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RT has advanced, but it 
requires sophisticated 
systems to ensure correct 
dose administration.

Errors caused by machinery 
malfunctioning, in patient 
positioning or changes in 
anatomy must be detected to 
prevent accidents and treatment 
errors.

RT consists of the medical 
treatment of tumors, by exposing 
the affected tissues to ionizing 
radiation (e.g., X-rays, e-)

What is Radiotherapy?

IMRT VMAT
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Major accidents in RT

Equipment malfunction
● Accelerator software problems (USA and Canada)
● Incorrect repair of accelerator (Spain)
● Accelerator interlock failure (Poland)

Calibration of RT equipment
● Incorrect decay data (USA)
● Miscalibration of beam (Costa Rica)

Errors in treatment planning
● Erroneous use of TPS (UK)
● Computer file not updated (USA)
● Errors in TPS data entry (Panama)

Better technologies are needed to verify 
treatment quality.
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In-Vivo Dosimetry: a possible solution

IVD is a direct method for measuring radiation 
doses in cancer patients undergoing RT.

Purpose: ensure treatment is executed as 
prescribed.

Safety & Compliance:
● Acts as a safety measure for dose delivery.
● Meets patient radiation protection 

standards set by national regulatory 
bodies.

[IAEA]
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DECRETO LEGISLATIVO 31 luglio 2020, n. 101 COUNCIL DIRECTIVE 2013/59/EURATOM

https://www.iaea.org/publications/8962/development-of-procedures-for-in-vivo-dosimetry-in-radiotherapy
https://www.gazzettaufficiale.it/eli/id/2020/08/12/20G00121/sg
https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2014:013:0001:0073:EN:PDF


Electronic Portal Imaging Device for IVD
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Current methods are based on 
physical models and MC 
simulations:

time-consuming

complex

limited clinical applicability

Opportunity for DL
Use DL models to simplify 
EPID dose reconstruction 
without traditional physical 
models.

Limitations

Advantages
1) High resolution
2) rapid image capture
3) long-term stability

EPIDs detectors capture 
X-ray fluence on a 
pixel-based surface to 
produce 2D digital images



https://doi.org/10.1186/s13014-022-01999-3STATE-OF-THE-ART
● only few publications
● mainly on simulated data
● only U-net architecture explored
● only one loss function for training 

phase explored (MSE)

Can AI be explored to address this issues?
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https://www.physicamedica.com/article/S1120-1797(23)00175-
8/abstract

https://doi.org/10.1088/1361-6560/ac3b66

https://doi.org/10.1186/s13014-022-01999-3
https://www.physicamedica.com/article/S1120-1797(23)00175-8/abstract
https://www.physicamedica.com/article/S1120-1797(23)00175-8/abstract
https://doi.org/10.1088/1361-6560/ac3b66


Goal of the Ph.D. project

2D Unet
3D Unet

CT
Phase 1

Phase 2

2D EPID 
image

EPID images
3D dose 

distr. (TPS)
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The main purpose of this Ph.D. project 
is to develop a multi-input DL-based 

3D in-vivo dose reconstruction 
framework based on real EPID images 

acquired during dose delivery.

2D Portal Dose
(TPS)

The main purpose of this Ph.D. project is to 
develop a multi-input DL-based 3D in-vivo 
dose reconstruction framework based on 

real EPID images acquired during dose 
delivery.



● Size: 1024x1024
● 16 bit
● Pixel spacing: [0.405, 0.405] mm
● Grey-scale pixel value

Data exploration

We collected 210 pairs of EPID-PD images from various phantoms representing different material 
densities (lung, solid water, titanium, and bone), along with corresponding simulated dose images).

● Size: 347x347
● Range: [0, ≈54]
● Pixel spacing: [1.0, 1.0] mm
● Gray dose pixel value [cGy]
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Treatment table

Experimental Setup

+

MONACO Elekta →  
Treatment Planning 
System

https://www.elekta.com/products/oncology-informatics/elekta-one/treatment-applications/planning/


Pipeline of the analysis
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Pipeline of the analysis
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Pipeline of the analysis



Input
EPID image

(256x256x1)

(256x256x32)

MaxPooling2DCon2D + Relu

(128x128x32)

(128x1286x64)

(64x64x64)

(64x64x128)

(32x32x128)

(32x32x256)

(16x16x512)

Output
Predicted PD

(16x16x256)

ConTranspose2D

(32x32x512)

(32x32x256)

(64x64x256)

(64x64x128)

(128x128x128)

(126x126x64)

(256x256x64)

(256x256x32)

Encoder
Decoder

Skip connection

Ground Truth
PD

Input
EPID image

Unet architecture

Optimization
Loss function: Mean Square Error (MSE) 
| Optimizer: Adam | Batch size of 8, 200 

epochs.

Model Architecture
U-net designed to map EPID 
images to PD distributions.

Evaluation Metric
Mean Absolute Error (MAE)

between model predictions and true PD 
images.
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Pipeline of the analysis
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Pipeline of the analysis



Input: EPID image Output: predicted PD

Ground truth:
real PD

VS

γ-index analysis

DL model
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● The agreement between simulated 
and reconstructed doses is assessed 
by comparing both dose and 
position.

● The y-index merges dose difference 
and distance to agreement (DTA) 
into one metric.

● Points with y > 1 fail the test.
● A plane is clinically acceptable if over 

95% of points have y ≤ 1.

How to evaluate the accuracy of the reconstruction?
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Pipeline of the analysis



Trained model

Dataset

Model 1

Model 2

Model 5

Prediction of 
test set

Prediction of 
test set

Prediction of 
test set

Raw images

Preprocessing Training & 
validation

Test set
PD

prediction of 
test set

γ-index analysis

…

γ-passing rate
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Pipeline of the analysis



Preliminary results
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Preliminary results
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worse and best cases

Improvements
Dataset and DL model | 

Preprocessing phase 
(normalization)

Overall Performance
Average y-passing rate of 
(81.50 ± 4.45)% across all 

test samples.

