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Attractors in uRHICs

Attractors

What is an attractor?

Subset of the phase space to which all trajectories converge
after a certain time.

Why do we look for attractors?

Uncertainties in initial conditions a�ect �nal
observables? Memory of initial conditions?

Appearance of attractors and hydrodynamisation. The
issue of small systems, as produced in pp or pA

Where do we look for attractors?

Full distribution function f (x , p)

Moments of f (x , p), probing regions of the phase-space

Jankowski, Spalinski, Hydrodynamic attractors in

ultrarelativistic nuclear collisions, 2023
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Attractors in uRHICs

Normalized moments

Moments Mnm(x) of the distribution function f (p)

Mnm(x) =

∫
d3p⃗

(2π)3p0
(p · u)n(p · z)2m f (x , p)

They carry information about the f (x , p) (M. Strickland JHEP 12, 128, (2010)) .

All moments ⇐⇒ whole f (x , p)

Attractors spotted in the normalized moments

M
nm

(x) =
Mnm[f (x , p)]

Mnm[feq(Teff , Γeff , uµ)]

feq = Γeff exp(−(p · u)/Teff )). Matching conditions imply: M10 = n, M20 = ε, M01 = PL.
System equilibrates at large τ =⇒ limτ→∞M

nm
[f ] = 1.
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Relativistic Boltzmann Transport Approach

Boltzmann Equation

Solve the Relativistic Boltzmann Equation with the full collision integral:

pµ∂µf (x , p) = C [f (x , p)]p , (1)

Only binary elastic 2 ↔ 2 collisions:

C [f ]p =

∫
d3p2

2Ep2 (2π)
3

∫
d3p1′

2Ep1′ (2π)
3

∫
d3p2′

2Ep2′ (2π)
3 (f1′f2′ − f1f2)

× |M|2 δ(4) (p1 + p2 − p1′ − p2′) (2)

M: transition amplitude. |M|2 = 16π s s2 dσ/dt
isotr.σ
= 16π s σ.

How to solve the Boltzmann Equation with the full collision integral C [f ]?

Numerical solution with test particle method: simulation of propagating particles which collide
with locally �xed cross-section σ22.
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Relativistic Boltzmann Transport Approach

Relativistic Boltzmann Transport (RBT) Code

C language: high performance (up to 3 · 108Nparticles)

Stochastic Method to implement collisions (Xu, Greiner, PRC 71

(2005), Ferini, Colonna, Di Toro, Greco, PLB 670 (2009))

Space discretisation: particles in the same cell can collide
elastically with probability P22 ∝ σ22

2 ↔ 2 collisions ⇒ Particle conservation: Fugacity Γ ̸= 1

Fix η/s by computing σ22 locally via the Chapman-Enskog
formula (Plumari, Puglisi, Scardina, Greco, PRC 86 (2012) ):

η = f (m/T )
T

σ22

m=0≃ 1.2
T

σ22
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1D systems

Code setup for 1D boost-invariant systems

Conformal system (m = 0)

One-dimension
Homogeneous distribution and periodic boundary conditions in the transverse plane.

Boost-invariance. No dependence on ηs !
dN/dηs = const. in [−ηsmax, ηsmax], ηsmax large enough to avoid propagation of
information from boundaries. (We will relax this hypothesis later)

Romatschke-Strickland Distribution Function

f0(p; γ0,Λ0, ξ0) = γ0 exp

(
− 1

Λ0

√
p2⊥ + p2w (1+ ξ0)

)
,

where p2⊥ = p2x + p2y and pw = (p · z).
ξ0 �xes initial PL/PT , γ0 and Λ0 �x initial ε and n
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1D systems

Forward Attractor

0+1D =⇒ M
nm

(x) = M
nm

(τ)

Change initial anisotropy ξ0 (and thus PL/PT ).

Fix τ0, T0, η/s.
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1D systems

Distribution function evolution: Forward attractor vs τ , η/s = 10/4π.

At τ = τ0, three
di�erent distributions in
momentum space:
oblate (ξ0 = 10),
spherical (ξ0 = 0) and
prolate (ξ0 = −0.5).
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1D systems

Distribution function evolution: Forward attractor vs τ , η/s = 10/4π.

Already at τ ∼ 1 fm,
strong initial
longitudinal expansion
brings the system away
from equilibrium

Distribution functions
have similar (but not
identical) shape.
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1D systems

Distribution function evolution: Forward attractor vs τ , η/s = 10/4π.

At τ ∼ 5 fm, clear
universal behaviour also
for the distribution
functions.

Two components:
strongly peaked pw
distribution and a more
isotropic one (Strickland,

JHEP 12, 128)
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1D systems

Distribution function evolution: Forward attractor vs τ , η/s = 10/4π.

