

Far-from-equilibrium attractors in kinetic theory for a mixture of quark and gluon fluids

Ferdinando Frascà

Andrea Beraudo, Michael Strickland

Istituto Nazionale di Fisica Nucleare - Sezione di Torino

September 10-11, 2024

Istituto Nazionale di Fisica Nucleare

Contents

1 Main features of heavy-ion physics

- **2** The QGP as a two-component fluid
- **3** Conclusions and outlook
- Backup slides

Image: A matrix

Main features of heavy-ion physics

글 🛌 😑

The produced medium

Experiments at LHC and RHIC \longrightarrow a <u>hot</u>, <u>dense</u> medium is believed to be formed

- This state of matter is called Quark-Gluon Plasma (QGP)
- Our interest: connection between the pre-equilibrium and hydro phases

Some phenomenological quantities

A collision can be characterized with different values of **centrality**

Centrality quantifies the overlapping between **two colliding ions**

A D > <
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +

Some phenomenological quantities

A collision can be characterized with different values of **centrality**

Centrality quantifies the overlapping between **two colliding ions**

We compare values of the **specific** viscosity η/s for different fluids

Fluid	Т [К]	$\eta \; [Pa \cdot s]$	η/s
H_2O	370	$2.9\cdot10^{-4}$	8.2
4 He	2.0	$2.9 \cdot 10^{-6}$	1.9
H_2O	650	$6.0\cdot10^{-5}$	2.0
4 He	5.1	$1.7 \cdot 10^{-6}$	0.7
QGP	$2\cdot 10^{12}$	$\lesssim 5 \cdot 10^{11}$	$\lesssim 0.4$

[0712.3715]

• QGP has the lowest specific viscosity due to the huge amount of entropy produced in heavy-ion collisions

 η/s is related to the relaxation time $au_{
m eq}$

Relativistic Hydrodynamics in heavy-ion collisions (1) Hydrodynamics leads to accurate predictions of the final hadron spectrum, which can be calculated according to the Cooper-Frye formula:

$$E \frac{dN}{d^3 p} = \int_{\Sigma_{\rm FO}} d\Sigma_{\mu} \, p^{\mu} \, f(x;p) \,, \quad \Sigma_{\rm FO} : \ \text{3D hypersurface} \longleftrightarrow T(x) = T_{\rm FO}$$

• • • • • • • • • • • • • •

Relativistic Hydrodynamics in heavy-ion collisions (1) Hydrodynamics leads to accurate predictions of the final hadron spectrum, which can be calculated according to the **Cooper-Frye formula**:

 $E \frac{dN}{d^3p} = \int_{\Sigma_{\rm FO}} d\Sigma_{\mu} \, p^{\mu} \, f(x;p) \,, \quad \Sigma_{\rm FO} : \text{ 3D hypersurface} \longleftrightarrow T(x) = T_{\rm FO}$

Ferdinando Frascà (ferdinando.frasca@to.infn.it)

Far-from-equilibrium attractors in kinetic theory ...

SIM meeting - Catania

Relativistic Hydrodynamics in heavy-ion collisions (2) Azimuthal asymmetry of the hadron spectra (event-by-event fluctuations)

$$\frac{dN}{d\varphi} = \frac{\overline{N}}{2\pi} \left\{ 1 + 2 \sum_{k \ge 2} v_k \, \cos\left[k \left(\varphi - \psi_k\right)\right] \right\}, \ \psi_k \to \text{azimuthal orientation}$$

[1109.6289]

Relativistic Hydrodynamics: converts **momentum anisotropy** in a fluid (out of equilibrium) into **spatial anisotropy** of the hadron distributions

7/28

The Bjorken-flow framework

During the early stages after the collision, we can neglect transverse flow

(0+1)D longitudinal boost-invariant expansion $(v_z=z/t\,,\,\partial_\mu\,u^\mu=1/ au)$

RED: high energy density, BLUE: low energy density

made by Björn Schenke

• <u>QGP</u>: short lifetime ~ 10 fm/c and transverse extension \sim nuclear radius

