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@ Summary and outlook
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Attractors in uRHICs

Attractors

What is an attractor?
Subset of the phase space to which all trajectories converge

after a certain time.

Jankowski, Spalinski, Hydrodynamic attractors in

ultrarelativistic nuclear collisions, 2023
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Attractors in uRHICs

Attractors

What is an attractor?
Subset of the phase space to which all trajectories converge
after a certain time.

Why do we look for attractors?

o Uncertainties in initial conditions affect final
observables? Memory of initial conditions?

o Appearance of attractors and hydrodynamisation. The
issue of small systems, as produced in pp or pA

Where do we look for attractors?
o Full distribution function f(x, p)
e Moments of f(x, p), probing regions of the phase-space

Attractors in 1D and 3D in RBT

Jankowski, Spalinski, Hydrodynamic attractors in

ultrarelativistic nuclear collisions, 2023

3/29



Attractors in uRHICs

Normalized moments

Moments M"™(x) of the distribution function f(p)

nm d3 7 2m
M) = [ s (o u) (- 27 F(x.p)
They carry information about the f(x, p) (M. Strickland JHEP 12, 128, (2010)) .

All moments <= whole f(x, p)
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Attractors in uRHICs

Normalized moments

Moments M"™(x) of the distribution function f(p)

3=
() = [ (2:# (b u)(p- 2)2™ F(x, )

They carry information about the f(x, p) (M. Strickland JHEP 12, 128, (2010)) .

All moments <= whole f(x, p)

Attractors spotted in the normalized moments
M"™[f(x, p)]
M [foq(Tefr, Tefr, ut)]

feqg = Mefr exp(—(p - u)/ Ter)). Matching conditions imply: MO =n, M =¢ MO =P,
System equilibrates at large 7 = lim,_, l\/l"m[f] =1

mnm (X) —

Attractors in 1D and 3D in RBT



Relativistic Boltzmann Transport Approach

Boltzmann Equation

Solve the Relativistic Boltzmann Equation with the full collision integral:

PrOuf(x,p) = CIF(x, p)l, (1)
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Relativistic Boltzmann Transport Approach

Boltzmann Equation

Solve the Relativistic Boltzmann Equation with the full collision integral:

prouf(x,p) = CIF(x, p)l, (1)

Only binary elastic 2 <+ 2 collisions:

d3 d3py/ d3p,
C[f]pZ/ p2 i p1 3/ p2 (fofy — fify)
2E,, (2) 26, (2m) 2E,,, (2m)
x IM26® (py + py — p1 — p) (2)

M: transition amplitude. |M|? = 167 ss% do/dt SUT 167 s 0.
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Relativistic Boltzmann Transport Approach

Boltzmann Equation

Solve the Relativistic Boltzmann Equation with the full collision integral:

plouf(x, p) = C[f(x,p)],, (1)
Only binary elastic 2 <+ 2 collisions:
d* d*pr d*pa
C[f]pZ/ p2 i p1 3/ p2 (fofy — fify)
2E,, (2) 26, (2m) 2E,,, (2m)
x [M? 6™ (py + p2 — prv — p2) (2)

M: transition amplitude. |M|? = 167 ss% do/dt SUT 167 s 0.

How to solve the Boltzmann Equation with the full collision integral C[f]?

Numerical solution with test particle method: simulation of propagating particles which collide
with locally fixed cross-section o9;.

Attractors in 1D and 3D in RBT



Relativistic Boltzmann Transport (RBT) Code

AZX,K—/H
. i 8 L1 29@‘3_,‘0
o C language: high performance (up to 3 - 10°Nparticles) i

@ Stochastic Method to implement collisions (Xu, Greiner, PRC 71 ' ™
(2005), Ferini, Colonna, Di Toro, Greco, PLB 670 (2009))

@ Space discretisation: particles in the same cell can collide
elastically with probability Py o< o9

e

@ 2 > 2 collisions = Particle conservation: Fugacity ' # 1

n[GeV’]

e Fix 1/s by computing 02> locally via the Chapman-Enskog
formula (Plumari, Puglisi, Scardina, Greco, PRC 86 (2012) ):

T m=0 T
=f(m/T)— ~ 12—
1 ( / )022 022 0.1

o [fm’]