For large τ the system
is almost completely
thermalized and
isotropized.
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1D systems

Forward Attractor vs τ

Di�erent initial anisotropies ξ0 = −0.5, 0, 10,∞, for η/s = 1/4π and η/s = 10/4π.
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η/s = 1/4π: attractor
at τ ∼ 0.5 fm

η/s = 10/4π: attractor
at τ ∼ 1.0 fm

Not 10 times larger!

Less collisions to reach
the attractor?

Di�erent attractors

for di�erent η/s?
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1D systems

De�nition of the relaxation time

Only one relevant time-scale in our simulation.

Mean free time

τcoll =
1

2

(
1

Npart

∆Ncoll

∆t

)−1

Notice: τcoll ∝ λmfp.

τRBTeq ≡ 3

2
τcoll = τtr = τRTAeq =

5η/s

T

τRTAeq used in RTA kinetic theory and hydro.
(Denicol et al.PRD 83, 074019)

0 5 10 15 20 25

= [fm]

10-1

100

101

re
la

x
a
ti
on

ti
m

e

=RBT
eq

=RTA
eq

2=s = 10=4:

2=s = 1=4:

Comparison between τRTAeq and τRBTeq .
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1D systems

Pull-back attractor

Di�erent initial anisotropies ξ0 = −0.5, 0, 10,∞ for η/s = 1/4π and η/s = 10/4π.
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Less collisions per
particle to reach the
attractor?
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1D systems

Pull-back attractor

Change η/s and τ0: three values for the ratio τ0/(4πη/s): 0.1, 0.01, 0.05 fm.
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(same universality found in
hydrodynamics and RTA)

Equilibration achieved at
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Attractor reached at
di�erent τ/τeq

Initial ∼ free streaming
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1D systems

Breaking boost-invariance. Attractors at �nite rapidity

Finite and non-homogenous initial distribution in ηs . 1+1D =⇒ M
nm

(x) = M
nm

(τ, ηs)

Forward attractor. Fixed η/s = 1/4π.
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Universal behaviour even at ηs = 3, outside the initial distribution range!
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1D systems

T -dependent η/s: Plot with respect to τ
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Universal behaviour lost at di�erent τ (depend on local T)
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1D systems

T -dependent η/s: Plot with respect to τ/τeq
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3D systems. Moments

Code setup for 3D systems

Conformal system (m = 0)

Relax boundary conditions in the transverse plane =⇒ Transverse expansion

Romatschke-Strickland Distribution Function

f0(x , p) = γ0 exp

(
− 1

Λ0

√
p2x + p2y + p2w (1+ ξ0)

)
e−x2⊥/R2

θ(2.5− |ηs |)

γ0 and Λ0 �x initial ε and n (Landau matching conditions);

ξ0 �xes initial longitudinal anisotropy (PL/PT )

Gaussian distribution in the transverse plane with r.m.s. R

Uniform distribution in ηs : [-2.5, 2.5]
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3D systems. Moments

Transverse expansion

0 < t < R

Longitudinal
expansion (∼ 1D)

t > R

Onset of transverse
expansion

t > 2R

Quasi free streaming
(⟨β⊥⟩ > 0.8)
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3D systems. Moments

Opacity

New time scale: R . If we plot R/λmfp, simulations cluster in universality classes

In Relaxation and Isotropization Time
Approximation, opacity γ̂ emerges in solving
the Boltzmann equation as the only scaling

parameter. (Kurkela et al., PLB 783, 274 (2018);

Ambrus et al. PRD 105, 014031 (2022) )

In RBT one �nds:

R

λmfp
(t = R) ≈ γ̂
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3D systems. Moments

Forward attractors

3+1D, but azimuthal symmetry and look at ηs ∼ 0 =⇒ M
nm

= M
nm

(t, x⊥).
Fix η/s = 1/4π. Change ξ0 (PL/PT ) and R .
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Same trend of 1D: attractor due
to initial longitudinal expansion
(identical in 1D and 3D)

Reached at same t for di�erent R
(transverse size doesn't matter)

Di�erentiate when transverse
expansion starts to play a role
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3D systems. Moments

Pull-back attractors

We do not have a unique time-scale any more.
How do we rescale time? Do we expect pull-back attractors at all?

10-1 100

t=R

0

0.5

1

1.5

7M01

10-1 100

t=R

7M21

R = 5:5 fm
R = 2:5 fm
R = 1:0 fm

.̂ = 12:8 .̂ = 3:56

If plotted w.r.t t/R , a pull-back
attractor emerges for each
universality class, i.e. each value
of opacity γ̂.

It is possible to `rescale' one
system evolution to another only
within the same universality class
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3D systems. Anisotropic �ows

Eccentricities and anisotropic �ows

Reproduce eccentricity in coordinate space by shifting (x , y):

z = x + iy → z ′ = z − αz̄n−1

ϵn =

√
⟨xn⊥ cos(nϕ)⟩2 + ⟨xn⊥ sin(nϕ)⟩2

⟨xn⊥⟩
α≪1≃ nα

⟨x2(n−1)
⊥ ⟩
⟨xn⊥⟩

.

