PMT Simulation noise, SPE signal characterization and code updates

Presented by: Luan Gomes

Universidade Federal de Juiz de Fora (UFJF)

with Davide Pinci (INFN-Roma I) and Rafael A. Nóbrega (UFJF)

July 29, 2024

Summary

In this presentation:

- 1. Introduction
- 2. Noise simulation
- 3. SPE Signal characterization
- 4. Code updates
- 5. Conclusions

Introduction

From my last presentation...

Sim/data comparison - 55Fe events

- Simulation/data main differences:
 - RMS noise
 - Waveform shape

Introduction

From my last presentation...

PMT Simulation tasks

Introduction

PMT signal simulation

- Currently we simulate only the fast digitizer
- To simulate the fast and slow digitizers, we need to perform noise characterization
 - Redo the characterization for fast digitizer

Current method

- Generate the noise from covariance matrix of a noise dataset (random.multivariate_normal)
 Problems:
- The current cov matrix is not correct
 - I have done the characterization of the noise for channels that the PMTs are not connected.

New method

- Generate the noise from Power Spectral Density of a noise dataset
 - Get the Average Power Spectral Density of the dataset
 - Generate a random phase from a uniform distribution
 - Perform an IFFT to obtain the time-domain noise series
- Faster than current method

The noise dataset - run 60880 - 2000 noises/channel

Amplitude distribution

60000

50000

Fast digitizer - First 150 samples

Amplitude distribution

Channel 2

70000

60000

50000

Channel 1

The noise dataset - run 60880 - 2000 noises/channel

Fast digitizer - First 150 samples

• Let's take a look at the Average Power Spectral Density

• A characterization for each channel may be the best approach

The noise dataset - run 60880 - 2000 noises/channel

Slow digitizer - First 400 samples

9

The noise dataset - run 60880 - 2000 noises/channel

Slow digitizer - First 400 samples

• Let's take a look at the Average Power Spectral Density

• A characterization for each channel may be the best approach

Quantization

• The current simulation do not apply quantization to the simulated waveforms

ADC: 12 bit

Resolution: 1V / 4096

Fast digitizer - 750MS/s | 1024 Samples

Quantization

• The current simulation do not apply quantization to the simulated waveforms

ADC: 12 bit

Resolution: 1V / 4096

Slow digitizer - 250MS/s | 4000 Samples

The effect of quantization is more noticeable in the slow digitizer

Simulation/Real noises comparison - Waveforms

Fast digitizer - First 150 samples

13

Simulation/Real noises comparison - Waveforms

Slow digitizer - First 400 samples

SIMULATION

Simulation/Real noises comparison - Amplitude distribution

Fast digitizer

Slow digitizer

Signal shape model

- Currently we represent the SPE signal shape as a Gaussian
- We were able to estimate a new SPE signal shape using an Exponentially modified Gaussian

$$f(x;\mu,\sigma,\lambda) = rac{\lambda}{2} e^{rac{\lambda}{2}(2\mu+\lambda\sigma^2-2x)} \, ext{erfc}igg(rac{\mu+\lambda\sigma^2-x}{\sqrt{2}\sigma}igg)$$

- μ = mean (arrival times)
- σ = standard deviation (width)
- λ = exponential decay rate

Remembering the characterization

Example

Dataset: .../PMT-Test-270922/BA1642_single_photoelectron

New results

New results

SPE acquisition setup: 5GS/s \rightarrow 1 Sample = 0.2 ns

- Amplitude: mean = -0.0042 V, std = 0.00148 V
- σ = 2.63 Samples = 0.53 ns
- $\lambda = 0.163 \text{ (Samples)}^{-1} = 0.81 \text{ (ns)}^{-1}$
- Rise time
 - 6 Samples = 1.2 ns
 - PMT R7378A Datasheet: 1.5 ns (Typical)
- Fall time
 - 14 Samples = 2.8 ns

Old vs new SPE signal

Shape problem

• The modification of the SPE signal shape is not enough to fix the "tail" of the waveforms:

Example for 55Fe spot - Step 5 = 46.6 cm (moving average filter applied to the waveforms in this example)

Shape problem

From detector simulation:

