EUROPEAN PLASMA RESEARCH ACCELERATOR WITH EXCELLENCE IN APPLICATIONS

The EuPRAXIA project a plasma based accelerator facility Massimo Ferrario (INFN-LNF) On behalf of the EuPRAXIA collaboration

Livingstone Diagram

Energy of colliders is plotted in terms of the laboratory energy of particles colliding with a proton at rest to reach the same center of mass energy.

Livingstone Diagram with PWFA

A New European High-Tech User Facility

FEATURE EUPRAXIA

EUPRAXIA is the first European project that develops a dedicated particle accelerator research infrastructure based on novel plasma acceleration concepts driven by innovative laser and linac technologies.

> Building a facility with very high field plasma accelerators, driven by lasers or beams 1 - 100 GV/m accelerating field

> > Shrink down the facility size Improve Sustainability

Producing particles and photons to support several urgent and timely science cases

Drive short wavelength FEL Pave the way for future Linear Colliders

Surf's up Simulation of electron-driven plasma wakefield acceleration, showing the drive electron beam (orange/purple), the plasma elec wake (grey) and wakefield-ionised electrons forming a witness beam (orange).

USER FACILI PLASMA AC 'H'

Ralph Assmann, Massimo Ferrario and Carsten Welsch describe the status of the ESFRI project EuPRAXIA, which aims to develop the first dedicated research infrastructure based on novel plasma-acceleration concepts.

nergetic beams of particles are used to explore the This scientific success story has been made possible fundamental forces of nature, produce known and through a continuous cycle of innovation in the physics unknown particles such as the Higgs boson at the and technology of particle accelerators, driven for many LHC, and generate new forms of matter, for example at the decades by exploratory research in nuclear and particle iture FAIR facility. Photon science also relies on particle physics. The invention of radio-frequency (RF) technology eams: electron beams that emit pulses of intense syn- in the 1920s opened the path to an energy gain of several hrotron light, including soft and hard X-rays, in either tens of MeV per metre. Very-high-energy accelerators were circular or linear machines. Such light sources enable constructed with RF technology, entering the GeV and ime-resolved measurements of biological, chemical and finally the TeV energy scales at the Tevatron and the LHC. physical structures on the molecular down to the atomic New collision schemes were developed, for example the scale, allowing a diverse global community of users to mini "beta squeeze" in the 1970s, advancing luminosit investigate systems ranging from viruses and bacteria and collision rates by orders of magnitudes. The invention to materials science, planetary science, environmental of stochastic cooling at CERN enabled the discovery of science, nanotechnology and archaeology. Last but not the W and Z bosons 40 years ago. least, particle beams for industry and health support many However, intrinsic technological and conceptual limits societal applications ranging from the X-ray inspection mean that the size and cost of RF-based particle accel- INFN, Carsten of cargo containers to food sterilisation, and from chip erators are increasing as researchers seek higher beam Welsch University energies. Colliders for particle physics have reached a of Liverpool/INFN. manufacturing to cancer therapy.

CERN COURIER MAY/IUNE 202

https://www.eupraxia-facility.org/

Principle of plasma acceleration

Principle of plasma acceleration

FEL is a well established technology

(But a widespread use of FEL is partially limited by its size and costs)

Intense R&D Program on critical components

• Electrons (0.1-5 GeV, 30 pC)

E^[•]**PRAI**A

- Positrons
 (0.5-10 MeV, 10⁶)
- **Positrons** (GeV source)
- Lasers (100 J, 50 fs, 10-100 Hz)
- X-band RF Linac
 (60 MV/m , up to 400 Hz)
- Plasma Targets
- Betatron X rays (1-10 keV, 10¹⁰)
- FEL light
 (0.2-36 nm, 10⁹-10¹³)

- The EuPRAXIA Consortium today: 54 institutes from 18 countries plus CERN
- Included in the ESFRI Road Map
- Efficient fund raising:
- –Preparatory Phase consortium (funding EU, UK, Switzerland, in-kind)
- –Doctoral Network (funding EU, UK, inkind)
- -EuPRAXIA@SPARC_LAB (Italy, in-kind)
- -EuAPS Project (Next Generation EU)

--What Next? => PACRI !