Despite its simplicity, the **Bjorken model** is still capable of describing the <u>main</u> collective properties of the system

Why hydrodynamics is so (un) reasonably effective? (1)

 $\frac{Shortly after its formation}{collective flow patterns} the QGP quickly reaches a state where it exhibits$

The hydrodynamization process results in:

- loss of information about the initial condition
- approach to an attractor solution at late times ($\tau\sim 1~{\rm fm/c}$), but when the system is still out of equilibrium
- exponential decay of the **non-hydrodynamic modes** in the one-particle distribution function

\downarrow

Identification of <u>observables</u> with a **universal behavior**, e.g. longitudinal pressure and particle-number density

Why hydrodynamics is so (un) reasonably effective? (1)

 $\frac{Shortly after its formation}{collective flow patterns} the QGP quickly reaches a state where it exhibits$

The hydrodynamization process results in:

- loss of information about the initial condition
- approach to an attractor solution at late times ($\tau\sim 1~{\rm fm/c}$), but when the system is still out of equilibrium
- exponential decay of the **non-hydrodynamic modes** in the one-particle distribution function

Ļ

Identification of <u>observables</u> with a **universal behavior**, e.g. longitudinal pressure and particle-number density

 For <u>some</u> observables, attractors may extend also to early times, when the system is in the pre-hydrodynamic regime, due to the incredibly fast expansion (universality at early times ↔ no hydrodynamization)

3

Why hydrodynamics is so (un)reasonably effective? (2)

Summarizing, there are two types of attractor:

- late-time (forward) attractor: $\tau > \tau_{eq}$ (interactions) $\leftrightarrow \rightarrow$ hydrodynamics
- early-time (pullback) attractor: $\tau < \tau_{eq}$ (free streaming)

Why hydrodynamics is so (un)reasonably effective? (3) Attractors exist also for different hydrodynamic schemes, but <u>at late times</u> all these solutions approach the <u>attractor from kinetic theory</u> (exact solution)

• This fact motivates the use of kinetic theory to study such a system

• Kinetic theory also provides a description of the pre-hydrodynamic stage

The QGP as a two-component fluid

イロト イヨト イヨト イ

문 🛌 🖻

General setup for a quark-gluon mixture

Quark and **gluon** species are treated separately, in order to better describe the system relying on a **more realistic QCD-based framework**

- a fugacity parameter γ_q allows quarks to be out of chemical equilibrium
- symmetric quarks and anti-quarks (vanishing baryon chemical potential)

the quark species is assumed to be <u>massless</u> (conformality)

General setup for a quark-gluon mixture

Quark and **gluon** species are treated separately, in order to better describe the system relying on a **more realistic QCD-based framework**

- a fugacity parameter γ_q allows quarks to be out of chemical equilibrium
- symmetric quarks and anti-quarks (vanishing baryon chemical potential)

the quark species is assumed to be massless (conformality)

The <u>evolution</u> of the distribution function of each species (a = q, g) in kinetic theory is given by the **Boltzmann equation**, which reads in **RTA**:

$$\partial_{ au} \, f_{a} = rac{f_{ ext{eq},a} - f_{a}}{ au_{ ext{eq},a}} \,, \;\; ext{ with } \; au_{ ext{eq},g} = rac{5 \, \eta/s}{T}$$

when the system is undergoing a Bjorken expansion.

General setup for a quark-gluon mixture

Quark and **gluon** species are treated separately, in order to better describe the system relying on a **more realistic QCD-based framework**

- a fugacity parameter γ_q allows quarks to be out of chemical equilibrium
- symmetric quarks and anti-quarks (vanishing baryon chemical potential)

the quark species is assumed to be massless (conformality)

The <u>evolution</u> of the distribution function of each species (a = q, g) in kinetic theory is given by the **Boltzmann equation**, which reads in **RTA**:

$$\partial_{ au} \, f_a = rac{f_{ ext{eq},a} - f_a}{ au_{ ext{eq},a}} \,, \;\; ext{ with } \; au_{ ext{eq},g} = rac{5 \, \eta/s}{T}$$

when the system is undergoing a Bjorken expansion.

