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The phase diagram of QCD

What do we know about QCD thermodynamics at finite T, µB?

From a combination of approaches (experiment, models, first principle calculations, ...), we

are pretty sure of some things, and suspect others.

⋆ Ordinary nuclear matter at T ≃ 0, µB ≃ 922MeV

⋆ Smooth crossover for µB = 0 at T ≃ 155− 160MeV

⋆ Transition line at finite µB is known to some

precision (+ freeze-out extraction)

⋆ Perturbative regime is under control: high T, µB

⋆ Compact astronomical objects at low-T, high-µB

⋆ Critical point? Exotic phases?
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Lattice formulation of QCD

In a nutshell, lattice QCD amounts to calculating path integrals like

Z[A, ψ̄, ψ] =

∫
DAaµ(x)Dψ̄(x)Dψ(x) e−

∫
d4xLE [A,ψ̄,ψ]

by defining the theory on a discretized 3+1d lattice with N3
s ×Nτ sites. This allows us to

reduce the (otherwise infinite) dimensionality of the problem.

� The quark fields ψ̄, ψ are defined on the lattice sites, the

gauge fields Aµ are defined on the lattice links as

Uµ = exp[iaAµ]

� Now, one can calculate a finite number of integrals to

evaluate expressions of the like:

Z[U, ψ̄, ψ] =

∫
DU Dψ̄Dψ e−SG[U,ψ̄,ψ]−SF [U,ψ̄,ψ]

where SG and SF are the gauge (gluonic) and fermionic
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The equation of state of QCD at µB = 0

� A crucial input to modeling of heavy-ion collisions (hydro)

� Known at µB = 0 to high precision for a few years now (continuum limit, physical

quark masses) −→ Agreement between different calculations

From grancanonical partition function Z

⋆ Pressure: p = −kBT ∂ lnZ
∂V

⋆ Entropy density: s =
(
∂p
∂T

)
µi

⋆ Charge densities: ni =
(
∂p
∂µi

)
T,µj ̸=i

⋆ Energy density: ϵ = Ts− p+
∑
i µini

⋆ More (Fluctuations, etc...)

WB: Borsányi et al., PLB 370 (2014) 99-104; HotQCD: Bazavov et al., PRD 90 (2014) 094503 3/23



Finite density: the sign/complex action problem

Euclidean path integrals on the lattice are calculated with Monte Carlo methods using

importance sampling, interpreting the factor detM [U ] e−SG[U ] as the Boltzmann weight for

the configuration U

Z(V, T, µ) =

∫
DUDψDψ̄ e−SF (U,ψ,ψ̄)−SG(U)

=

∫
DU detM(U)e−SG(U)

� When there is particle-antiparticle-symmetry, i.e. µ = 0, detM(U) is real

� For real chemical potential (µ2 > 0), detM(U) becomes complex (complex action

problem) and has wildly oscillating phase (sign problem)

� Then, it cannot serve as a statistical weight, importance sampling cannot be used,

and simulations are unfeasible

� For purely imaginary chemical potential (µ2 < 0) → detM(U) is real again,

simulations can be made! 4/23



Lattice investigations of the phase diagram

I. QCD transition temperature
Study of the volume and µB dependence of Tc
Borsànyi, PP et al, 2405.12320

II. Search for critical point with baryon fluctuations
Large-statistics study of Lee-Yang edge singularities

Adam, PP et al, coming soon
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Deconfinement and chiral symmetry restoration

The QCD transition is characterized by the spontaneous breaking of two approximater

symmetries (SSB)

� Chiral symmetry restoration: SU(2)× SU(2) symmetry (exact for mq → 0).

Order parameter is chiral condensate〈
ψ̄ψ
〉
=
T

V

∂ logZ
∂mud

Symmetric phase
〈
ψ̄ψ
〉
= 0 at high-T, and SSB

〈
ψ̄ψ
〉
̸= 0 at low-T

� Deconfinement: Z(3) center symmetry (exact for mq → ∞). Order parameter is

Polyakov loop

P (x⃗) =

Nτ−1∏
x4=0

U4(x⃗, x4) ∼ e−F/T

Symmetric phase P = 0 (F → ∞) at low-T and SSB P = 1 (F → 0) at high-T
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A study of Tc

We wish to study the dependence of Tc on the volume V and the chemical potential µB