Attractors in 1D and 3D in RBT Y



Code setup for 1D boost-invariant systems

o Conformal system (m = 0)
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Code setup for 1D boost-invariant systems

o Conformal system (m = 0)

@ One-dimension
Homogeneous distribution and periodic boundary conditions in the transverse plane.
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Code setup for 1D boost-invariant systems

o Conformal system (m = 0)
@ One-dimension
Homogeneous distribution and periodic boundary conditions in the transverse plane.
@ Boost-invariance. No dependence on 7!
dN/dns = const. in [—7smaxs Nsmax): Msmax |arge enough to avoid propagation of
information from boundaries. (We will relax this hypothesis later)

y
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Code setup for 1D boost-invariant systems

o Conformal system (m = 0)
@ One-dimension

Homogeneous distribution and periodic boundary conditions in the transverse plane.
@ Boost-invariance. No dependence on 7!

dN/dns = const. in [—7smaxs Nsmax): Msmax |arge enough to avoid propagation of
information from boundaries. (We will relax this hypothesis later)

Romatschke-Strickland Distribution Function

1
fo(pi 70, Mo, §0) = Y0 exp (—A—O\/Pi +p(1+ 50)) :

where p? = p2 + p}z, and py, = (p- 2).
&o fixes initial PL/Pt, 70 and A fix initial £ and n

y
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Forward Attractor

0 041D = M""(x)=M""(1)
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Forward Attractor

0 041D = M""(x)=M""(1)
o Change initial anisotropy & (and thus P;/P7).
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Forward Attractor

0 041D = M""(x)=M""(1)
o Change initial anisotropy & (and thus P;/P7).
e Fix 79, To, n/s.

Attractors in 1D and 3D in RBT =



1D systems

Distribution function evolution: Forward attractor vs 7, /s = 10/4x.

15

7 =0.100 fm
4 1

v// -
05 = 09
e MY i
E of 08

~
o
Il
< =1
pr [GeV]

momentum space: 15
oblate (& = 10), AN —
1 S
05 \\ e
. - b7
107" 109 10! 102 e e ®
Pu [GeV]

o At T = 1, three 0»5\ 7
spherical (& = 0) and LN o
7 [fm]

different distributions in 0
prolate (&9 = —0.5). 2 ° "
Attractors in 1D and 3D in RBT 9/29




Distribution function evolution: Forward attractor vs 7, /s = 10/4x.

7=1227fm
3 1
2
= 09
& = 10 i“
E.q 08
o Already at 7 ~ 1 fm, . o
strong initial s
. . . 2 06
longitudinal expansion 3!
. &=0 ]S
brings the system away - e i
from equilibrium . b
o Distribution functions ; 0
. =i
have .5|m||ar (but not 15 e R ‘ 02
identical) shape. : , g m
! ;
0'5\ /le 3
0 3 2 41 0 1 2 3 g
107 10° 10° 10?

7 [fm]
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Distribution function evolution: Forward attractor vs 7, /s = 10/4x.

7 =5.525 fin
3 1
2
%‘ 09
&H=1 | o ‘
1'2 - E-w 08
o At 7 ~ 5 fm, clear 5
. . 1 . :
universal behaviour also - . .
. . . 05 7~
for the distribution o iy p
. 0 & 1
functions. : S .
1.5 &71
@ Two components: \ 2 os
| 3
strongly peaked p,, o»s\ / o ) -
distribution and a more . -
. . @ 02
isotropic one (Strickland, 18 b =-05 %“ ‘
JHEP 12, 128) o _— 2 o
- M31 -3
0 1 0 1 2 -3 2 1 o 1 2 0
10° 10 ]10 10 P [Gev]

7 [fm)]

Attractors in 1D and 3D in RBT T



1D systems

Distribution function evolution: Forward attractor vs 7, /s = 10/4x.