Distributed Research Infrastructure

EuPRAXIA Preparatory Phase Organisation

Coll. Board M. Ferrario INFN

> Steering Committee

Scientific and Technical Advisory Board

Board of Financial Sponsors

WP1 - Coordination & Project Management P. Campana, INFN M. Ferrario, INFN	WP7 R. Fo S. Pio
WP2 - Dissemination and Public	J. Vie
Relations	H. Vii
C. Welsch, U Liverpool	WP9
S. Bertellii, INFN	Com
WP3 - Organization and Rules	S. An
A. Specka, CNRS	F. Ng
A. Ghigo, INFN	WP1
WP4 - Financial & Legal Model.	Syste
Economic Impact	K. Ca
A. Falone, INFN	R. Sh
WP5 - User Strategy and Services	WP1 ′
F. Stellato, U Tor Vergata	G. Sa
E. Principi, ELETTRA	E. Ch
WP6 - Membership Extension	WP1:
Strategy	Indus
B. Cros, CNRS	L. Giz
A. Mostacci, U Sapienza	P. Cru
WP's on coordination & implementation as ESFRI RI (organization, legal model,	

financing, users)

- E-Needs and Data Policy onseca. IST oli, INFN - Theory & Simulation eria, IST ncenti, CEA - RF, Magnets & Beamline ponents ntipov, DESY guyen, ENEA 0 - Plasma Components & ems assou, CNRS halloo, DESY 1 - Applications arri, U Belfast hiadroni, U Sapienza 2 - Laser Technology, Liaison to stry

L. Gizzi, CNR

P. Crump, FBH

WPs on technical implementation and sites

WP13 - Diagnostics A. Cianchi, U Tor Vergata R. Ischebeck, EPFL

WP14 - Transformative Innovation Paths B. Hidding, U Dusseldorf

S. Karsch, LMU

WP15 - TDR EuPRAXIA @SPARC-lab

C. Vaccarezza, INFN R. Pompili, INFN

WP16 - TDR EuPRAXIA Site 2

A. Molodozhentsev, ELI-Beamlines R. Pattahil, STFC

Basic beam quality achieved in pilot FEL experiments

EUPRAXIA

Seeded UV free-electron laser driven by LWFA

Collaboration Soleil/HZ Dresden, published on Nat. Photon. (2022). https://doi.org/10.1038/s41566-022-01104-w

FIG. 1. Experimental layout. The electron beam generated in the LPA is first characterized using a removable electron spectrometer and then sent through a triplet of quadrupoles [QUAPEVAs] for beam transport to the undulator and FEL radiation generation. ICTs: Integrated Current Transformers. Non-labelled elements: dipoles (*red blocks*), optical lenses (*bloc*), mirrors (*grey circled black disks*). Inset a: Particle-in-Cell simulation renders of the accelerating structure driven by the baser pulse (*red*), the electron eavily sheet formed from the plasma medium (*light blue*) is visible in *grapic* and the accelerated electron bunch visible in *grapic* and the accelerated electron bunch visible in *grapic* and the accelerated electron bunch vision exit, else.

0 265 270 275 280 265 270 275 280 Wavelength (nm) Wavelength (nm)

EUPRAXIA Headquarter and Site 1: EuPRAXIA@SPARC_LAB

- Frascati`s future facility
- > 130 M€ invest funding
- Beam-driven plasma accelerator
- Europe`s most compact and most southern FEL

•

The world`s most compact RF accelerator (X band with CERN)

EuPRAXIA@SPARC_LAB Layout

EuPRAXIA@SPARC_LAB Layout

High Quality Electron Beams

Courtesy E. Chiadroni

World's Most Compact RF Linac: X Band

$E_{acc}/ [\%]$		
1.	E.m. design: done	
2.	Thermo-mechanical analysis: done	
3.	Mechanical design: done	Pressure distribution
4.	Vacuum calculations: done	LE07 4 LL09 LL09 LL09 LL09 LL09 -q=1e-1 -q=1e-1 -q=1e-1
5.	Dark current simulations: done	1.6-11 1.6-12 0 15 30 45 60 75 90 Z [cm]
6.	Waveguide distribution simulation with attenuation calculations: <i>done</i>	10 ⁶ Louissian Spectra