- Voxels arrival times:
 - Follows a Gaussian Distribution

CYGNO_60_40_ER_6_keV

Correction

PMTs positions

• Coordenates

Before

Now

Z distance from GEM plane = 134	Z distan
PMT 1: X = 312, Y = 312	PΝ
PMT 2: X = 312, Y = 42	PM
PMT 3: X = 42, Y = 42	PN
PMT 4: X = 42, Y = 312	PI

Z distance from GEM plane = 186	5
PMT 1: X = 42, Y = 312	
PMT 2: X = 312, Y = 312	
PMT 3: X = 312, Y = 42	
PMT 4: X = 42, Y = 42	

Units in mm

New parameters in PMT simulation config file

```
{"pmt_positions": {"pmt_1": {"x": 42, "y": 312},
                   "pmt_2": {"x": 312, "y": 312},
                  "pmt 3": {"x": 312, "y": 42},
                  "pmt_4": {"x": 42, "y": 42}},
"dist gem pmt": 186,
 "pmt radius": 11,
"quantum efficiency": 0.26,
 "pmt time response": {"transit time": 17,
                       "transit time spread": 0.9},
 "pmt signal": {"amplitude": -0.0042,
                "amplitude dispersion": 0.00148,
                "sigma": 0.53,
               "lambda": 0.81},
"fast window len": 1024,
"slow window len": 4000,
"fast freq": 750e6,
"slow freg": 250e6,
"fast noise path": {"pmt 1": "pmt simulation/noise psd/fast noise ch1.npy",
                     "pmt 2": "pmt simulation/noise psd/fast noise ch2.npy",
                     "pmt 3": "pmt simulation/noise psd/fast noise ch3.npy",
                    "pmt_4": "pmt_simulation/noise_psd/fast_noise_ch4.npy"},
"slow noise path": {"pmt 1": "pmt_simulation/noise psd/slow noise ch1.npy",
                     "pmt 2": "pmt simulation/noise psd/slow noise ch2.npy",
                     "pmt_3": "pmt_simulation/noise_psd/slow_noise_ch3.npy",
                     "pmt 4": "pmt simulation/noise psd/slow noise ch4.npy"},
 "nJobs": -1,
 "digitizers": "Both"}
```

- Corrections in pmt positions
- New SPE signal parameters
- Fast and Slow digitizers parameters
- Path to noises PSDs
- Parallelization (in tests)
 - "nJobs": Number of cores
 - Set -1 to use all cores available, maximum of 4
 - Set 1 to not use parallelization
- Digitizer selection
 - "digitizers": "Both", "Fast" or "Slow"

PMT 1 PMT 2 Example | Centered 6 kEV spot, z = 151 mm -0.01 -0.01 -0.02 S −0.02 -0.03 -0.03 -0.04 -0.04 -0.05 -0.05 -0.06 **Fast digitizer** 600 800 1000 1200 1000 Time (ns) PMT 3 Time (ns) PMT 4 0.00 -0.01 -0.01 € -0.02 -0.02 -0.03 -0.03 -0.04 -0.04 -0.05 600 Time (ns) -0.05 600 Time (ns) 200 400 800 1000 1200 1400 200 400 800 1000 1200 1400 ó ò PMT 1 PMT 2 0.0 0.00 -0.01 -0.02 -0.02 € -0.03 --0.04 -0.04 -0.05 -0.06 -0.06 -0.07 -0.08 **Slow digitizer** 4000 6000 8000 10000 12000 2000 14000 1600 2000 4000 6000 8000 10000 12000 14000 Time (ns) PMT 3 Time (ns) PMT 4 0.00 0.00 --0.01 -0.01 -0.02 -0.02 -0.03 -0.03 -0.04 -0.04 -0.05 -0.05 -0.06 -0.06 PMT Simulation took 0.4 seconds (without parallelization) -0.07 -0.07 2000 4000 6000 8000 Time (ns) 10000 12000 14000 16000 ò 2000 4000 6000 8000 Time (ns) 10000 12000 14000 16000

From my last presentation

n = 3.9 in propagation equation

After new modifications

n = 4 in propagation equation

Conclusions

- The noise simulation is completed
 - 4 single channels simulations for each digitizer
- Fast/Slow digitizers and amplitude quantization completed
- SPE signal shape will not fix the tail of the PMT output shaping (voxels arrival \rightarrow Gaussian?)

Next steps

• Simulate different tracks with different energies

Remember

- Latest updates in my fork (pmt-july24 branch):
 - <u>https://github.com/luangmc/digitization/tree/pmt-july24</u>