7 =41.073 fm
1 - = 3 i
2
05 5 09
0 Mo &H=10 ) °
15 ISR e
-2
1 = 3 07
0.5 ¢
o 2 06
o For large 7 the system z
! 8 y 34 .
is almost completely SR
H . 04
thermalized and 5
isotropized. : o3
% 1
15 &=-05| 0 o . 02
1 & 01
B :
0.5\ /M31 _3
0 -1 0 1 2 3 2 41 0 1 2 3 0
10 10 B [fm]wo 10 pu [GeV]
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1D systems

Forward Attractor vs 7

Different initial anisotropies {g = —0.5, 0, 10, oo, for /s = 1 /47 and n/s = 10/4x.

12

1
1.15 ,,-:_’_’_'.‘:;:~ \
i /:,::j,»' \\\ osl N e 1n/s =1/4x: attractor
1.05 / N at 7 ~ 0.5 fm
2 70 Py/P. o 02
! 0 o e n/s = 10/4m: attractor
' at 7 ~ 1.0 fm
=0 .
SZ10 —ajsmiar | os @ Not 10 times larger!
—& = —0.5---n/s = 10/4w o

o Less collisions to reach
the attractor?

o Different attractors
for different 1/s?

7 [fm] 7 [fm]

Attractors in 1D and 3D in RBT T



Definition of the relaxation time

Only one relevant time-scale in our simulation.

(Denicol et al.PRD 83, 074019)
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Definition of the relaxation time

Only one relevant time-scale in our simulation.

10t
Mean free time
Teoll _l 1 ANcoll - .é
co 2 Npart At g
2
Notice: 7ol ¢ Amfp- é
cRET_ 3 _ _RTA _ 51/s _
Teq 9 o tr €q T 0 5 10 15 20 25

[fm]
quA used in RTA kinetic theory and hydro. T

RTA RBT
(Denicol et al.PRD 83, 074019) and 77"

Comparison between T,

Attractors in 1D and 3D in RBT T



1D systems

Pull-back attractor

Different initial anisotropies {g = —0.5, 0, 10, 00 for /s = 1/47 and n/s = 10/4x.

1.4 - a Y T
e Unique attractor!
PL/P., W02
e 1n/s =1/4x: attractor
at 7~ 1.57¢
—& =0
=10 =i e n/s = 10/4m: attractor
—& =—05---n/s =10/47
ot ) ) at 7 ~ 0.2 7
Mll MlZ
o Less collisions per
particle to reach the
attractor?
e l"\:‘:\. S ez
0 —
10°
T/Teq T/Teq T/Teq

Attractors in 1D and 3D in RBT ey



1D systems

Pull-back attractor

Change /s and 7g: three values for the ratio 79/(47n/s): 0.1, 0.01, 0.05 fm.

0.1
0.1
0.01
0.01
0.05
0.05

1.2
11
102 10°
T/Teq
4rnls ro[fm] ratio
—_— 1 0.1
2 0.2
—_— 10 0.1
5 0.05
— 4 0.2
2 0.1
--- attractor

0.5

0

0.5

M2

10 10°
7/ Teq

0
10% 102 10°
T/ Teq

Attractors in 1D and 3D in RBT

10°

@ Curves depend only on

10 To/(1/s) o (T/Teq)o ratio
(same universality found in
hydrodynamics and RTA)

o Equilibration achieved at
same T /Teq

o Attractor reached at
different 7/7¢q

o Initial ~ free streaming

16 /29



1D systems

Breaking boost-invariance. Attractors at finite rapidity

Finite and non-homogenous initial distribution in 5. 141D = M (x) = M"" (7, 7s)
Forward attractor. Fixed n/s = 1/4r.

L1 === .

Pull-back attractor. Fixed & = 0.

1.2

1

1.1 \
PL/Peq ! MOO 0 PL/Peq
0
T [fm] T/ Teq T/ Teq
I [
n/s=1/4m n/s =10/4n
ns = 0.0 ns = 0.0
05 \ —1, =2.0 —1ns =2.0 05
P 75 =25 e =25
vat! 7s = 3.0 ns = 3.0 -1
0 M 0 M
7 [fm)] 7/Teq
Universal behaviour even at ns = 3, outside the initial distribution range! )

Attractors in 1D and 3D in RBT
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1D systems

T-dependent n/s: Plot with respect to 7

11

\ —)/s = 1 /47
¥\ = =Case 1: 1/47 + freeze out

\ = Case 2: 7)/s o< T + freeze out
10t F \ QPM [PRD 84, 094004 (2011)] 4
¢ xPT Meson Gas
----- Bayesian [NP 15, 1113 -1117 (2019)] s =1/4n

& 1QCD [PRD 76, 101701 (2007)] Caso 1

\{— 1QCD [PRD 98, 014512 (2018)]

3
o
o

----Caso 2

Am nls

(T T.)/T.

