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Quarkonia as an OQS

Can we describe how quarkonia propagates through a
medium from first principles?

Open Quantum Systems can help us outline a method to do so.

Can we do it efficiently?

We can try! Taking advantage of the symmetries of the problem.
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Quarkonia

They are bound states of a heavy quark-antiquark pair (QQ̄)
of the same kind (Olsen et al., 2017) which are stable with
respect to strong decay into open charm/bottom (Sarkar et al.,
2010).
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Observations

Experimental evidence (Chatrchyan et al., 2012) of nuclear effects
in the creation and propagation of quarkonia.
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Why quarkonia as a probe

1 Well-known probe. Experimentally, clean signal through dilepton
decays.

2 Hard scale: quarkonia mass mQQ̄ ,mQ ≫ ΛQCD . Easy to be
described by EFT.

3 Small radius: harder to dissociate from color screening than light
quark matter.

(Roland Katz, 2015)
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Open Quantum Systems 101

We divide the full quantum system (T)
into well-differentiated parts: the subsys-
tem (S) and the environment (E) (Breuer
and Petruccione, 2002).

The full quantum dynamics of the sub-
system is kept whereas the environment
is traced out.

Main character (density matrix, ρ) and observables ⟨O⟩:

ρ =
∑

i
pi |ψi⟩ ⟨ψi | −→ ⟨O⟩ = Tr{ρO}.

Reduced density matrix: trE {ρT } = ρS −→ ⟨O⟩ = TrS{ρSO}.

Hamiltonian: HT = HS ⊗ IE + IS ⊗ HE + HI , where HI = VS ⊗ VE .
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Open Quantum Systems for Quarkonia

The explicit form of the full hamiltonian (using LO NRQCD in the
Coulomb gauge) would be:

(1)
HT = T QQ̄

kin − CFαsmD + Vx (|xQ̄ − xQ|) ⊗ IE + IS ⊗ Hq+A

+
∫

d3x [δ(x − xQ)ta
Q − δ(x − xQ̄)ta∗

Q̄ ] ⊗ gAa
0(x)

We know that:

TrE
[
T [Aa

0(t1, x1)Ab
0(t2, x2)]ρE

]
= −iδab∆(t1 − t2, x1 − x2)

We can profit from the fact that propagators of the A0 component
can be linked with real and imaginary potentials like (Blaizot and
Escobedo, 2017):

V (r) = −∆R(ω = 0, r), W (r) = −∆<(ω = 0, r)
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Timescales

These approximations also refer to the characteristic timescales τi
of the different parts of the system, namely:

τS = 1/∆E , τE ∼ 1/T , τR ∼ M/T 2.

Here ∆E is the energy gap between the energy levels of the bound
state, T is the temperature and M is the particle mass.

We look for the regime where:

τE ≪ τR −→ Born and Markov approximations,

τE ≪ τS −→ Born-Oppenheimer approximation.

These considerations will help out with the algebraic manipulations
to reach the desired and consistent OQS shape of the equation of
evolution.
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Evolution equation.

Starting point: Liouville-von Neumann equation: dρT
dt = −i [HT , ρT ]

Trace over environment degrees of freedom: trE

{
dρT
dt

}
.

Born, Markov and Born-Oppenheimer approximations −→ Brownian
motion regime.
Lindblad equation:

dρS
dt = −i [HS , ρT ] +

∑
k

(
CkρSC†

k − 1
2{C†

k Ck , ρS}
)

The task left is solving it! =⇒ QTRAJ1.0
1 High computational cost.
2 Current implementation works in the dipole approximation, where

rT ≪ 1.
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Quantum trajectories: an algorithm to solve Lindblad’s.

We redefine the subsystem hamiltonian by adding an immaginary
component coming from the anti-commutators (Akamatsu, 2022;
Blaizot and Escobedo, 2018; Yao and Mehen, 2019).
It becomes a non-hermitian hamiltonian.

