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Scientific motivation

Tracking, the reconstruction of particle trajectories 

starting from particle hits in different detector layers, 

is already an extremely computationally demanding 

task in the major experiments at CERN

With the High Luminosity LHC upgrade the number 

of proton-proton collisions per event will increase by a 

factor of 3-5 (140-200 collisions per beam crossing)

A speedup in track reconstruction is mandatory 

and combining machine learning with quantum 

computing algorithms is an interesting direction 

for reaserch
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What we have been working on

A hybrid quantum machine learning application for charged particle tracking

Graph neural networks Parametric quantum circuits

+
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We represent charged particle tracks in a detector as a graph

this is a simple graph
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Our input: graphs
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We represent charged particle tracks in a detector as a graph

this is a simple graph our graphs
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Graphs and graph neural networks

Information is propagated through the graph (with an attention mechanism: some nodes 
can be made more important than others)
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Graphs and graph neural networks
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The information associated with node A (e.g. the coordinates of a specific hit) is propagated to its neighbors
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Graphs and graph neural networks

Information is propagated through the graph (with an attention mechanism: some nodes 
can be made more important than others)
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The information associated with node A (e.g. the coordinates of a specific hit) is propagated to its neighbors

This can be done for information at edge level as well
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Graphs and graph neural networks

Graphs are represented by data structures such as adjacency and feature matrices which are 
fed to a graph neural network 

InputNet
(feature expansion)

Edge Network
(doublets)

Node Network
(triplets)

Edge Network
(edge probabilities)

the number of iterations is related to 

the flow of information between the 

nodes of each graph

Edge Network

Node Network

each edge in the graph is associated 

with a probability of being a physical 

link between two hits (doublet)

each node aggregates the information 

from its neighbors (triplet) 

A GNN performs information propagation
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Quantum Computing and QGNNs

Why: 

GNNs provide an interesting global approach to tracking

QC offers a an entirely new computing paradigm with built-in

• parallelism (quantum state superposition and linear operators)

• entanglement

• exponentially-scaling Hilbert space in the linear number of qubits

Hybrid QGNNs[1] are a good candidate for the NISQ (Noisy Intermediate Scale 

Quantum) era
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[1] 

first implemented by Tüysüz et. Al. https://doi.org/10.48550/arXiv.2109.12636



Graph neural networks and quantum circuits

Classically the Edge and Node Networks are dense fully connected layers

Edge Network ≡
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Classically the Edge and Node Networks are dense fully connected layers

we are exploring the possibility of using a hybrid architecture employing quantum circuits

Graph neural networks and quantum circuits

Edge Network ≡

Edge Network
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Classically the Edge and Node Networks are dense fully connected layers

we are exploring the possibility of using a hybrid architecture employing quantum circuits

Graph neural networks and quantum circuits

Edge Network ≡

Edge Network ≡

encoding layers
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Classically the Edge and Node Networks are dense fully connected layers

we are exploring the possibility of using a hybrid architecture employing quantum circuits

Graph neural networks and quantum circuits

Edge Network ≡

Edge Network ≡

circuitencoding layers
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Graph neural networks and quantum circuits

Classically the Edge and Node Networks are dense fully connected layers

we are exploring the possibility of using a hybrid architecture employing quantum circuits

Edge Network ≡

Edge Network ≡

readoutcircuitencoding layers
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The crucial step is the embedding of classical information into the quantum circuit
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Quantum circuits and encoding

the output of the encoding layers is embedded as rotation angles
these parameters are used by the encoding 

𝑅𝑦(𝜃) gates to rotate the initial |0000⟩ state to a 

new state in the Hilbert space 
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Quantum circuits and encoding

The crucial step is the embedding of classical information into the quantum circuit

the output of the encoding layers is embedded as rotation angles

The second part of the circuit is called PQC (Parametrized Quantum Circuit) and its free parameters are the ones we train

these parameters are used by the encoding 

𝑅𝑦(𝜃) gates to rotate the initial |0000⟩ state to a 

new state in the Hilbert space 
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Hybrid QGNN model
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Our implementation(s)