7 [fm] 7 [fm] 7 [fm)]

Universal behaviour lost at different 7 (depend on local T)

Attractors in 1D and 3D in RBT T



1D systems

T-dependent 7/s: Plot with respect to 7/7¢q

~ T T
\ —)/s = 1/4m eyl
XY = =Case 1: 1/47 + freeze out M
\  —Case 2 n/s x T + frecze out
Prees \ QPM [PRD 84, 094004 (2011)] f
‘ ¢ xPT Meson Gas
° v Bayesian [NP 15, 1113 -1117 (2019)] —n/s=1/4m
o \ & 1QCD [PRD 76, 101701 (2007)] Caso 1
o \ % 1QCD [PRD 98, 014512 (2018)] o Cao2
& \
§ !
1
| 1.06
1.04
1.02 3
SN
) 14 L T B |
10 M?»O
0.98
-1 -0.5 0 0.5 1 15 2 25 10° 10t 10° 10t 100 10t
T-T.)/T.
@ - T)/T. /T /7 7/7eq

Universal behaviour restored after ‘loops’.

Attractors in 1D and 3D in RBT Y



Code setup for 3D systems

e Conformal system (m = 0)
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Code setup for 3D systems

e Conformal system (m = 0)

@ Relax boundary conditions in the transverse plane = Transverse expansion
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Code setup for 3D systems

e Conformal system (m = 0)

@ Relax boundary conditions in the transverse plane = Transverse expansion

Romatschke-Strickland Distribution Function

1
fo(x,p) = Y0 exp (—A—O\/P§ +py + Py (1 + fo)) e 0L/R (2.5 — Jn])
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Code setup for 3D systems

o Conformal system (m = 0)

@ Relax boundary conditions in the transverse plane = Transverse expansion

Romatschke-Strickland Distribution Function

1
fo(x,p) = Y0 exp (—A—O\/p§ +py + Py (1 + fo)) e 0L/R (2.5 — Jn])

o 7o and Ag fix initial € and n (Landau matching conditions);
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Code setup for 3D systems

o Conformal system (m = 0)

@ Relax boundary conditions in the transverse plane = Transverse expansion

Romatschke-Strickland Distribution Function

1 —X
fo(x,p) = Y0 exp (—A—O\/p§ +py + Py (1 + fo)) e 0L/R (2.5 — Jn])

o 7o and Ag fix initial € and n (Landau matching conditions);

o & fixes initial longitudinal anisotropy (P /PT)
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Code setup for 3D systems

o Conformal system (m = 0)

@ Relax boundary conditions in the transverse plane = Transverse expansion

Romatschke-Strickland Distribution Function

1 —X
fo(x,p) = Y0 exp (—A—O\/p§ +py + Py (1 + 50)) e 0L/R (2.5 — Jn])

o 7o and Ag fix initial € and n (Landau matching conditions);
o & fixes initial longitudinal anisotropy (P /PT)

o Gaussian distribution in the transverse plane with r.m.s. R
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Code setup for 3D systems

o Conformal system (m = 0)

@ Relax boundary conditions in the transverse plane = Transverse expansion

Romatschke-Strickland Distribution Function

1 —X
fo(x,p) = Y0 exp (—A—O\/p§ +py + Py (1 + 50)) e 0L/R (2.5 — Jn])

~o and Ag fix initial € and n (Landau matching conditions);

&o fixes initial longitudinal anisotropy (P./Pr)

Gaussian distribution in the transverse plane with r.m.s. R

o Uniform distribution in 7s: [-2.5, 2.5]

Attractors in 1D and 3D in RBT T



3D systems. Moments

Transverse expansion

Longitudinal
expansion (~ 1D)