We employ our 4stout staggered action (Bellwied, PRD 114505 (2015)) with:

� Nf = 2 + 1 + 1 with physical quark masses

� Simulations at µB = 0 on Nτ = 12 lattices with Ns = 20, 24, 28, 32, 40, 48, 64

� Simulations at imaginary chemical potential with Im (µB) = iπ8n with

n = 0, 3, 4, 5, 6, 6.5, 7, on Nτ = 12 lattices with Ns = 32, 40, 48

� We consider the strangeness neutral case ⟨ns⟩ = 0 relevant for heavy ion physics

We investigate the behaviour of Tc related to both chiral symmetry restoration and

deconfinement, looking for analogies and differences
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A study of Tc: chiral symmetry

Besides
〈
ψ̄ψ
〉
, we look at the chiral susceptibility, as well as its disconnected part:

χ =
T

V

∂2 logZ
∂m2

ud

χdisc =
T

V

∂2 logZ
∂mu∂md

∣∣∣∣
mu=md

An estimate of Tc is obtained from i.
〈
ψ̄ψ
〉
= const or ii. the peak of χ

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 100  120  140  160  180  200  220

µB
I
/T=0

re
n
o
rm

a
liz

e
d
 c

h
ir
a
l 
c
o
n
d
e
n
s
a
te

T [MeV]

64
3
x12

48
3
x12

40
3
x12

32
3
x12

28
3
x12

24
3
x12

20
3
x12

-0.02

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 100  120  140  160  180  200  220

µB
I
/T=0

χ
 m

/f
π

4

T [MeV]

64
3
x12

48
3
x12

40
3
x12

32
3
x12

28
3
x12

24
3
x12

20
3
x12

Volume effects are small at high-T, large at small-T, and Tc goes up with V 7/23



A study of Tc: deconfinement

Starting from the Polyakov loop P ∼ e−F/T , we study the static quark free energy FQ and

its derivative SQ = −∂FQ

∂T :

FQ = −T log

(
1

Λ

∑
x⃗

|⟨P (x⃗)⟩T |

)
+ T0 log

(
1

Λ

∑
x⃗

∣∣⟨P (x⃗)⟩T0

∣∣)
An estimate of Tc is obtained from i. FQ = const or ii. the peak of SQ
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Measures of Tc vs V

Combining the estimates of Tc from different observables and volumes we can draw some

conclusions:

� Chiral transition Tc estimates have larger

V -dependence and decrease with the volume

� Deconfinement Tc estimates have milder

V -dependence and increase with the volume

� The spread is ∼ 10 MeV for LT > 2.5

� Clear ordering Tχc > T
SQ
c appears above

LT = 3
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This suggests that studies of Tc can be performed on lattice with smaller volumes based on

deconfinement-related observables (ongoing work)
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Measures of Tc vs µB

Exploiting simulations at imaginary µB (no sign problem), we can study the µB
dependence of Tc too, and extrapolate to real µB (here at LT = 4)

We find a similar slope in T (µB) at µB = 0, although the ordering disappears at larger

imaginary µB (sensitivity to Roberge-Weiss transition?)
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To summarize

� We looked at chiral observables
〈
ψ̄ψ
〉
, χ, and deconfinement-related observables FQ,

SQ to study volume and chemical potential dependence

� Chiral symmetry restoration and deconfinement in the thermodynamic limit take

place roughly at the same temperature

� However, the dependence on the volume is quite different: large volume effects for

chiral symmetry restoration, much milder for deconfinement; and in opposite

directions

� Similar dependence on the chemical potential (at large volume), with almost parallel

transition lines T (µB)
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Lattice investigations of the phase diagram

QCD transition temperature
Study of the volume and µB dependence of Tc
Borsànyi, PP et al, 2405.12320

II. Search for critical point with baryon fluctuations
Large-statistics study of Lee-Yang edge singularities

Adam, PP et al, coming soon



The QCD critical point

The crossover is “expected” to turn first order at larger µB , and the critical point would

be in the same universality class as the 3D Ising model
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→ recent estimates from different methods seem to “converge” 12/23



Critical point and universality

In the Ising model, scaling fields are the reduced temperature t = T−Tc

Tc
and the magnetic

field h. They can be mapped onto QCD coordinates as:

t = At∆T +Bt∆µB

h = Ah∆T +Bh∆µB

with ∆T = T − Tc, ∆µB = µB − µBC .
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Critical point from Lee-Yang edge singularities