- f_a relaxes to the isotropic Maxwell-Boltzmann distribution function $f_{eq,a} \sim \exp[-(p \cdot u)/T]$ in a time scale given by the relaxation time τ_{eq}
- Casimir scaling: $\tau_{eq,g}/\tau_{eq,q} \equiv C_R = 4/9$, meaning that gluons relax to the equilibrium configuration faster than quarks

< ロ > < 同 > < 三 > < 三 > 、

Formal solution for the Boltzmann equation

In this special case, the Boltzmann equation admits an exact solution:

$$f_{a}(\tau; w, p_{T}) = \underbrace{\mathbf{D}_{a}(\tau, \tau_{0}) \ f_{0,a}(w, p_{T})}_{\text{free-streaming term}} + \underbrace{\int_{\tau_{0}}^{\tau} \frac{d\tau'}{\tau_{\text{eq},a}(\tau')} \mathbf{D}_{a}(\tau, \tau') \ f_{\text{eq},a}(\tau'; w, p_{T})}_{\text{evolution term (collisions)}}$$

where we used the **damping function** to take into account the fraction of particles which have not suffered any collision in a given time interval:

$$D_{a}(\tau_{2},\tau_{1}) \equiv \exp\left[-\int_{\tau_{1}}^{\tau_{2}} \frac{d\tau'}{\tau_{\text{eq},a}(\tau')}\right], \quad w \equiv t \, p_{z} - z \, E \text{ (boost invariant)}$$

Formal solution for the Boltzmann equation

In this special case, the Boltzmann equation admits an exact solution:

$$f_{a}(\tau; w, p_{T}) = \underbrace{\mathbf{D}_{a}(\tau, \tau_{0}) \ f_{0,a}(w, p_{T})}_{\text{free-streaming term}} + \underbrace{\int_{\tau_{0}}^{\tau} \frac{d\tau'}{\tau_{\text{eq},a}(\tau')} \mathbf{D}_{a}(\tau, \tau') \ f_{\text{eq},a}(\tau'; w, p_{T})}_{\text{evolution term (collisions)}}$$

where we used the **damping function** to take into account the fraction of particles which have not suffered any collision in a given time interval:

$$D_{a}(\tau_{2},\tau_{1}) \equiv \exp\left[-\int_{\tau_{1}}^{\tau_{2}} \frac{d\tau'}{\tau_{\text{eq},a}(\tau')}\right], \quad w \equiv t \, p_{z} - z \, E \text{ (boost invariant)}$$

Due to the rapid expansion at **early times**, the distribution function exhibits a **high degree of anisotropy** in the fluid LRF (Strickland-Romatschke form):

$$f_{0,a} \underset{\text{LRF}}{=} G_{a,0} \exp\left[-\frac{\sqrt{p_T^2 + (1 + \xi_0) p_z^2}}{\Lambda_0}\right], \text{ with } G_{a,0} \equiv \begin{cases} g_g, \ a = g \\ 2 g_q \gamma_{q,0}, \ a = q \end{cases}$$

• relativistic degrees of freedom: $g_g = 2 \times 8 = 16, \ g_q = 2 \times 3 \times 3 = 18$

Evolution of the one-particle distribution function

 $\alpha_0 \equiv (1+\xi_0)^{-1/2} = 0.4, \ \gamma_{q,0} = 0.1, \ \tau_0 = 0.15 \text{ fm/c}, \ T_0 = 600 \text{ MeV}, \ \eta/s = 0.2$

- At early times, the particle distributions exhibit squeezed (non-hydrodynamic) modes for small p_z (free-streaming term)
- At <u>late times</u>, the system tends to isotropize (evolution term) and the squeezed modes are exponentially suppressed, due to the damping function.

How does the quark abundance change?

From the Boltzmann equation one is able to reconstruct the time-evolution of the fugacity parameter, working in the origin of momentum space:

 $\gamma_q(au) = D_q(au, au_0) \, \gamma_{q,0} + \left[\gamma_{q, ext{eq}} - D_q(au, au_0)
ight], \; ext{ with } \; \gamma_{q, ext{eq}} = 1$

イロト イヨト イヨト イヨト

How does the quark abundance change?