Heff = HS − i
2
∑

x

∫
q

C †
q,xCq,x︸ ︷︷ ︸

Γq,x

= HS − i
2Γ.

dρS
dt = −i [Heff (t), ρS ] +

∑
x

∫
q

Cq,xρSC †
q,x ,

The state is evolved in Schrödinger-like way (norm decreases).
When the norm goes below a certain value, a projection (jump) is
performed according to certain selection rules.
QTRAJ1.0 (+ 0.1) is a C-based code using this scheme on the
wavefunction in order to retrieve the final population of quarkonia.
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Upgrade of the jump operators with respect to QTRAJ 1.0

We may identify some of the new families of operators with the
previous finite number of operators.

C0
i =

√
κ

N2
c − 1 r̂i

(
0 1√

N2
c − 1 0

)
−→ C0

q =
(

0 1√
2Nc

Lq√
CF Lq 0

)
,

C1
i =

√
(N2

c − 4)κ
2(N2

c − 1) r̂i

(
0 0
0 1

)
−→ C1

q =
(

0 0
0
√

N2
c −4
4Nc

Lq

)
,

NEW! −→ C2
q =

(
0 0
0

√
Nc
2 L̄q

)
,

where
Lq = L†

q = 2g
√

∆<(q, 0) sin q · r̂
2 ,

L̄q = L̄†
q = 2g

√
∆<(q, 0) cos q · r̂

2 .
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Splitting in the colour basis.
Splitting in a color basis (singlet-octet).

ρS(t) = ρs(t) |s⟩ ⟨s| + ρ̄o(t)
∑

C
|oC ⟩ ⟨oC | =⇒

(N2
c − 1)ρ̄o(t)︸ ︷︷ ︸

ρo

∑
C

1
N2

c − 1 |oC ⟩ ⟨oC |︸ ︷︷ ︸
average

= ρo(t) |o⟩ ⟨o| .

We rewrite the previous equation as the system:

dρs
dt = −iHs

effρs + iρsHs†
eff + CF

∫
q

LqρoLq ,

dρo
dt = −iHo

effρ̄o + iρoHo†
eff + 1

2Nc

∫
q

LqρsLq

+ N2
c − 4
4Nc

∫
q

LqρoLq + Nc
4

∫
q

L̄qρoL̄q .
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When is a jump triggered?
Due to the non-hermitian nature of the hamiltonian =⇒ the norm
decreases.
A zeroth random number is drawn r0. When the condition:

r0 > |⟨ψ(ti)|ψ(ti)⟩|,

the jump is triggered and the selection rules come into play.

Wavefunction 1

Norm 1 = 1

Temperature = 0.7 GeV

ℓ = 0

Color = Singlet

rmed= 0.200241 fm

step= 1

Wavefunction 2

Norm 2 = 1

Temperature = 0.7 GeV

ℓ = 0

Color = Octet

rmed= 0.200241 fm

step= 1

0 2 4 6 8 10
r (fm)0.0

0.2

0.4

0.6

0.8

1.0

r
2 ψ2 GeV



13/19

Context Quantum Trajectories Conclusions. Appendix

When is a jump triggered?
Due to the non-hermitian nature of the hamiltonian =⇒ the norm
decreases.
A zeroth random number is drawn r0. When the condition:

r0 > |⟨ψ(ti)|ψ(ti)⟩|,

the jump is triggered and the selection rules come into play.

Wavefunction 1

Norm 1 = 0.868834

Temperature = 0.636702 GeV

ℓ = 0

Color = Singlet

rmed= 0.193308 fm

step= 11

Wavefunction 2

Norm 2 = 0.815799

Temperature = 0.636702 GeV

ℓ = 0

Color = Octet

rmed= 0.245058 fm

step= 11

0 2 4 6 8 10
r (fm)0.0

0.2

0.4

0.6

0.8

1.0

r
2 ψ2 GeV



13/19

Context Quantum Trajectories Conclusions. Appendix

When is a jump triggered?
Due to the non-hermitian nature of the hamiltonian =⇒ the norm
decreases.
A zeroth random number is drawn r0. When the condition:

r0 > |⟨ψ(ti)|ψ(ti)⟩|,

the jump is triggered and the selection rules come into play.