� The partition function of a thermodynamic system

has in general complex zeroes called Lee- Yang zeroes

� When the critical point is approached, these zeroes

approach the real µB axis

� Zeroes of Z are singularities of the free energy

f ∼ logZ, and they accumulate at the so-called

Lee-Yang edge (LYE) singularities

� The idea is to estimate the (complex) location of these singularities, then extrapolate to the

critical point exploiting universality:

Im(µLY )(T ) = A(T − Tc)
βδ

� There are important caveats, mostly the assumption that we are in the scaling regime

� We will see that such an analysis suffers from large systematics
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Starting point: fluctuations

Derivatives of the free energy wrt the associated chemical potentials:

χBQSijk (T, µB , µQ, µS) =
1

V T 3

∂i+j+k lnZ (T, µB , µQ, µS)

∂ (µB/T )
i
∂ (µQ/T )

j
∂ (µS/T )

k

� promising signatures of critical point, provide a connection to experiment

� Taylor coefficients of equation of state → basis for expansions/extrapolations

Orders 6,8 have never been continuum extrapolated only recently, in a small volume
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New 4HEX action

� New staggered action, with Nf = 2 + 1 and physical quark masses

� Four steps of HEX smearing, DBW2 gauge action

� The new action has much improved taste breaking over other discretizations → much

better handle on pion physics and interaction-heavy observables
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Our study

� Simulated the temperature range T = 125− 175MeV on a 163×8 lattice

� Very large statistics ensemble (∼ 500000 configurations per temperature)

We want to carry out a study of LYE singularities with proper systematic uncertainties 17/23



Our strategy

� Model the µB dependence of the free energy (pressure), and search for singularities.

We will use a Padé model (in µ2
B b/c of charge conjugation symmetry):

Pade[n,m](µ2
B) =

Pn(µ
2
B)

1 +Qm(µ2
B)

=

∑n
i=0 anµ

2i
B

1 +
∑m
j=1 bnµ

2j
B

Systematics # 1: repeat the procedure for related quanties (χB1 , χ
B
2 ), also singular!

� Model the approach to the critical point:

Im(µLY )
1/βδ = A(T − Tc)

Systematics # 2: repeat the procedure for equivalent functional forms:

Im(µLY /T )
1/βδ Im(µ2

LY )
1/βδ Im((µLY /T )

2)1/βδ

� Systematics # 3: vary the fit range in T

Note: we do not fit, but fix an, bn directly from the χBn 18/23



LYE estimates

Estimates for the LYE singularities from χ2 (left) and p (right)
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Systematics

Estimates for Tc from χ2 (left) and p (right)
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We can notice quite some variability changing the observable and the ansatz 20/23



Systematics

Dependence on fit range for Tc estimate from χ2 (left) and p (right)
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Very large dependence on the fitted range, but a priori we can’t know where the scaling

ansatz is valid!
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Systematics: wrap up

Putting together the 3× 4× 36 = 432 analyses:
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When considering the systematic errors, it is extremely hard to make any predictions on

the location of the CP.

Results that do not include systematic uncertainties should be taken with extreme care
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Summary

The mapping of the phase diagram of QCD continues!

� Looking at chiral and deconfinement-related observables we determined the

dependence of the transition temperature on the volume and the chemical potential

� Much smaller volume effects for deconfinement than for chiral symmetry restoration,

but similar µB dependence

� Results in a small volume LT = 2 with a new, improved action, with large statistics to

search for the critical point

� Thorough analysis of LYE singularities with systematic errors. The conclusion is no

conclusion

GRAZIE!
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Confinement and chiral symmetry breaking

At low temperature and density, quarks and gluons are confined inside hadrons. The

approximate chiral symmetry of QCD is spontaneously broken
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At large temperature and/or density, a deconfined medium is formed, with quasi-free

quarks and gluons, with effectively restored chiral symmetry

Borsányi et al., JHEP 1009:073 (2010)



The QCD transition: crossover vs. first order

On the lattice we study the volume scaling of certain quantities to determine the order of

the transition

Left: physical masses Right: infinite masses (pure gauge)

� For a crossover (left), the peak height is independent of the volume

� For a first order transition, it scales linearly with the volume

Aoki et al. Nature 443 (2006), Borsányi, PP et al., PRD 105 (2022)



The QCD transition: Columbia plot

As a function of the light (u,d) and strange quark masses, the order of the transition

changes

� At the physical point ms/mud ≃ 27, the transition is a smooth crossover!