From the Boltzmann equation one is able to reconstruct the time-evolution of the fugacity parameter, working in the origin of momentum space:

$$\gamma_q(au) = D_q(au, au_0) \, \gamma_{q,0} + \left[\gamma_{q, ext{eq}} - D_q(au, au_0)
ight], \; ext{ with } \; \gamma_{q, ext{eq}} = 1$$

Evolution of the fugacity for an initially **underpopulated quark species** (left panel) and for quarks initially in chemical equilibrium (right panel)

• a gluon-dominated plasma is expected to be produced right after HIC ($\gamma_{q,0} < 1$)

• the equilibrium solution itself acts quickly as an attractor for the fugacity

The generalized Landau matching condition

The only physical constraint we need to require is the <u>total</u> (**quarks + gluons**) **energy-momentum conservation**, which reads:

$$\partial_{\mu} T^{\mu\nu} = 0 \longrightarrow \varepsilon_{q} + \frac{\varepsilon_{g}}{C_{R}} = \varepsilon_{q,\mathrm{eq}} + \frac{\varepsilon_{g,\mathrm{eq}}}{C_{R}} ,$$

if quarks and gluons have different relaxation times ($C_R = 4/9$).

- Landau frame: $T_a^{\mu\nu} u_{\mu} \equiv \varepsilon_a u^{\nu}$ (eigenvalue equation)
- In equilibrium $\varepsilon_{a,eq} = \frac{3 G_{a,eq}}{\pi^2} T^4$, this allows one to find an effective temperature for the whole mixture

・ ロ ト ・ 何 ト ・ 三 ト ・ 三 ト - -

The generalized Landau matching condition

The only physical constraint we need to require is the <u>total</u> (**quarks + gluons**) **energy-momentum conservation**, which reads:

$$\partial_{\mu} T^{\mu\nu} = 0 \longrightarrow \varepsilon_{q} + \frac{\varepsilon_{g}}{C_{R}} = \varepsilon_{q,\mathrm{eq}} + \frac{\varepsilon_{g,\mathrm{eq}}}{C_{R}} ,$$

if quarks and gluons have different relaxation times $(C_R=4/9)$.

- Landau frame: $T_a^{\mu\nu} u_{\mu} \equiv \varepsilon_a u^{\nu}$ (eigenvalue equation)
- In equilibrium $\varepsilon_{a,eq} = \frac{3 G_{a,eq}}{\pi^2} T^4$, this allows one to find an effective temperature for the whole mixture

Kinetic definition of the energy-momentum tensor for a given particle species:

$$T_a^{\mu\nu} \equiv \int d\chi \ p^{\mu} \ p^{\nu} \ f_a(\tau; w, p_T) \ , \ {\rm where} \ \ d\chi = rac{dw \ d^2 p_T}{(2\pi)^3 \ v} \ \ ({\rm invariant \ measure})$$

and $v\equiv \sqrt{w^2+p_T^2\,\tau^2}$ is another scalar quantity for longitudinal boosts.

・ロト ・ 同 ト ・ ヨト ・ ヨト ・ ヨー ・ つへの

The cooling of a two-component system

The generalized Landau matching condition can be employed to obtain a dynamical equation for the effective temperature:

$$T^{4}(\tau) = D(\tau,\tau_{0}) \left[\bar{r} + 2 \gamma_{q,0} \left(D(\tau,\tau_{0}) \right)^{C_{R}-1} \right] \left(2 \gamma_{q,0} + \bar{r} \right)^{-1} T_{0}^{4} \frac{H\left(\alpha_{0} \frac{\tau_{0}}{\tau}\right)}{H(\alpha_{0})} + \frac{C_{R}}{2 + \bar{r}} \int_{\tau_{0}}^{\tau} \frac{d\tau'}{2 \tau_{eq}(\tau')} D(\tau,\tau') \left[\frac{\bar{r}}{C_{R}} + 2 \left(D(\tau,\tau') \right)^{C_{R}-1} \right] T^{4}(\tau') H\left(\frac{\tau'}{\tau}\right) ,$$

where we introduced: $H(y)=y\int_{-1}^{1}d\cos heta~\sqrt{y^2\,\cos^2 heta+\sin^2 heta}$ and $r=g_g/g_q$.