(S. Plumari, G. L. Guardo, V. Greco, J.-Y. Ollitrault, Nucl. Phys. A 941, 87 (2015))

Viscosity converts space anisotropies in momentum space. Expand distribution function as:

dN

dϕ p⊥ dp⊥
∝ 1+ 2

∑
n=1

vn(p⊥) cos[n(ϕp −Ψn(p⊥))].

Anisotropic �ows vn = ⟨cos(nϕ)⟩

How e�ciently does this conversion happen? How does it depend on η/s, R and γ̂?
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3D systems. Anisotropic �ows

Response functions vn/ϵn

0 0.5 1 1.5 2 2.5 3

t=R

0

0.05

0.1

0.15

0.2

0.25

0.3

v 2
=
0 2

R = 5:5 fm
R = 2:5 fm
R = 1:0 fm

02 = 0:1
02 = 0:2

.̂ = 1:13

.̂ = 3:56

.̂ = 7:12

0 0.5 1 1.5 2 2.5 3

t=R

0

0.05

0.1

0.15

0.2

v 3
=
0 3

R = 5:5 fm
R = 2:5 fm
R = 1:0 fm

03 = 0:2
03 = 0:1

.̂ = 1:13

.̂ = 3:56

.̂ = 7:12

0 0.5 1 1.5 2 2.5 3

t=R

0

0.02

0.04

0.06

0.08

0.1

0.12

v 4
=
0 4

R = 5:5 fm
R = 2:5 fm
R = 1:0 fm

02 = 0:1
02 = 0:2

.̂ = 7:12

.̂ = 3:56

.̂ = 1:13

No dependence on ϵn

Clusters in γ̂ within 10%. Spreading decreases with increasing γ̂

For �xed γ̂, monotonic ordering in R

What do these values of γ̂ represent?
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3D systems. Anisotropic �ows

Opacity estimates
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Summary and outlook

Summary

1D systems

Attractors in conformal boost-invariant case in the distribution function and its moments.

Non boost-invariant systems show universal behaviour, also at large ηs .

If η/s = η/s(T ), only temporary breaking of the universal behaviour (`loops').

3D systems

✓ Forward and pull-back attractors (∼ 1D)

✓ Di�erence w.t.r. 1D for t > R

✓ Opacity γ̂ quite good universal parameter (especially for large γ̂)

Outlook

Non-conformal simulation in progress

Pre-hydrodynamic transport + transport without discontinuity in bulk viscosity
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Summary and outlook

Thank you for your attention.
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Backup slides

LRF and matching conditions

De�ne the Landau Local Rest Frame (LRF) via the �uid four-velocity:

Tµνuν = εuµ,

n = nµuµ

ε and n are the energy and particles density in the LRF.
Fluid is not in equilibrium =⇒ de�ne locally e�ective T and Γ via Landau matching
conditions:

T =
ε

3 n
, Γ =

n

d T 3/π2
,

d is the # of dofs, �xed d = 1.
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Backup slides

Code setup

Cell: ∆x = ∆y = 0.12 fm, ∆ηs = 0.25. Results taken in one-cell-thick slices in ηs .

Test particles: from 107 up to 3 · 108.
Time discretization: to avoid causality violation (∼ 103 time steps).

Performance: 1 core-hour per 106 total particles in 2 · 103 time steps.
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Testing boost-invariance

Compute normalized moments at di�erent ηs 's within an interval ∆ηs = 0.04.
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2=s = 1=4: 2=s = 1=4:

No dependence on η! We look for them at midrapidity: η ∈ [−0.02, 0.02]

V. Nugara Attractors in 1D and 3D in RBT
Meeting SIM 2024 Catania, September 10th

32 / 29



Backup slides

Boltzmann RTA Equation for number-conserving systems

Boltzmann equation in Relaxation Time Approximation (RTA) (Strickland, Tantary, JHEP10(2019) 069)

pµ∂µfp = −p · u
τeq

(feq − fp).

Exactly solvable, by �xing number and energy conservation.
Two coupled integral equations for Γeff ≡ Γ and Teff ≡ T :

Γ(τ)T 4(τ) = D(τ, τ0)Γ0T
4
0

H(α0τ0/τ)

H(α0)
+

∫ τ

τ0

dτ ′

2τeq(τ ′)
D(τ, τ ′)Γ(τ ′)T 4(τ ′)H

(
τ ′

τ

)
,

Γ(τ)T 3(τ) =
1

τ

[
D(τ, τ0)Γ0T

3
0 τ0 +

∫ τ

τ0

dτ ′

τeq(τ ′)
D(τ, τ ′)Γ(τ ′)T 3(τ ′)τ ′

]
.