We have been working on an efficient implementation of the QGNN model using different frameworks

• We use the TrackML dataset, which provides collision events simulated with HL-LHC conditions in a generic 
tracker  

• Jax + Flax + Pennylane is the most promising version of our software (up to an order of magnitude less training 
time –from a few days to a few hours –  compared to Torch + Qiskit and TensorFlow Quantum + Cirq)

• We study the hybrid QGNN model in terms of:
- accuracy and other metrics for increasing pileup values
- noiseless, noisy and real IBM quantum hardware backends 

[2]
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[2]

Access to the IBM Quantum Services was obtained through the IBM Quantum 
Hub at CERN under the CERN-INFN agreement contract KR5386/IT.



Training the QGNN

Accuracy is, as expected, higher with lower pileup
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• The dataset is increasingly unbalanced for 
decreasing pileup

• Error bars are obtained by k-folding

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 + 𝑇𝑁



Training the QGNN

Other metrics show that the QGNN is able to correctly recognize fake edges, but struggles with true edge classification
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𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
𝑟𝑒𝑐𝑎𝑙𝑙 =

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =

𝑇𝑃

𝑇𝑃 + 𝐹𝑃



Training the QGNN

• In particular the majority of the errors occur in the innermost layers 
of the detector

• This is an expected behavior since because in layers 0-1 we find the 
vast majority of the combinatorial for the track segment candidates
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Inference

We tested the QGNN model on different backends

ideal noiseless simulator 

Qiskit Aer noisy simulator

IBM Quantum hardware (IBM_Osaka)
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• There is no significant difference between the 

results for noiseless and noisy simulated values, 

the two curves are essentially overlapped

• Test set is reduced for inference on IBM Quantum 

Hardware due to limitations in QPU time and 

resources availability



A critical overview
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What we have learnt so far:

Tracking is definitely not a low hanging fruit for QML
- HEP events are far too big to be handled by a full quantum GNN in this NISQ era
- TrackML is a dataset that fits ML quite nicely, but can be an overshoot for QML DATASET

The GNN architecture we are studying is not state-of-the-art anymore
- There are much more complex classical GNN oriented tracking pipelines (e.g. Atlas 

ACORN and LHCb etx4velo wich we plan to take inspiration from in the near future) GNN

Iterations are a relevant bottleneck in this hybrid architecture
- Quantum parallelism needs to be better exploited
- Quantum circuits calls have to be optimized and not performed for each node/edge QGNN



Conclusion and prospects

• We have successfully implemented a QGNN model and we trained and performed inferences on simulators 
and real quantum hardware

• Our implementation can be trained in reasonable times, which is an important starting point for future 
studies

• Tracking is a complex problem, especially for QML

• Improvements are to be expected for both the classical GNN pipeline and the role of the quantum circuits in 
the Hybrid QGNN architecture
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our repo



Thank you for your attention
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Backup – detector and dataset

The dataset we use comes from the TrackML Kaggle challenge [2]

[2] https://www.kaggle.com/competitions/trackml-particle-identification

• only the barrel region (8,13-17) is considered
• selection:
  pt_min: 1. # GeV
  phi_slope_max: 0.0006
  z0_max: 100
  n_phi_sections: 1
  n_eta_sections: 1
  eta_range: [-5, 5]
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https://www.kaggle.com/competitions/trackml-particle-identification


Backup – Input Graphs

Pileup 200

Graph with 5653 hits, 8837 edges, 53% true 

Pileup 150

Graph with 4223 hits, 5630 edges, 58% true

Pileup 100

Graph with 2728 hits, 3117 edges, 71% true

Pileup 50

Graph with 1512 hits, 1553 edges, 83% true

Pileup 10

Graph with 291 hits, 240 edges, 98% true
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