		Value		
	PARAMETER	with linear	w/o	
		tapering	tapering	
	Frequency [GHz]	11.99	42	
2	Average acc. gradient [MV/m]	60		
	Structures per module	2		
	Iris radius a [mm]	3.85-3.15	3.5	
	Tapering angle [deg]	0.04	0	
	Struct. length L_s act. Length (flange-to-flange) [m]	0.94 (1.05)		
а 1 .,	No. of cells	112		
	Shunt impedance R [MΩ/m]	93-107	100	
	Effective shunt Imp. $R_{sh eff}$ [M Ω /m]	350	347	
	Peak input power per structure [MW]	70		
	Input power averaged over the pulse [MW]	51		
	Average dissipated power [kW]	1		
	P _{out} /P _{in} [%]	25		
.0	Filling time [ns]	130		
.4	Peak Modified Poynting Vector [W/µm ²]	3.6	4.3	
	Peak surface electric field [MV/m]	160	190	
	Unloaded SLED/BOC Q-factor Q ₀	150000		
	External SLED/BOC Q-factor Q _E	21300	20700	
	Required Kly power per module [MW]	20		
	RF pulse [µs]	1.5		
	Rep. Rate [Hz]	100		

Courtesy D. Alesini

Plasma Module

- 40 cm long capillary $\rightarrow 1^{st}$ prototype for the EuPRAXIA facility
 - Made with special junction to allow negligible gas leaks (<10⁻¹⁰ mbar)
- Operating conditions

E^t**PRAX**IA

- 1 Hz repetition rate (to be increased up to 100 Hz)
- 10 kV 380 A minimum values for ionization
- 6 inlets for gas injection. Electro-valve aperture time 8-12 ms

Courtesy A. Biagioni, R. Pompili

A. Biagioni, V. Lollo

Radiation Generation: FEL

Courtesy L. Giannessi

Expected SASE FEL performances

Parameter	Unit	PWFA	Full X-band
Electron Energy	GeV	1-1.2	1
Bunch Charge	pC	30- 50	200-500
Peak Current	kA	1-2	1-2
RMS Energy Spread	%	0.1	0.1
RMS Bunch Length	μ m	6-3	24-20
RMS norm. Emittance	μ m	1	1
Slice Energy Spread	%	≤0.05	≤0.05
Slice norm Emittance	mm-mrad	0.5	0.5

Parameter	Unit	PWFA	Full X-band
Radiation Wavelength	nm	3-4	4
Photons per Pulse	× 10 ¹²	0.1- 0.25	1
Photon Bandwith	%	0.1	0.5
Undulator Area Length	m	30	
ho(1D/3D)	× 10 ⁻³	2	2
Photon Brilliance per shot	s mm ² mrad ² ` bw(0.1%)	1-2 × 10 ²⁸	1×10^{27}

In the Energy region between Oxygen and Carbon K-edge 2.34 nm – 4.4 nm (530 eV -280 eV) water is almost transparent to radiation while nitrogen and carbon are absorbing (and scattering)

Coherent Imaging of biological samples protein clusters, VIRUSES and cells living in their native state Possibility to study dynamics ~10¹¹ photons/pulse needed

Courtesy C. Vaccarezza/L. Giannessi

Courtesy F. Stellato, UniToV

AQUA beamline scientific case

Experimental techniques and typology of samples

Coherent imaging

X-ray spectroscopy

Raman spectroscopy

(Large) Viruses Organelles Bacteria/Cells Metals Semiconductors Superconductors Magnetic materials Organic molecules

Photo-fragmentation of molecules

Courtesy F. Stellato

High Precision X-Ray Measurements 2023 – F. Villa – The EuPRAXIA@SPARC_LAB project 21

ARIA beamline scientific case

Defining experimental techniques and typology of samples (and applications)

Photoemission Spectroscopy

Photoelectron Circular Dichroism

Raman spectroscopy

Photo-fragmentation of molecules Time of Flight Spectroscopy

Courtesy F. Stellato

nature chemistry

Gas phase & Atmosphere (Earth & Planets) Aerosols (Pollution, nanoparticles) Molecules & gases (spectroscopies, time-of-flight) Proteins (spectroscopies) Surfaces (ablation & deposition)