< □ > < 同 > < 三 > < 三 >

The cooling of a two-component system

The generalized Landau matching condition can be employed to obtain a dynamical equation for the effective temperature:

$$T^{4}(\tau) = D(\tau, \tau_{0}) \left[\bar{r} + 2 \gamma_{q,0} \left(D(\tau, \tau_{0}) \right)^{C_{R}-1} \right] \left(2 \gamma_{q,0} + \bar{r} \right)^{-1} T_{0}^{4} \frac{H\left(\alpha_{0} \frac{\tau_{0}}{\tau} \right)}{H(\alpha_{0})} + \frac{C_{R}}{2 + \bar{r}} \int_{\tau_{0}}^{\tau} \frac{d\tau'}{2 \tau_{eq}(\tau')} D(\tau, \tau') \left[\frac{\bar{r}}{C_{R}} + 2 \left(D(\tau, \tau') \right)^{C_{R}-1} \right] T^{4}(\tau') H\left(\frac{\tau'}{\tau} \right) ,$$

where we introduced: $H(y)=y\int_{-1}^{1}d\cos heta~\sqrt{y^2~\cos^2 heta+\sin^2 heta}$ and $r=g_g/g_q$.

Ferdinando Frascà (ferdinando.frasca@to.infn.it) Far-from-equilibrium attractors in kinetic theory ... SIM meeting - Catania 18/28

Evolution equation for the general moments

From the **exact solution of the BE**, one can derive an **evolution equation for the moments** associated with the distribution function:

$$M_a^{nm}(\tau) \equiv \int d\chi \ (p \cdot u)^n \ (p \cdot z)^{2m} \ f_a(\tau; w, p_T) \longrightarrow \begin{cases} n = 0, \ m = 1 \ : \ P_{L,a} \\ n = 1, \ m = 0 \ : \ n_a \\ n = 2, \ m = 0 \ : \ \varepsilon_a \end{cases}$$

(日) (四) (日) (日) (日)

Evolution equation for the general moments

From the **exact solution of the BE**, one can derive an **evolution equation for the moments** associated with the distribution function:

$$M_a^{nm}(\tau) \equiv \int d\chi \ (p \cdot u)^n \ (p \cdot z)^{2m} \ f_a(\tau; w, p_T) \ \longrightarrow \ \begin{cases} n = 0, \ m = 1 \ : \ P_{L,a} \\ n = 1, \ m = 0 \ : \ n_a \\ n = 2, \ m = 0 \ : \ \varepsilon_a \end{cases}$$

which reads, after considering contributions from both quarks and gluons:

$$\begin{split} M^{nm}(\tau) &\equiv \sum_{a} M_{a}^{nm} = A \left\{ D(\tau,\tau_{0}) \left[r + 2 \gamma_{q,0} \left(D(\tau,\tau_{0}) \right)^{C_{R}-1} \right] \left(\frac{2}{2} \frac{(2+\bar{r})}{\gamma_{q,0}+\bar{r}} \right)^{\frac{n+2m+2}{4}} \times \right. \\ &\times T_{0}^{n+2m+2} \left. \frac{H^{nm} \left(\alpha_{0} \frac{\tau_{0}}{\tau} \right)}{\left[H(\alpha_{0}) \right]^{\frac{n+2m+2}{4}}} + C_{R} \int_{\tau_{0}}^{\tau} \frac{d\tau'}{\tau_{eq}(\tau')} D(\tau,\tau') \left[\bar{r} + 2 \left(D(\tau,\tau') \right)^{C_{R}-1} \right] \times \\ &\times T^{n+2m+2}(\tau') H^{nm} \left(\frac{\tau'}{\tau} \right) \right\}, \text{ with } A \equiv g_{q} \frac{\Gamma(n+2m+2)}{(2\pi)^{2}} \end{split}$$

