{e^{-\beta E_j}}{Z} \qquad \beta = \frac{1}{T}$$

 E_i = eigenenergies of Hamiltonian

Excited states from thermal density matrix

With tree tensor operator algorithm we have:

thermal probabilities p_i

$$\frac{p_{j+1}}{p_j} = e^{-\frac{1}{T}(E_{j+1} - E_j)}$$

We have the direct access to the first (K_0 -1) energy gaps!

Idea:

We know: $p_{j} = \frac{e^{-\beta E_{j}}}{Z} \qquad \beta = \frac{1}{T}$

 E_i = eigenenergies of Hamiltonian

$$E_{j+1} - E_j = \Delta_{j,j+1} = T \cdot ln\left(\frac{p_j}{p_{j+1}}\right)$$

Thank you for the attention!

*The research leading to these results has received funding from European Union's Horizon 2020 research and innovation programme under the Marie-Sklodowska Curie grant agreement no 101034319 and from the European Union - NextGenerationEU.

Restriction on mixedness

Density matrix of thermal equilibrium states:

Thermal probabilities **decay exponentially** with the eigenenergies

At low temperatures:

only the low-energy excited states will have non-negligible contribution

Our physical states of interest are usually not very mixed

_

Ground state resilience to temperature

$T \approx 0$: Pure ground state

Up to which temperature can we expect the system to be in a ground state?

Temperature range:
$$[0.025, 0.8] \frac{\Omega}{k_B}$$

 $\Omega = 2.5 \text{ MHz}$
Temperature range: $[3, 96] \mu K$

Usual experimental temperatures: $\sim 10 \ \mu K$