� In the heavy-quark limit (pure gauge), the transition is first order



Continuum extrapolation with 4HEX action

Smaller taste breaking −→ smaller discretization effects −→ cleaner continuum limit

Bellwied+ ’15; Bollweg+ ’21; Borsanyi, PP+ ’QM ’22

https://inspirehep.net/literature/1383133
https://inspirehep.net/literature/1889267


Heavy-ion collisions: event-by-event fluctuations

� Conserved charges in QCD are all quark numbers

−→ B (baryon number), Q (electric charge), S (strangeness)

� Weak effects are not considered (time’s too short)

� Charm is ignored (might not thermalize)

� Conserved charges are conserved only on average in experiment

STAR Collaboration: PRL 112 (2014) 032302



Fluctuations of conserved charges

How can CONSERVED CHARGES fluctuate?

� If we could measure ALL particles in a collision, they would not

� If we look at a small enough subsystem, fluctuations occur and become meaningful



High-order baryon fluctuations

Continuum extrapolation of baryon fluctuation ratios B4/B2, B6/B2, B8/B2 (only at

T = 145MeV)
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Small discretization effects, the continuum limit is very clean

These are the first ever continuum O(µ6
B) and O(µ8

B) results

Borsanyi, PP+ ’23

https://inspirehep.net/literature/2735790


High-order baryon fluctuations: comparisons

Continuum extrapolated χB6 with same ansatz, compared to non-continuum results:

� small finite volume effects (especially at low T)

� not small cutoff effects in existing Nτ = 8 data (sign is opposite, slope is opposite)
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High-order baryon fluctuations: comparisons

Continuum extrapolated χB8 at T = 145MeV only, compared to non-continuum results:

� again, small finite volume effects (especially at low T)

� cutoff effects way out of control in existing Nτ = 8

-1.50

-1.00

-0.50

0.00

0.50

 130  140  150  160  170  180  190  200

χ
B
8

HISQ 32
3
x8

20
3
x10

4stout 48
3
x12

LT=2 continuum

HRGT [MeV]

4stout: Borsanyi+ ’18; HISQ: Bollweg+ ’22; 4HEX (new): Borsanyi, PP+ ’23

https://inspirehep.net/literature/1672799
https://inspirehep.net/literature/2034646
https://inspirehep.net/literature/2735790


Simulations at imaginary chemical potential

� While for real chemical potential

(µ2 > 0) detM(U) is complex, for

imaginary chemical potential (µ2 < 0)

detM(U) is real

� We perform simulations at imaginary

chemical potentials:

µ̂B = i
jπ

8
j = 0, 1, 2, ...

continuation
d(p/T^4)/dµ

Tc(µ)

T

µ2/T2

Ro
be

rg
e-

W
ei

ss

real chemical potentialslattice simulations

1.221.622.022.42

ĸ

We then analytically continue to µ2 > 0 by means of suitable extrapolation schemes



Simulations at imaginary chemical potential

Strangeness neutrality (or not)

Set the chemical potentials for heavy-ion collisions scenario, or simpler setup:

⟨nS⟩ = 0 ⟨nQ⟩ = 0.4 ⟨nB⟩ or µQ = µS = 0



Chiral observables at imaginary µB
Chiral condensate and chiral susceptibility at imaginary chemical potential
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� From here, we could determine the inflection point of
〈
ψ̄ψ
〉
(T ) and the peak of χ(T )

(this was done in e.g., [Bellwied:2015rza])

� However, we are after great precision, and the complicated shapes of these curves are

an obstacle

Borsányi, PP et al., PRL 125 (2020), 052001



Lattice QCD at finite µB - Taylor coefficients

� Fluctuations of baryon number are

the Taylor expansion coefficients of

the pressure

χBQSijk (T ) =
∂i+j+kp/T 4

∂µ̂iB∂µ̂
j
Q∂µ̂

k
S

∣∣∣∣∣
µ⃗=0

� Signal extraction is increasingly

difficult with higher orders, especially

in the transition region

� Higher order coefficients present a

more complicated structure
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