In the above relation, hypergeometric special functions appear:

$$H^{nm}(y)=rac{2}{2m+1}\,y^{2m+1}\,_2F_1\left(m+rac{1}{2},rac{1-n}{2},m+rac{3}{2};1-y^2
ight)$$

(日) (四) (日) (日) (日)

Evolution equation for the general moments

From the **exact solution of the BE**, one can derive an **evolution equation for the moments** associated with the distribution function:

$$M_a^{nm}(\tau) \equiv \int d\chi \ (p \cdot u)^n \ (p \cdot z)^{2m} \ f_a(\tau; w, p_T) \ \longrightarrow \begin{cases} n = 0, \ m = 1 \ : \ P_{L,a} \\ n = 1, \ m = 0 \ : \ n_a \\ n = 2, \ m = 0 \ : \ \varepsilon_a \end{cases}$$

which reads, after considering contributions from both quarks and gluons:

$$\begin{split} M^{nm}(\tau) &\equiv \sum_{a} M_{a}^{nm} = A \left\{ D(\tau,\tau_{0}) \left[r + 2 \gamma_{q,0} \left(D(\tau,\tau_{0}) \right)^{C_{R}-1} \right] \left(\frac{2}{2} \frac{(2+\bar{r})}{2\gamma_{q,0}+\bar{r}} \right)^{\frac{n+2m+2}{4}} \times \right. \\ &\times T_{0}^{n+2m+2} \left. \frac{H^{nm} \left(\alpha_{0} \frac{\tau_{0}}{\tau} \right)}{\left[H(\alpha_{0}) \right]^{\frac{n+2m+2}{4}}} + C_{R} \int_{\tau_{0}}^{\tau} \frac{d\tau'}{\tau_{eq}(\tau')} D(\tau,\tau') \left[\bar{r} + 2 \left(D(\tau,\tau') \right)^{C_{R}-1} \right] \times \\ &\times T^{n+2m+2}(\tau') H^{nm} \left(\frac{\tau'}{\tau} \right) \right\}, \text{ with } A \equiv g_{q} \frac{\Gamma(n+2m+2)}{(2\pi)^{2}} \end{split}$$

In the above relation, hypergeometric special functions appear:

$$H^{nm}(y)=rac{2}{2m+1}\,y^{2m+1}\,_2F_1\left(m+rac{1}{2},rac{1-n}{2},m+rac{3}{2};1-y^2
ight)$$

• These moments can be conveniently re-scaled by their corresponding equilibrium value:

$$M_{\rm eq}^{nm}(\tau) = g_q \; \frac{\Gamma(n+2m+2)}{(2\pi)^2} \; \frac{2(2+r)}{2m+1} \; T^{n+2m+2}(\tau) \; \longrightarrow \; \overline{M}^{nm} \equiv M^{nm} / M_{\rm eq}^{nm}$$

Ferdinando Frascà (ferdinando.frasca@to.infn.it) Far-from-equilibrium attractors in kinetic theory ...

The late-time attractor for the general moments

• All scaled moments exhibit a forward attractor, except the scaled energy density

The early-time attractor for the general moments

• Only moments with m > 0 possess a pullback attractor (no hydrodynamization)

Attractor properties of the entropy density

We can calculate the **entropy density** from the following relation:

$$s(\tau) = -\sum_{a=g,q} G_a(\tau) \int d\chi \left(p \cdot u \right) \widehat{f}_a(\tau; w, p_T) \left\{ \ln \left[\widehat{f}_a(\tau; w, p_T) \right] - 1 \right\},$$

where: $f_a(\tau; w, p_T) \equiv G_a(\tau) \hat{f}_a(\tau; w, p_T)$, with $\hat{f}_a(\tau; 0, 0) = 1$

Attractor properties of the entropy density

We can calculate the entropy density from the following relation:

$$s(\tau) = -\sum_{a=g,q} G_a(\tau) \int d\chi \left(p \cdot u \right) \widehat{f}_a(\tau; w, p_T) \left\{ \ln \left[\widehat{f}_a(\tau; w, p_T) \right] - 1 \right\},$$

where: $f_a(\tau; w, p_T) \equiv G_a(\tau) \hat{f}_a(\tau; w, p_T)$, with $\hat{f}_a(\tau; 0, 0) = 1$

 scaled entropy density follows a universal behavior at late times, but it is <u>not</u> characterized by an early-time attractor