Wavefunction 1

Norm 1 = 0.774529

Temperature = 0.591459 GeV

ℓ = 0

Color = Singlet

rmed= 0.195043 fm

step= 21

Wavefunction 2

Norm 2 = 0.677157

Temperature = 0.591459 GeV

ℓ = 0

Color = Octet

rmed= 0.324733 fm

step= 21

0 2 4 6 8 10
r (fm)0.0

0.2

0.4

0.6

0.8

1.0

r
2 ψ2 GeV



13/19

Context Quantum Trajectories Conclusions. Appendix

When is a jump triggered?
Due to the non-hermitian nature of the hamiltonian =⇒ the norm
decreases.
A zeroth random number is drawn r0. When the condition:

r0 > |⟨ψ(ti)|ψ(ti)⟩|,

the jump is triggered and the selection rules come into play.

Wavefunction 1

Norm 1 = 0.699735

Temperature = 0.556834 GeV

ℓ = 0

Color = Singlet

rmed= 0.20118 fm

step= 31

Wavefunction 2

Norm 2 = 0.569544

Temperature = 0.556834 GeV

ℓ = 0

Color = Octet

rmed= 0.417936 fm

step= 31

0 2 4 6 8 10
r (fm)0.0

0.2

0.4

0.6

0.8

1.0

r
2 ψ2 GeV



13/19

Context Quantum Trajectories Conclusions. Appendix

When is a jump triggered?
Due to the non-hermitian nature of the hamiltonian =⇒ the norm
decreases.
A zeroth random number is drawn r0. When the condition:

r0 > |⟨ψ(ti)|ψ(ti)⟩|,

the jump is triggered and the selection rules come into play.

Wavefunction 1

Norm 1 = 0.559626

Temperature = 0.496123 GeV

ℓ = 0

Color = Singlet

rmed= 0.218581 fm

step= 56

Wavefunction 2

Norm 2 = 0.389148

Temperature = 0.497486 GeV

ℓ = 0

Color = Octet

rmed= 0.669629 fm

step= 56

0 2 4 6 8 10
r (fm)0.0

0.2

0.4

0.6

0.8

1.0

r
2 ψ2 GeV



13/19

Context Quantum Trajectories Conclusions. Appendix

When is a jump triggered?
Due to the non-hermitian nature of the hamiltonian =⇒ the norm
decreases.
A zeroth random number is drawn r0. When the condition:

r0 > |⟨ψ(ti)|ψ(ti)⟩|,

the jump is triggered and the selection rules come into play.

Wavefunction 1

Norm 1 = 0.555019

Temperature = 0.494202 GeV

ℓ = 0

Color = Singlet

rmed= 0.219131 fm

step= 57

Wavefunction 2

Norm 2 = 1

Temperature = 0.497486 GeV

ℓ = 0

Color = Octet

rmed= 0.647927 fm

step= 57

0 2 4 6 8 10
r (fm)0.0

0.2

0.4

0.6

0.8

1.0

r
2 ψ2 GeV



14/19

Context Quantum Trajectories Conclusions. Appendix

Selection rules.

QTRAJ 1.0 → 2 Selection rules independent of the wavefunction.

p(s → o) = 1; p(o → s) = 2/7.

QTRAJ 1.1 → 4 selection rules depending on the shape of the
wavefunction.

1 Color state: singlet/octet → r1.
2 Maximum angular momentum exchanged, t→ r2.
3 Angular momentum of the final state→ r3.
4 Linear impulse exchanged by the propagator→ r4.

The probability of jumping to a specific final state depends on
p(i −→ f ) = p(r1, r2, r3, r4).
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1 Color state: singlet/octet, Γs ; Γo = Γo1 + Γo2 + Γo3 .

p(s → o) = 1; pi(o → x) = Γoi

Γo where x = {s, o}.

Draw a first random number, r1. Choose i to be the lowest value for
which the following is satisfied:

0 ≤ p1 < p1 + p2 ≤ p1 + p2 + p3 = 1.

We will call the chosen decay width, generically, Γx .

Γo Γo2, p2

Γo1, p1

Γo3, p3
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2 Maximum angular momentum exchanged, t, of Lq and L̄q , v.g.:

Lq = L†
q = 2g

√
∆<(q, 0) sin q · r̂

2 =⇒ Γ =
∫

q
LqL†

q .