Here α = (1+ ξ)−1/2. System solvable by iteration.
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vHydro equations

Second-order dissipative viscous hydrodynamics equations according to DNMR derivation,
starting from kinetic theory (G. S. Denicol et al., PRL105, 162501 (2010)) :

∂τε = −1

τ
(ε+ P − π),

∂τπ = − π

τπ
+

4

3

η

τπτ
− βπ

π

τ
,

where τπ = 5(η/s)/T and βπ = 124/63.
Solved with a Runge-Kutta-4 algorithm.
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aHydro for number-conserving systems

Formulation of dissipative anisotropic hydrodynamics with number-conserving kernel (Almaalol,

Alqahtani, Strickland, PRC 99, 2019).
System of three coupled ODEs:

∂τ log γ + 3∂τ log Λ− 1

2

∂τξ

1+ ξ
+

1

τ
= 0;

∂τ log γ + 4∂τ log Λ +
R′(ξ)

R(ξ)
∂τξ =

1

τ

[
1

ξ(1+ ξ)R(ξ)
− 1

ξ
− 1

]
;

∂τξ −
2(1+ ξ)

τ
+

ξ(1+ ξ)2R2(ξ)

τeq
= 0.

Solved with a Runge-Kutta-4 algorithm.
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Computation of moments in other models

RTA:

Mnm(τ) =
(n + 2m + 1)!

(2π)2

[
D(τ, τ0)α

n+2m−2
0 T n+2m+2

0 Γ0
Hnm(ατ0/τ)

[H20(α0)/2]n+2m−1
+

+

∫ τ

τ0

dτ ′

τeq(τ ′)
D(τ ′, τ ′)Γ(τ ′)T n+2m+2(τ ′)Hnm

(
τ ′

τ

)]
;

DNMR:

M
nm
DNMR = 1− 3m(n + 2m + 2)(n + 2m + 3)

4(2m + 3)

π

ε
;

aHydro:

M
nm
aHydro(τ) = (2m + 1)(2α)n+2m−2 Hnm(α)

[H20(α)]n+2m−1
;
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Comparison with other models

Compute normalized moments with DNMR, anisotropic hydrodynamics (aHydro) and
Relaxation Time Approximation (RTA) Boltzmann Equation.
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2=s = 1=4:

M
31

M
01

M
32

Better agreement with
RTA and aHydro for
lower order moments

Better agreement with
DNMR for lower η/s
(V. Ambrus et al., PRD 104.9

(2021))
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Pressure anisotropy in di�erent frameworks

For η/s = 1/4π and η/s = 10/4π, compute PL/PT from three di�erent initial anisotropies:
ξ0 = −0.5, 0, 10.
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=
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0

0.2
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1.6

P
L
=
P

T

RBT
DNMR
aHydro

2=s = 1=4:
2=s = 10=4:

RTA (not showed) really similar
to aHydro

aHydro attractor reached ∼ time
than RBT

vHydro attractor reached at later
time, especially for larger η/s
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Who is the attractor?

All curves scale to a universal behaviour. Which is the curve they converge to?

Viscous (vHydro) and Anisotropic (aHydro) Hydrodynamics: analytical solution
(M. Strickland et al.PRD, 97, 036020 (2018)) ;

Relaxation Time Approximation (RTA) Boltzmann Equation (P. Romatschke PRL 120, 012301

(2018)) : τ0 ≪ 1 and ξ0 → ∞ (in accordance with aHydro).

In�nitely oblate distribution ξ0 → ∞, initial scaled time τ0T0/(η/s) → 0.

Is it the RBT attractor, too? It is.

The system initially is dominated by strong longitudinal expansion.
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Attractors in di�erent models
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good agreement

Higher order moments
→ stronger departure
between models

RBT thermalizes
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No agreement for M
n0

V. Nugara Attractors in 1D and 3D in RBT
Meeting SIM 2024 Catania, September 10th

40 / 29



Backup slides

Midrapidity
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At midrapidity no di�erence w.r.t. the boost invariant case.
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Non-monotonic τ/τeq for Case 1

Loops when τ/τeq is no more a monotonic function: τeq ∝ η/s(T )/T grows faster than τ .

100 101

===eq

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

2
=s

(T
)

90 = !0:5
90 = 0
90 = 10

10-1 100 101 102 103

= [fm]

100

101

=
==

eq

90 = !0:5
90 = 0
90 = 10

V. Nugara Attractors in 1D and 3D in RBT
Meeting SIM 2024 Catania, September 10th

42 / 29



Backup slides

Loss of attractors for small γ̂
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2=s = 30=4:

.̂ = 0:18

Attractor do not reached even for t = 4 fm ≈ 5R!
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