Entropy production in a Bjorken-expanding mixture

Even though we did not impose the **second principle of thermodynamics**, numerical simulations reveal a rapid production of entropy, especially during the pre-hydrodynamic phase

left panel: $\gamma_{q,0} = 0.1$

- after hydrodynamization ($\overline{\omega} \gtrsim 5$), the system's entropy increases slowly
- the more **quarks** initially deviate from **chemical equilibrium**, the **greater** the entropy generated
- no attractor properties for the entropy production

Conclusions and outlook

< □ > < □ > < □ > < □ > < □ >

æ

Summary and motivations for a two-component model

The QGP, soon after its formation ($\tau \gtrsim 1$ fm/c), behaves much like a nearly perfect fluid, effectively described by hydrodynamic models

• the hydrodynamization process (approach to the late-time attractor) can be appreciated also when considering a simple (0+1)D expansion

Summary and motivations for a two-component model

The QGP, soon after its formation ($\tau \gtrsim 1$ fm/c), behaves much like a nearly perfect fluid, effectively described by hydrodynamic models

• the hydrodynamization process (approach to the late-time attractor) can be appreciated also when considering a simple (0+1)D expansion

Compared to the case of <u>IRTA</u> ($C_R = 1$), we can observe:

- a slower isotropization of the system
- a greater entropy production during the expansion
- a less universal early-time dynamics, partially "spoiled" by the process of chemical equilibration and by the slower relaxation of quarks

This presentation is based on the results available in our pre-print article:

F. Frascà, A. Beraudo and M. Strickland, *Far-from-equilibrium attractors in kinetic theory for a mixture of quark and gluon fluids*, [hep-ph/2407.17327].

3

< ロ > < 同 > < 三 > < 三 > 、

Backup slides

メロト メタト メヨト メヨト

æ

The QCD phase diagram

Quarks and gluons in QGP are <u>not confined</u> within hadrons, but actually experience asymptotic freedom

[1308.3328]

• At very high energies in the center of mass, the transition is a crossover

28 / 28

Timescales of heavy-ion collisions

Different stages after a collision between two heavy nuclei in a spacetime diagram

[1410.5786]

- ullet for $T>T_{
 m FO}$, quarks and gluons expand like a relativistic fluid
- when the inelastic/elastic interactions become inefficient, the system experiences the process of hadronization (chemical freeze-out)/momentum-distribution freezing (kinetic freeze-out)

Why anisotropic distribution functions?

Bjorken flow \leftrightarrow longitudinal boost-invariance (we focus on the <u>bulk of the fireball</u>)

ightarrow particles close to the center (z
ightarrow 0) : small $p_{m{z}}$ $(v_{m{z}}=z/t)$ compared to p_{T}

• anisotropy in momentum space implies a deformed distribution function, characterized by a spheroidal shape

(日) (四) (日) (日) (日)

Why anisotropic distribution functions?

Bjorken flow \leftrightarrow longitudinal boost-invariance (we focus on the <u>bulk of the fireball</u>)

ightarrow particles close to the center (z
ightarrow 0) : small $p_{m{z}}$ $(v_{m{z}}=z/t)$ compared to $p_{m{T}}$

• anisotropy in momentum space implies a deformed distribution function, characterized by a spheroidal shape

• heavy-ion collisions : $\xi \ge 0 \longleftrightarrow \langle p_z^2 \rangle \le \langle p_T^2 \rangle / 2$ (fast longitudinal expansion, $\theta = 1/\tau$)

$$\underbrace{f_{\rm eq} \sim \exp\left(-\frac{p \cdot u}{T}\right)}_{\text{isotropic Maxwell-Boltzmann, } \xi = 0} \longrightarrow \underbrace{f(x; p) \sim \exp\left[-\frac{\sqrt{(p \cdot u)^2 + \xi (p \cdot z)^2}}{\Lambda}\right]}_{\text{anisotropic distribution function}}$$

 $\rightarrow \xi$ represents the anisotropy parameter, which is not small in the pre-hydrodynamic regime 0.0 m

Why quarks and gluons have different relaxation times?