Momentum-imaging

PROB

ion TOF spectrometer le EuPRAXIA@SPARC_LAB project 22

Finanziato dall'Unione europea NextGenerationEU

Betatron Radiation Source at SPARC_LAB

Electron beam Energy [MeV]	50-800
Plasma Density [cm ⁻³]	10 ¹⁷ - 10 ¹⁹
Photon Critical Energy [keV]	1 - 10
Nuber of Photons/pulse	$10^{6} - 10^{9}$

Courtesy J. Vieira, R. Fonseca/GoLP/IST Lisbon

EUPRAXIA Betatron X Rays: Compact Medical Imaging

J.M. Cole et al, "Laser-wakefield accelerators as hard x-ray sources for 3D medical imaging of human bone". Nature Scientific Reports 5, 13244 (2015)

- Physics & Technology Background:
 - Small EuPRAXIA accelerator \rightarrow small emission volume for betatron X rays.
- **Quasi-pointlike** emission of X rays.
- Sharper image from base optical principle.
- Quality demonstrated and published, but takes a few hours for one image.
- Advancing flux rate with EuPRAXIA laser
 by factor > 1,000!

Added value

Sharper images with outstanding contrast

Identify smaller features (e.g. early detection of cancer at micron-scale – calcification)

Laser advance in EuPRAXIA → fast imaging (e.g. following moving organs during surgery)

 Ultra-compact source of hard X rays → exposing from various directions simultaneously is possible in upgrades

ESPP Roadmap Update – Plasma Accelerators

	0-10	vears	Timeline (approximate/aspirational) 10-20 years 20-30 years		vears	
Single-stage accelerators (proton-driven)	stage Demonstration of: ators Preserved beam quality, acceleration in very long pla plasma uniformity (longitudinal & transverse)		Fix Dark-photor	ed-target experiment (AWAKE) n searh, strong-field QED experiment etc. (50-200 GeV e-)		R&D (exp & theory) HEP facility
				Demonstration of: C beams, TeV acceleration, beam delivery	Energy -frontier collider 10 TeV c.o.m electron-proton collider	
Single/multi-stage accelerators for light sources (electron & laser-driven)	O=10 years Demonstration of: ultra-low emittances, high rep-rate/high efficiency e-beam and laser drivers, Long-term operation, potential staging, positrons (EuPRAXIA)		R&D on EuPRAXIA will de-risk HALHF and other plasma-based collider concepts considerably			
	0-5 years	5 - 10 years	Timeline (a	pproximate/aspirational) 10-15 years	15-25 years	75+ veare
Multi-stage	Pre-CDR (HALHF)	Demonstration of scalabe staging, driver distributio (active and passive	: on, stabilisation e)	Multistage tech demonstrator Strong-field QED experiment (25-100 GeV e-)	Facility upgrade	Feasibility study R&D (exp & theory) HEP facility (earlst start of construction)
accelerators (Electron-driven or laser-driven)	ser-driven) ser-driven) self-consistent parameters Simulation study to determine self-consistent parameters rep.rate, pla	Demonst drivers), preser asma temporal	ration of: ved beam quality & spin polarization, high uniformity & cell cooling	Higgs Factory (HALHF) Asymmetric, plasma-RF hybrid collider (250-380 GeV c.o.m)	Facility upgrade♥	
	(demonstration goals)	Demonstration of: Energy-efficient positron acceleration in plasma, high wall-plug efficiency (laser-drivers), ultra-low emittances, energy recovery schemes, compact beam delivery systems				

Plasma collider challenges

HALHF: A Hybrid, Asymmetric, Linear Higgs Factory

EuPRAXIA@SPARC_LAB baseline updating

Conclusions

- Plasma accelerators have advanced considerably in beam quality, achieving FEL lasing.
- EuPRAXIA is a design and an ESFRI project for a distributed European Research Infrastructure, building two plasma-driven FEL's in Europe.
- EuPRAXIA FEL site in Frascati LNF-INFN is sufficiently funded for **first FEL user operation in 2029**.
- Second EuPRAXIA FEL site will be selected in next months, among **4 excellent candidate sites**.
- Concept today works in design and in reality. Expect (solvable) problems in stability for 24/7 user operation. Facility needed to demonstrate!
- Additional fund raising is continuosly going on

Ralph Assmann, Massimo Ferrario and Carsten Welsch describe the status of the ESFRI project EuPRAXIA, which aims to develop the first dedicated research infrastructure based on novel plasma-acceleration concepts.

Thank for your attention