1 1.2 .
P
1
08 1
0.8
0.6 o8 33
= 0.6 =, 06
Q. g ~
o4 == 3
’ 04 Z‘J 0.4
ozl n/s 1/4mx 10/4m — 1D system
- /4 — R=25fm| 02f =-R=55fm- _ 0.2
F . - R—55fm —--R=25fmn MOt
0 0 - : 0
0 1 2 3 4 01 1 10 0 1 2 3 4
t/R t [fm] t/R

Attractors in 1D and 3D in RBT T



3D systems. Moments

Transverse expansion

Onset of transverse

€xXpansion
1
1
0.8
0.8}
06 53
= 2, 0.6
2 7 =
0.4 S =
0.4 = 04
n/s 1/47 10/4m —1D system H H
0.2 — R=25fm] 02} =-R=55fmwmt=55fm ! R 0.2
- =. R=55fm —reR =25 fm et =25 fm MY
0 0 : : 0
0 1 2 3 4 01 1 10 0 1 2 3 4
t/R t [fm] t/R

Attractors in 1D and 3D in RBT T



3D systems. Moments

Transverse expansion

Quasi free streaming

((BL) > 0.8)

1
1
0.8
0.8
0.6 33
= 200.6
2 b3S =
— =
0.4 04 :Zs 04
n/s 1/47 10/4m —1D system H H
0.2 — . R=25fm] 02} =-R=55fmemt=55fm | P 0.2
- =. R=55fm —reR =25 fm et =25 fm MY
0 0 - : 0
0 1 2 3 4 01 1 10 0 1 2 3 4
t/R t [fm] t/R

Attractors in 1D and 3D in RBT T



3D systems. Moments

Opacity

New time scale: R. If we plot R/, simulations cluster in universality classes

In Relaxation and Isotropization Time P
. . B ~ . . 5\ =5.5 fm
Approximation, opacity 4 emerges in so|V|ng N - -R=25fm
1000 T ~-R=10fm 5

the Boltzmann equation as the only scaling
parameter. (Kurkela et al., PLB 783, 274 (2018);
Ambrus et al. PRD 105, 014031 (2022) )

In RBT one finds:

R
—(t=R) =4

>\mfp

R/ Amfp

Attractors in 1D and 3D in RBT T



3D systems. Moments

Opacity

New time scale: R. If we plot R/, simulations cluster in universality classes

In Relaxation and Isotropization Time
Approximation, opacity 4 emerges in solving
the Boltzmann equation as the only scaling
parameter. (Kurkela et al., PLB 783, 274 (2018);
Ambrus et al. PRD 105, 014031 (2022) )

In RBT one finds:

R

N\ R=55fm
N - -R=25 fm
10 A, e — R =10 fm -
&
g
~<
~
St
100k

—(t=R)=A
/\mfp( )~ 4 L
1/4 3/4 3/4 3/4
. . .15 TR olo [ R R
el i 5n/s 5n/s \ 1o (7/7eq)o i
22 /29
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Forward attractors
341D, but azimuthal symmetry and look at ns ~ 0 — M = W”’”(
Fix n/s = 1/4w. Change & (P./Pr) and R.

t,XJ_).

Attractors in 1D and 3D in RBT =7



3D systems. Moments

Forward attractors

3+1D, but azimuthal symmetry and look at s ~0 = M =M
Fix n/s = 1/4w. Change & (P./Pr) and R.

nm(t, XJ_).

R 25fm 55fm¢§

J— - 05

—_ =00
— - - 10
0

o Same trend of 1D: attractor due
to initial longitudinal expansion
(identical in 1D and 3D)

o Reached at same t for different R
(transverse size doesn’t matter)

o Differentiate when transverse

z MO L M .
s o < o, <25 fm / D < o <25 fm expansion starts to play a role
0
10t 10° 10 10°
t [fm)] t [fm)]

V. Nugara Attractors in 1D and 3D in RBT 23 /29



3D systems. Moments

Pull-back attractors

We do not have a unique time-scale any more.
How do we rescale time? Do we expect pull-back attractors at all?

Attractors in 1D and 3D in RBT 7



3D systems. Moments

Pull-back attractors

We do not have a unique time-scale any more.
How do we rescale time? Do we expect pull-back attractors at all?