Best-Case Scenarios
y-passing rate ≥99% in some 

test samples.
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The model predicts the PD 
in under 1 second, 

significantly faster than TPS 
(≈ 20-30 min)



• Contacts: 
lorenzo.marini@phd.unipi.it
lorenzo.marini@pi.infn.it

• My office
Largo Bruno Pontecorvo, 3/Building C, 56127 Pisa PI, Room 142 (first floor)
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Thank you for the attention!

Questions?
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Backup slides
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Explainability
Transparency
Saliency map

GradCAM

DL model
Transfer learning

Different architectures
Custom loss function

Dataset
Correction of artefacts

Data size
Heterogeneity

Data augmentation

Improvements
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Timeline of the project, and next steps
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3D Unet

CT

EPID images 3D dose 
distr. (TPS)

Phase 2Some ideas regarding possible 
models…

mailto:lorenzo.marini@phd.unipi.it


Study Overview: We converted the measured EPID response into 
actual PD using a DL network and compared it with the simulated PD 
calculated by TPS.

Gamma-Analysis: A standard y-analysis of 3%/3mm was performed 
on the PD predicted by the DL network, with a mean y-pass rate of 
(81.50 ± 4.45)%.

Summary: The DL-based approach for EPID dose reconstruction 
shows promise for clinical use, with high accuracy in some cases.

Key Challenges: Predicting dose distribution for complex phantom 
configurations remains a significant challenge.

Next Steps: Expand the dataset, improve the model's accuracy in 
difficult cases, and explore potential applications in clinical workflows.

Conclusions

26
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Cross validation & ensemble learning

Dataset

Unet 1

Unet 2

Unet 3

Unet 4

Unet 5

Prediction of 
test set

Prediction of 
test set

Prediction of 
test set

Prediction of 
test set

Prediction of 
test set

Average 
prediction of 

test set

● CV is employed to ensure the model is robust and generalizes well to unseen data.

● Evaluate the performance on different subsets of the dataset, reducing the risk of overfitting 
and providing a more reliable estimate of its ability to predict new images.
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How to evaluate the accuracy of the reconstruction?

● The agreement between simulated and 
reconstructed doses is assessed by comparing 
both dose and position.

● The y-index merges dose difference and distance 
to agreement (DTA) into one metric.

● The y-test creates a 2D space with dose 
difference (ΔD) and DTA (Δr) as axes. 

● Points with y > 1 fail the test.
● A plane is clinically acceptable if over 90-95% of 

points have y ≤ 1.

M. Hussein et al. / Physica Medica 36 (2017) 1–11

VS

Real Reconstructed
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https://www.researchgate.net/publication/315065579_Challenges_in_calculation_of_the_gamma_index_in_radiotherapy_-_Towards_good_practice


Limitations

Limited Data Availability → influence on the results’ quality and 
reliability, limiting the developed model’s generalizability.

Data Coming from a single Center → introducing a potential bias in the 
results.

Complexity of the problem → at the moment it is not possible to predict 
with certainty the level of accuracy that will be able to be achieved in the 
dose reconstruction on the 3D problem.

Evaluation of the Model Performance → Using metrics such as MAE or 
γ-index for model evaluation may not be the best choice.

Explainability → Developing an extremely complex algorithm could 
reduce its explainability. Finding a trade-off between performance and 
explainability will be required.
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Explainability & interpretability

Visualizing what unet learn…

Heatmaps produced with Grad-CAM are a powerful tool for improving the 
transparency of the model, by helping to understand the model's decision pathway.

lorenzo.marini@phd.unipi.itnext-AIM workshop, Bari,  Oct. 2024
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https://baltig.infn.it/lomarini/intrepid InTrEPID_ARTEMIS

Sources: data & codes
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Data preprocessing

(1)
Matching of physical 

size and images 
centering

Do the images have the 
same dimensions and 

have the same physical 
position?

(3)
Pixel scaling → 
normalization

It can help the training 
phase of the NN

(2)
Image resizing

(256x256)

A trade-off between 
resolution and 

computing capacity
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1) Matching of physical size

33

Do the images have the same dimensions?

- Total dimensions are not the same
- Signals are not always perfectly centered 

Is it better cut the EPID images or add background pixels to PDs?

lorenzo.marini@phd.unipi.it2nd Year PhD Project, Oct. 2024

mailto:lorenzo.marini@phd.unipi.it


2) Image resizing → (256x256)
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A trade-off between resolution and computing capacity

● Image resizing (using OpenCV, Python) refers to the scaling of images.
● Reduces the number of pixels, speeding up NN training and reducing model 

complexity (Training efficiency).
● Lowers computational and memory requirements by decreasing image size.

256

256

lorenzo.marini@phd.unipi.it2nd Year PhD Project, Oct. 2024
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3) Pixel scaling

It can help the training phase of the network
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● Normalization is the process of converting an actual range of values which a 
numerical pixel can take, into a standard range of values, typically in the 
interval [0, 1].

● Why do we normalize? It is not a strict requirement. However, in practice, it 
can lead to an increased speed of learning (Gradient descent, weight updates 
and numerical overflow)

EPIDi →
EPIDi/max(EPID or CV)

PDi → 
PDi/max(PD or CV)

lorenzo.marini@phd.unipi.it2nd Year PhD Project, Oct. 2024
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EPID normalization factor
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Divided by normalization factor 
(tag 21x1002 DCOM file)
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Preprocessing Results
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Preprocessing Results
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Preprocessing Results
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Preprocessing Results
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