

Detector R&D: tracking - LGAD (DRD3)

Marco Ferrero INFN Torino

Tracker layout and sensors requirements

Original baseline tracking geometry and sensors requirements – design @ 3 TeV

	Vertex Detector	Inner Tracker	Outer Tracker	
Cell type	pixels	macropixels	microstrips	
Cell Size	$25\mu\mathrm{m}\times25\mu\mathrm{m}$	$50\mu\mathrm{m} imes 1\mathrm{mm}$	$50\mu\mathrm{m}\times10\mathrm{mm}$	
Sensor Thickness	$50\mu{ m m}$	$100\mu{ m m}$	$100\mu{ m m}$	
Time Resolution	$30\mathrm{ps}$	$60\mathrm{ps}$	$60\mathrm{ps}$	
Spatial Resolution	$5\mu{ m m} imes5\mu{ m m}$	$7\mu\mathrm{m} imes90\mu\mathrm{m}$	$7\mu{ m m} imes90\mu{ m m}$	

New design to be finalized@ 10 TeV: geometry and sensors requirements

Fairly stringent requests for resolutions Very high occupancy in the vertex detector To be combined with:

- As low as possible material budget
- As low as possible power consumption

Studies @ 10 TeV per bunch crossing

LGAD : a sensors technology candidate for the tracker

State of the art of LGAD technology (technology chosen for CMS and ATLAS timing detectors)

Low Gain Avalanche Detectors (LGAD):

- Internal multiplication layer
- Large and fast signal (temporal resolution ~30 ps)
- Low active thickness (50 µm or less)
- moderate radiation hardness (up to 2-3.10¹⁵ n_{eq}/cm²)
- Pixel isolation (p-stop implant or trench)

The two parallel lines of R&D on LGAD technology

Resistive silicon detector (RSD)

RSD based is functionality on the signal sharing between read-out pads via a resistive

read-out electrode.

The signal sharing guarantees the reconstruction of the particle hit point with excellent precision.

Compensated-LGAD

Improvement of the multiplication layer design to cope with fluences exceeding $10^{16} n_{eq}/cm^2$

A completely new tracker based on RSD (AC or DC couple)

One of the candidate technology for the major part of the tracker

The design of a tracker based on RSD is truly innovative:

- It delivers ~ 20 30 ps temporal resolution
- For the same spatial resolution, the number of pixel is reduced by 50-100
- The electronic circuitry can be easily accomodated
- The power consumption is much lower, it might even be air cooled (~ 0.1-0.2 W/cm²)
- The sensors can be really thin

Occupancy

Low Occupancy must be ensured to avoid pile-up effects $50x50 \ \mu m$ pads would be sufficient for most of the VTX

Effective area for read out of a single hit is 3x3 pixels

Traditional trench-isolated LGADs could be more suitable mere suitable for VTX

LGAD sensors towards 4D tracking AC- and DC-Resistive Silicon Detector (RSD)

Projects involved RSD technology development:

- **RSD** (Grant giovani Gruppo V from 2019-2021):
 - Demonstrator of AC-LGAD based on resistive read-out for 4D tracking
- > **4D-Share** (Call Gruppo V and PRIN2022 from 2023 to 2025):
 - Expected 2 productions of DC-RSD sensors
 - 1 year post-doc starting in April 2023
- RadHard AC-LGAD (RD50/DRD3 common project from 2024):
 - An AC-LGAD production with the purpose of investigating and extending the radiation hardness of the RSD technology
- **FAST3-Amplifier** (RD50/DRD3 common project from 2024):
 - Development of a multichannel amplification boards based on FAST3 ASIC, optimized to readout multi-channel LGAD prototypes (optimal in laboratory and test beam activities).

LGAD sensors towards 4D tracking AC- and DC-Resistive Silicon Detector (RSD)

The main goals of these projects:

- Evolve the resistivity AC-LGAD design towards a DC-RSD design (4D-Share)
 - Controlled signal sharing in a predetermined number of pads to operate the device in high occupancy environments
- Extend of the radiation resistance od RSD technology up to fluence of 3·10¹⁵ n_{eq}/cm² (RadHard AC-LGAD project)

Outlook of the projects for the end of 2024 and 2025:

- > The first DC-RSD batch is currently in production, it is expected in September 2024
- RadHard AC-LGAD production are expected for the end of 2025
 - The simulation of AC-LGAD including the Perugia radiation damage model is ongoing

AC-LGAD (RSD) More significative experimental results

36 electrode Pitch 450µm

FBK-RSD2 sensor geometry tested in a beam test campaign in DESY

Position Resolution as a function of the sum of the signal amplitudes seen by the electrodes at the 4 corners of the pixel

DC-Resistive Silicon Detector (RSD) More significative simulated results

TCAD simulation of 6x6 pixel matrix DC-RSD

(Time evolution of the charge density generated by the passage of a particle)

- Pixel isolation with trenches
- each read-out electrode shared between 4 pixels
- Hit position close the top-left electrode in the central pixel

LGAD sensors for extreme fluences (10¹⁶ – 10¹⁷ n_{eq}/cm²) Projects

Projects involved in LGAD for extreme fluence:

- > **eXFlu** (Grant giovani Gruppo V from 2020-2022):
 - Demonstrator of the compensated-LGAD technology
- > eXFlu-Innova (AIDAinnova project from 2022 to 2025):
 - co-funding first prototype of compensated-LGAD and p-in-n LGAD, preparatory to the design of compensated-LGAD
 - 2 years post-doc starting in September 2023
- ComonSens (PRIN2022 from 2023 to 2025):
 - co-funding of p-in-n LGAD preparatory to the design of compensated-LGAD
 - 2 years post-doc starting in July 2024
- **CompleX** (ERC from 2024 to 2029):
 - Funding of 3 productions of Compensated LGAD for extreme fluences
- > Partial Activated Boron (RD50/DRD3 common project from 2024)

All ongoing project involve the INFN/CNR Perugia Groups and FBK

LGAD sensors for extreme fluences ($10^{16} - 10^{17} n_{eq}/cm^2$)

The main goal of these projects is to produce thin LGAD sensors able to operating up to fluence of $10^{17} n_{eq}/cm^2$

- Simulation and design of a reliable and radiation hardness of multiplication layer based on compensation technology
- \geq Design of the sensor termination structures able to operate above $10^{16} n_{eq}/cm^2$
- Development of a radiation damage model for extreme fluences
- Measurements of silicon sensors properties irradiated over 10¹⁶ n_{eq}/cm²

Outlook of the projects for the end of 2024 and 2025:

- A p-in-n LGAD production expected for the Q4/2024 Q1/2025 (from eXFlu-innova and ComonSens projects)
 - Device simulations have been finalized
 - The design of the production layout is ongoing
- A compensated-LGAD production expected for the end of 2025

LGAD sensors for extreme fluences (10¹⁶ – 10¹⁷ n_{eq}/cm²) More significative experimental results

eXFlu-batch

Demonstrator of Compensated-LGAD technology delivered in 2022

An extensive characterization with pulsed IR laser was conducted in laboratory on irradiated compensated-LGAD

For the first time an LGAD irradiated at 5.10¹⁵ provide 10 fC of charge

Conclusion and outlook for 2024 and 2025

Sensor batches expected in 2024 and 2025:

- DC-RSD in Q4/2024
- ➢ p-in-n LGAD in Q4/2024 − Q1/2025
- ➢ First CompleX batch in Q4/2025
- Partial Activated Boron in Q4/2025
- RadHard AC-LGAD in Q4/2025
- > Extensive laboratory testing campaigns to select most promising sensor design and layout
- Several beam test campaign are and will be scheduled at the end of 2024 and in 2025, at DESY and CERN facilities

DESY 2 Test Beam Schedule 2024 - Status from 22/JUL/2024

DES	S Υ.)
	9

DESY 2 Test Beam Coordinators: Ralf	Diener, Norbert Meyners, Marcel Stanitzki
-------------------------------------	---

Startdate	Week	ТВ21 Т		тв22 т		TB241		TB24	т
09.12.2024	50	LHCb-MightyPix	х	DCRSD	х			CMS ETL ETROC	х
16.12.2024	51	LHCb-MightyPix	х	Telescope-Dev	x			EXFLU	
23.12.2024	52	Shutdown		Shutdown		Shutdown		Shutdown	

Backup

Matching UFSD-RSD capabilities to the muColl requests

VXD	B	cell size 25 μm × 25 μm pixels 25 μm × 25 μm pixels	sensor thickness 50 μm 50 μm	time resolution 30 ps 30 ps	<mark>spatial resolution</mark> 5 μm × 5 μm 5 μm × 5 μm	number of cells 729M 462M	High occupancy and levels. TI-LGAD can be used up to 1-2E15 n/cm ² R&D in radiation harness needed to cover the full radiation field Low occupancy and radiation levels. Ideal for macro- pixels.
п	B	50 μm × 1 mm macropixels 50 μm × 1 mm macropixels	100 μm 100 μm	60 ps 60 ps	7 μm × 90 μm 7 μm × 90 μm	164M 127M	Pixel size, spatial, and temporal resolutions are a perfect fit for present RSD technology RSD will strongly reduce the number of pixels
от	B	50 μm × 10 mm microstrips 50 μm × 10 mm microstrips	100 μm 100 μm	60 ps 60 ps	7 μm × 90 μm 7 μm × 90 μm	117M 56M	Very Low-occupancy and radiation levels. Long strips do not provide accurate temporal resolution. Propose to replace it with RSD macro pads

Conclusions

UFSD and RSD offer very good combined spatial and temporal performances These designs are a good fit to the need of the muColl design

		cell size	sensor thickness	time resolution	spatial resolution	number of cells	Cell size	Number of cells	Thickness	Detector
VXD	в	25 μm × 25 μm pixels	50 µm	30 ps	$5\mu m imes 5\mu m$	729M	To be decided		50 um	TI_LGAD
	Е	$25 \ \mu m imes 25 \ \mu m$ pixels	50 µm	30 ps	$5\mu m imes 5\mu m$	462M				
п	в	50 μ m $ imes$ 1 mm macropixels	100 µm	60 ps	7 $\mu m imes$ 90 μm	164M	200 um x	1/8 # of present design	50 um	RSD
	Е	50 μ m $ imes$ 1 mm macropixels	100 µm	60 ps	$7\mu\text{m} imes$ 90 μm	127M	2 mm			
от	в	50 μm × 10 mm microstrips	100 µm	60 ps	7 μm $ imes$ 90 μm	117M	200 um x 2 mm	Similar to the present design	50 um	RSD
	Е	50 μm × 10 mm microstrips	100 µm	60 ps	7 μm $ imes$ 90 μm	56M				
				↗	-					

Proposed detector

Very difficult (impossible?) to achieve good timing with strips

Better to use macro-pads?

In Torino we are continuing the development of TI-LGAD and RSD for applications to the

muColl tracker