15

¥ =128 4 =3.56

— — -y o If plotted w.r.t t/R, a pull-back
R=10fm attractor emerges for each

universality class, i.e. each value
of opacity 4.

o It is possible to ‘rescale’ one
system evolution to another only
within the same universality class

10 10° 10 10°

Attractors in 1D and 3D in RBT 7



3D systems. Anisotropic flows

Eccentricities and anisotropic flows

Reproduce eccentricity in coordinate space by shifting (x, y):

z=x+iy =27z =z—az"!

VT cos(ng))Z + (<7 sin(ng))? a1 na&
o) -

(S. Plumari, G. L. Guardo, V. Greco, J.-Y. Ollitrault, Nucl. Phys. A 941, 87 (2015))

€n —

Attractors in 1D and 3D in RBT =7



3D systems. Anisotropic flows

Eccentricities and anisotropic flows

Reproduce eccentricity in coordinate space by shifting (x, y):

z=x+iy =27z =z—az"!

VT cos(ng))Z + (<7 sin(ng))? a1 na&
o) -

(S. Plumari, G. L. Guardo, V. Greco, J.-Y. Ollitrault, Nucl. Phys. A 941, 87 (2015))

€n —

Viscosity converts space anisotropies in momentum space. Expand distribution function as:
dN

doprdps X122 valpu)cosln(dp — Wa(p.))]

n=1

Anisotropic flows v, = (cos(n¢))

Attractors in 1D and 3D in RBT =7



3D systems. Anisotropic flows

Eccentricities and anisotropic flows

Reproduce eccentricity in coordinate space by shifting (x, y):

z=x+iy =27z =z—az"!

VT cos(ng) T+ T sin(n9))? a1 (21 3 =
: ) W g i
(S. Plumari, G. L. Guardo, V. Greco, J.-Y. Ollitrault, Nucl. Phys. A 941, 87 (2015)) — 2 ’

x

Viscosity converts space anisotropies in momentum space. Expand distribution function as:
dN

doprdps X122 valpu)cosln(dp — Wa(p.))]

n=1

Anisotropic flows v, = (cos(n¢))

How efficiently does this conversion happen? How does it depend on /s, R and 47

Attractors in 1D and 3D in RBT =7



Response functions v, /¢,

0.3

—R=55fm—e =0.1 F=T12
- 2.5 fm € =0.2
--R =10 fm

—R=55fm—e=01
25fm e =02
—-R=10fm

0 05 1 15 2 25 3

@ No dependence on ¢,

Attractors in 1D and 3D in RBT Y



3D systems. Anisotropic flows

Response functions v, /¢,

0.3 0.12
—R=55fm—e =01 §=712 —R=55fm—¢ =02 —R=55fm—e =01
--R=25fm =02 02 --R=25fm e =01 T -=R=25fm =02
0.25 —-R=10fm -=R=1.0fm 7 B
0.2 0.15
& o
~_0.15 - = - =
g - 5’ 0.1
0.1
0.05
0.05
0 0

0 0.5 1 15 2 25 3

@ No dependence on ¢,

0 0.5 1 15 2 25 3

o Clusters in 4 within 10%. Spreading decreases with increasing 4

Attractors in 1D and 3D in RBT
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3D systems. Anisotropic flows

Response functions v, /¢,

0.3
—R=5.5fm—e =0.2 —R=55fm—e =0.1

—R =55 fm—e =0.1

-=-R=25fm =02 2F==R=25fm e =0.1 S --R=25fm €=
0257 _R=10fm —=R=1.0fm % =7 :
0.2
&
~_0.15
S
g
0.1
0.05 =
0
0 0.5 1 15 2 25 3 0 0.5 1 1.5 2 25 3 0 0.5 1 15 2 25 3
t/R t/R R

@ No dependence on ¢,
o Clusters in 4 within 10%. Spreading decreases with increasing 4

e For fixed 4, monotonic ordering in R

Attractors in 1D and 3D in RBT B



3D systems. Anisotropic flows

Response functions v, /¢,

0.3 0.12
—R =155 fm—e =01 3 —R =055 fm—e; =0.2

—R=55fm—e =01

--R=25fm ©=02___ - 2F ==R=25fm € =01 ~rmmm --R=25fm =
0.25(__R—10fm --R=10fm 2 o '
Zd
0.2
&
<015
~
=
0.1
005 g 1 LA T e mm e
0
0 05 1 15 2 2.5 3 0 0.5 1 15 2 2.5 3 0 0.5 1 15 2 2.5 3

@ No dependence on ¢,
o Clusters in 4 within 10%. Spreading decreases with increasing 4
e For fixed 4, monotonic ordering in R

o What do these values of 4 represent?