Distribution functions for quarks and gluons satisfy the Boltzmann equation in RTA:

$$p^{\mu} \partial_{\mu} f_a(x;p) \simeq -rac{(p \cdot u)}{ au_{\mathrm{eq},a}} \Big[f_a(x;p) - f_a^{\mathrm{eq}}(x;p) \Big] \quad , \ \mathrm{with} \ \ a = q, g$$

In which we admit that quarks and gluons can possess different relaxation times.

• we work under the hypothesis of **Casimir scaling**, meaning that:

$$C_R\equiv rac{ au_{
m eq,g}}{ au_{
m eq,q}}=rac{C_F}{C_A}=rac{4}{9} \;, \;\; {
m QCD:} \; 2
ightarrow 2 \; {
m processes}$$

Why quarks and gluons have different relaxation times?

Distribution functions for quarks and gluons satisfy the Boltzmann equation in RTA:

$$p^{\mu} \partial_{\mu} f_a(x;p) \simeq -\frac{(p \cdot u)}{\tau_{\text{eq},a}} \Big[f_a(x;p) - f_a^{\text{eq}}(x;p) \Big] \quad , \text{ with } a = q, g$$

In which we admit that quarks and gluons can possess different relaxation times.

• we work under the hypothesis of **Casimir scaling**, meaning that:

$$C_R\equiv rac{ au_{
m eq, g}}{ au_{
m eq, q}}=rac{C_F}{C_A}=rac{4}{9} \,\,, \ \ \ rac{{
m QCD}}{
m cc}: \, 2
ightarrow 2$$
 processes

Quarks and gluons: different scattering amplitudes, due to different color charges

This fact implies two relaxation times for partons within the expanding mixture:

$$\tau_{\mathrm{eq},q} \sim 1/C_F \quad, \quad \tau_{\mathrm{eq},g} \sim 1/C_A \; \text{ for a product of } respectively. \label{eq:temperature}$$

Ferdinando Frascà (ferdinando.frasca@to.infn.it) Far-from-equilibrium attractors in kinetic theory ...

Quarks slow down the dynamics of the mixture

• The momentum-anisotropy parameter and the (inverse) pressure anisotropy are actually related quantities

 The quark component experiences a slower isotropization than gluons (<u>2RTA</u>), so its momentum anisotropy is systematically higher at any time.

How far from equilibrium is the system?

One possible parameter to **measure the deviation from equilibrium** corresponds to the so-called **inverse Reynolds number**:

$$\operatorname{Re}^{-1} \equiv \frac{\sqrt{\pi^{\mu\nu}\pi_{\mu\nu}}}{P_{\rm eq}} = \sqrt{\frac{3}{2}} |\overline{\phi}| \quad \text{, where} \quad \overline{\phi} \equiv \frac{P - P_L}{P_{\rm eq}} = \underbrace{\overline{M}}_{\text{scaled moments}}^{20} - \overline{M}_{\text{scaled moments}}^{01}$$

in which $\overline{\phi}$ represents the (scaled) viscous correction to the pressure.

How far from equilibrium is the system?

One possible parameter to measure the deviation from equilibrium corresponds to the so-called inverse Reynolds number:

$$\operatorname{Re}^{-1} \equiv \frac{\sqrt{\pi^{\mu\nu}\pi_{\mu\nu}}}{P_{\rm eq}} = \sqrt{\frac{3}{2}} |\overline{\phi}| \quad \text{, where} \quad \overline{\phi} \equiv \frac{P - P_L}{P_{\rm eq}} = \underbrace{\overline{M}_{\rm eq}^{20} - \overline{M}_{\rm eq}^{01}}_{\text{scaled moments}}$$

in which $\overline{\phi}$ represents the (scaled) viscous correction to the pressure.