Γ =
∑

t
Γt = A

∫
q

q2∆<(q)(4t+3) [j2t+1(qr̂/2)]2 =⇒ r2 <
1
Γx

t∑
i=0

Γx
i .
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3 Angular momentum of the final state.

p(ℓi → ℓf ) =
∑

mi ,m,mf
1

(2ℓf +1) |⟨ℓi , 0; 2t + 1, 0|ℓf , 0⟩|2|⟨ℓi , mi ; 2t + 1, m|ℓf , mf ⟩|2∑
m′

i ,m′,ℓ′
f ,m′

f

1
(2ℓ′

f +1) |⟨ℓi , 0; 2t + 1, 0|ℓ′
f , 0⟩|2|⟨ℓi , m′

i ; 2t + 1, m′|ℓ′
f , m′

f ⟩|2

r3 <

ℓf∑
ℓ=0

p(d → ℓ).

4 Linear impulse exchanged by the propagator (modulus).

PDF → dΓ
dq = q2∆<(q)(4t + 3) [j2t+1(qr̂/2)]2 ,

qchosen = CDF −1(r4).

The order of these steps may in principle be exchanged (currently
under testing).
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Final state

|ψnew ⟩ =
Cn

q |ψold⟩√
⟨ψold | Γn
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Final state
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Final state
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Conclusions.

1 The inclusion of less restrictive potentials allows the expansion
the regime of validity of the simulations to rT ∼ 1.

2 A whole new family of operators is included. These, in
contrast to previous implementations, allow transitions
preserving the parity of the initial state.

3 The repulsive nature of the octet potential, the radius of the
couple tends to be increased, favouring the appearance of
transitions of ∆ℓ > 1, which before were forbidden.
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Approximations: Born approximation

It is a weak coupling between the subsystem and the environment,
HI ≪ 1.

ρT (t) = ρS(t) ⊗ ρE (t) + ρcorr (t) ≈ ρS(t) ⊗ ρE (t),

where ρcorr is the correlation component between the environment
and the subsystem.

dρT ,I(t)
dt ≈ −

∫ t

0
dτ [HI(t), [HI(τ), ρS,I(τ) ⊗ ρE ,I(0)]]
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Approximations: Markov approximation

Taking into account only the current step in order to obtain the
next one ρS,I(τ) −→ ρS,I(t). We will perform the change of
variable τ −→ τ ′ = t − τ so:

τ = 0 −→ τ ′ = t − τ = t
τ = t −→ τ ′ = t − τ = 0
Since the correlation time of the environment is much less
than the average relaxation time of the system we can take
t −→ ∞.

If we also trace over the environment, we get:

dρS,I(t)
dt ≈ −

∫ ∞

0
dτ trE {[HI(t), [HI(t − τ), ρS,I(t) ⊗ ρE ,I(0)]]}.

Redfield equation.
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Approximations: Born-Oppenheimer approximation

The environmental degrees of freedom move much faster than the
quarkonium so effectively they instantly change to any changes
that the quarkonium may induce.

VS(t − s) ≈ VS(t) − s dVS(t)
dt + · · · = VS(t) − is[HS ,VS(t)] + . . .

Gradient expansion for Brownian motion.
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1 Projecting ρS(t) into spherical harmonics.
2 Also, split into the singlet-octet colour basis.

ρS(t) = diag(ρsing ,s
S , ρoct,s

S , ρsing ,p
S , ρoct,p

S )

Great computational advantage: 3D −→ 1D ·Y ℓ
m(θ, ϕ).
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Quark-gluon plasma

It is a deconfined phase on the QCD phase diagram [11].
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Comparisson with other theorical developments.

For a weakly-coupled plasma (Brambilla et al., 2017) :

C0
i =

√
2 (µE ) T

3Nc

[ 2ipi
M + Nc (1/ao) ri

2r

]( 0 1
0 0

)
C1

i =
√

4CF (µE ) T
3

[
− 2ipi

M + Nc (1/ao) ri
2r

]( 0 0
1 0

)
C0

q =
( 0 1√

2Nc
Lq

√
CF Lq 0

)

C2
i = 2

M

√
(N2

c − 4)(µE ) T
3Nc

pi

(
0 0
0 1

)
−→ C1

q =

(
0 0

0
√

N2
c −4
4Nc

Lq

)
,

NEW! −→ C2
q =

(0 0
0

√
Nc
2 L̄q

)
,
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