Attractors in 1D and 3D in RBT B



Opacity estimates

0.3 : : ‘ ‘ ‘ A R [fm] 4mn/s

—R =55 fm—e =0.1 F=112

--R=25fm

Attractors in 1D and 3D in RBT B



Summary and outlook

Summary
1D systems
@ Attractors in conformal boost-invariant case in the distribution function and its moments.
@ Non boost-invariant systems show universal behaviour, also at large 7.
e If n/s =n/s(T), only temporary breaking of the universal behaviour (‘loops’).
3D systems
v" Forward and pull-back attractors (~ 1D)
v Difference w.t.r. 1D for t > R
v Opacity 4 quite good universal parameter (especially for large %)

Outlook

@ Non-conformal simulation in progress
o Pre-hydrodynamic transport + transport without discontinuity in bulk viscosity

v

Attractors in 1D and 3D in RBT ERYEs



Summary and outlook

Thank you for your attention.

Attractors in 1D and 3D in RBT 7



Backup slides

LRF and matching conditions

Define the Landau Local Rest Frame (LRF) via the fluid four-velocity:

v
T u, = eut,

"l
n=n"u,

€ and n are the energy and particles density in the LRF.

Fluid is not in equilibrium = define locally effective T and I' via Landau matching

conditions: N

T= = AT

€
for
3n’

d is the # of dofs, fixed d = 1.

Attractors in 1D and 3D in RBT Sy



Code setup

Cell: Ax = Ay =0.12 fm, Ans = 0.25. Results taken in one-cell-thick slices in 7.
Test particles: from 107 up to 3 - 108.
Time discretization: to avoid causality violation (~ 103 time steps).

Performance: 1 core-hour per 10° total particles in 2 - 103 time steps.

Attractors in 1D and 3D in RBT =7
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Testing boost-invariance

Compute normalized moments at different ns's within an interval Ans = 0.04.

11 . 11 ,
n/s=1/4r n/s=1/4r
1 - ! ]
0.9
09
osfh
= % 071
| % 1
E o7b 4 06f
osf |
0.6 1
04t \
05Ff
03t
0.4 : : 0.2 : i
10t 10° 10t 10t 10° 10t

7 [fm]

T [fm]

No dependence on 7! We look for them at midrapidity: 7 € [-0.02,0.02]
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Boltzmann RTA Equation for number-conserving systems

Boltzmann equation in Relaxation Time Approximation (RTA) (Strickland, Tantary, JHEP10(2019) 069)
p-u
Pl Oufy = ———(feq — 1)
Teq

Exactly solvable, by fixing number and energy conservation.
Two coupled integral equations for Tege =T and T = T

r(r) T4(7') = D(7,70)lo Tg% + /T #I/T’)D(T’ () T4(T’)’H (;) ’

1 T dr!
r(T)T3(T)=; D(7, 7)o T3m0 + / T

70 TGQ(T,)

D(r, 7 (r") T3 (T/)T/:| .
Here o = (1 + 6)_1/2. System solvable by iteration.

Attractors in 1D and 3D in RBT =7
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vHydro equations

Second-order dissipative viscous hydrodynamics equations according to DNMR derivation,
starting from kinetic theory (G. s. Denicol et al., PRL105, 162501 (2010)) :

1
€ (e + )

where 7. = 5(n/s)/ T and . = 124/63.
Solved with a Runge-Kutta-4 algorithm.

Attractors in 1D and 3D in RBT 7
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aHydro for number-conserving systems

Formulation of dissipative anisotropic hydrodynamics with number-conserving kernel (Aimaalol,

Algahtani, Strickland, PRC 99, 2019).
System of three coupled ODEs:

196 1
-l 30; logN\ — = ~- =0
0 log~y + 30; log 21+€—|—T

R'(&) 1 1 1
Or logy + 40; log A + W@rﬁ- p m — E -1

_201+9  fd +O*RAE) _

Teq

o<
Solved with a Runge-Kutta-4 algorithm.

Attractors in 1D and 3D in RBT =7
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Computation of moments in other models

o RTA:
nm _ (n +2m+ 1)! n+2m—2 n+2m+2 Hnm(aTO/T)
M (1) = W [D(Tv To) oy Ty lo [H29 () /2] H2m—1 +
Todr! T
D / / I— / Tn+2m+2 / nm o .
+/To P (e (S
o DNMR:
7 _1_3m(n+2m—|—2)(n+2m+3)z_
DNMR = 4(2m+ 3) e’
@ aHydro:

Hnm(a) .
[’H20(a)]n+2m—1 !

Mitiyaro(T) = (2m + 1)(20)" 272

Attractors in 1D and 3D in RBT 7
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Comparison with other models

Compute normalized moments with DNMR, anisotropic hydrodynamics (aHydro) and
Relaxation Time Approximation (RTA) Boltzmann Equation.

-~ nfs=1/4m

boonfs=1/4r

- mfs=1f4m - onnm 1

o Better agreement with

04T [—Full Boltzmann 04 \ 04

oaf [ A oz} | o2l ez RTA and aHydro for
o \ B B

of bk M =PyP, | o ;" o [ M lower order moments

10" 10° 10 10" 10° 10! 10 10° 10!

o Better agreement with
DNMR for lower /s
(V. Ambrus et al., PRD 104.9
(2021))

Attractors in 1D and 3D in RBT =7
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Pressure anisotropy in different frameworks

For n/s = 1/4mw and /s = 10/4m, compute P; /Pt from three different initial anisotropies:
€0 = —0.5, 0, 10.

16 ----RBT n/s=1/4r

N e DNMR n/s =10/4m| |
aHydro
12 b . .
@ RTA (not showed) really similar
' v to aHydro

@ aHydro attractor reached ~ time
than RBT

o vHydro attractor reached at later
time, especially for larger n/s

P,/ Py

Attractors in 1D and 3D in RBT =7
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Who is the attractor?

All curves scale to a universal behaviour. Which is the curve they converge to?

@ Viscous (vHydro) and Anisotropic (aHydro) Hydrodynamics: analytical solution
(M. Strickland et al.PRD, 97, 036020 (2018)) ;

o Relaxation Time Approximation (RTA) Boltzmann Equation (P. Romatschke PRL 120, 012301
(2018)) : 7o < 1 and & — oo (in accordance with aHydro).

Infinitely oblate distribution &y — oo, initial scaled time 74 7o/(7)/s) — 0.

Is it the RBT attractor, too? It is.

The system initially is dominated by strong longitudinal expansion.

Attractors in 1D and 3D in RBT 7
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Attractors in different models

1.4
1
12T 7~
e S
ey 05
. Moo, -
MOO
0
1
—-—vHydro
------- aHydro 0s
- =RTA ’
—RBT
0
13
1

T/ Teq T/ Teq

° an, m > 0: very
good agreement

o Higher order moments
— stronger departure
between models

o RBT thermalizes
earlier

——5n0
o No agreement for M"

Attractors in 1D and 3D in RBT TS



Midrapidity

10 10° 10t 10t 10° 10t

7 [fm)] 7 [fm)] 7 [fm)]

At midrapidity no difference w.r.t. the boost invariant case.

Attractors in 1D and 3D in RBT
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Non-monotonic 7 /7, for Case 1

Loops when 7/7¢4 is no more a monotonic function: 7eq o 7/s(T)/ T grows faster than 7.

7/ Teq

100 —& =-0.5] 1
—& =0
—& =10

100 10t 10 10° 10 10? 10°
T/ Teq 7 [fm]

Attractors in 1D and 3D in RBT T



- Seckwelde
Loss of attractors for small %

1.2

R=0.8fm
1 n/s =30/4w
4 =0.18

0.8¢

—

Cioa—
| B

0.4r

0.2

0
101 10°
t [fm)]

Attractor do not reached even for t =4 fm ~ 5R!
Attractors in 1D and 3D in RBT
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