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What is Radiotherapy?

a N

RT consists of the medical
treatment of tumors, by exposing
the affected tissues to ionizing
radiation (e.g., X-rays, e-)

/

RT has advanced, but it
requires sophisticated

< P) systems to ensure correct

dose administration.

IMRT VMAT

Errors caused by machinery
malfunctioning, in patient
positioning or changes in
anatomy must be detected to
prevent accidents and treatment
errors.




Major accidents in RT

Equipment malfunction

® Accelerator software problems (USA and Canada)
Incorrect repair of accelerator (Spain)
® Accelerator interlock failure (Poland)

Calibration of RT equipment
® Incorrect decay data (USA)
e Miscalibration of beam (Costa Rica)

e —
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Errors in treatment planning
e Erroneous use of TPS (UK)
e Computer file not updated (USA)
® Errorsin TPS data entry (Panama)

I

Better technologies are needed to verify

treatment quality.
International Atomic Energy Agency
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In-Vivo Dosimetry: a possible solution

IVD is a direct method for measuring radiation
doses in cancer patients undergoing RT.

Purpose: ensure treatment is executed as
prescribed.

Safety & Compliance:

DECRETO LEGISLATIVO 31 luglio 2020, n. 101

Acts as a safety measure for dose delivery.
Meets patient radiation protection
standards set by national regulatory
bodies.

DIRECTIVES

COUNCIL DIRECTIVE 2013/59/EURATOM
of 5 December 2013

for procection against the dangers arisng from exposure
‘nd repeslng Directives 89/618 Earatom, 90/631 Eucstoms, 96[29]Earstom,
97143 Eurstom snd 2003/122(Eursiom

GAZZETTA &

DELLA REPUBBLICA ITALIANA
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DECRETO LEGISLATIVO 31 luglio 2020, n. 101.

Attuazione della direttiva 2013/59/Euratom,
che stabilisce norme fondamentali di sicurezza re-
lative alla protezione contro i pericoli derivan-
ti dall izil alle radiazioni ioni i, e che
abroga le direttive 89/618/Euratom, 90/641/Eura-
tom, 96/29/Euratom, 97/43/Euratom e 2003/122/Eu-
ratom e riordino della normativa di settore in at-
tuazione dell’articolo 20, comma 1, lettera a), della
legge 4 ottobre 2019, n. 117.

fom ks sk, the Communiy lsid down
the it e i 1959 by mesns of

COUNCIL DIRECTIVE 2013/59/EURATOM
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Development of Procedures for
In Vivo Dosimetry in Radiotherapy

IAEA HUMAN HEALTH REPORTS No. 8

In vivo dosimetry involves the measurement of radiation doses to patients during their radiation treatment
in order to ensure that the treatments are carried out as they were intended. For many years, it has been common

practice to use in vivo dosimetry to check doses to organs at risk (e.g. skin, eye or rectum). The primary goal of in
vivo dosimetry, however, isjquality assurance (QA) of the radiotherapy process Jlt is considered an important part of
quality management of a radiotherapy department. Following recommendations by the World Health Organization

(WHO), the International Commission on Radiological Protection (ICRP), the IAEA [1-3] and other bodies [4-6],
the use of in vivo dosimetry has become more widespread.

In vivo dosimetry is used for the overall verification of the chain of treatment preparation and delivery.
As such, it measures the radiation dose to the patient, which can be affected by many variables in the overall
radiotherapy process. The global results of measurements of patient doses provide the information necessary for

assessment of the accuracy and precision in dose planning and delivery for a specific treatment site, or by a given
radiotherapy machine. In vivo dosimetry can also be used for the estimation of uncertainties in radiation treatment

at a given institution.
[IAEA]



https://www.iaea.org/publications/8962/development-of-procedures-for-in-vivo-dosimetry-in-radiotherapy
https://www.gazzettaufficiale.it/eli/id/2020/08/12/20G00121/sg
https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2014:013:0001:0073:EN:PDF

Electronic Portal Imaging Device for IVD

Gantry

/

EPIDs detectors capture
X-ray fluence on a
pixel-based surface to
produce 2D digital images

)

Copper plate
Phosphor
screen
X-ray [ =
detector = Flat panel
MY tighisensor ~~ Advantages
incoming MeV photon 1) ngh resolution
2) rapid image capture
scattered photon 3) long-term stability
R ' electron
ia-Si photo diode |
glass substrate
o %
Limitations =
NS
Current methods are based on
physical models and MC Opportunity for DL
simulations: Use DL models to simplify

EPID dose reconstruction
without traditional physical
models.

@ time-consuming

555

@
limited clinical applicability
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Can Al be explored to address this issues?

Phys. Med. Biol. 66 (2021) 235011 https://doi.org/10.1088/1361-6560/ac3b66
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Deep leaming-based 3D in vivo dose reconstruction with an
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STATE-OF-THE-ART

e only few publications
mainly on simulated data
only U-net architecture explored
only one loss function for training
phase explored (MSE)
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A feasibility study for in vivo treatment =0
verification of IMRT using Monte Carlo dose
calculation and deep learning-based modelling
of EPID detector response

Jun Zhang""®, Zhibiao Cheng, Ziting Fan', Qilin Zhang?, Xile Zhang?, Ruijie Yang? and Junhai Wen'"

Abstract

Background: This paper describes the development of 3 predicted electronic portal imaging device (EPID) transmis-

sion image (1) using Monte Carlo (MC) and deep learing (DI, The measured and predicted T1 were compared for
lin tre: rification.

Methods: The plan CTwas pre ombined with sol water and then imported into AINO The MC

method was used to calculate the dose distribution of the combined CT. The Usnet neural

Gt lsts available at ScienceDirect
Physica Medica

journal homepage: www.alsevier.com/locataiejmp

Original paper

Towards real-time EPID-based 3D in vivo dosimetry for IMRT with Deep
Neural Networks: A feasibility study

Juliana Cristina Martins ", Joscha Maier",
Abduleziz Alhazmi

Katia Parodi*

Chiara Gianoli *, Sebastian Neppl ", George Dedes*,
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INFO ABSTRACT

learning model was trained to predict EPIDTI based on the dose distribution of solic water calculated by PRIMO. The
predicted Tl was compared with the measured Tl for two-dimensianal in vivo treatment verification.

Results: The EPID 11 of 1500 IMAT fields were acquired, among which 1200, 150, and 150 felds were used s the train-
ing set, the validation set, and the test set, respectively. A comparison o the predicted and measured Tl was carried
out using global gamma analyses of 3%/3 mm and 2%/2 mm (5% threshoid) to validate the model’s accuracy. The
gamima pass rates were greater than 96.7% and 92 3%, and the mean gamma values were 0.21 and 032, respectively.
Condlusions: Cur method failizates the modelling process more easily and increases the calculation accuracy when
using the MC algorithm t simulate the 21D response, and has potential to be used for in vivo treatment verification
in the clinic

Keywords: Monte Carlo, PRIMO, Deep learning, [PID, In vivo verfication
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Goal of the Ph.D. project

~

Gantry

The main purpose of this Ph.D. project is to
develop a multi-input DL-based 3D in-vivo
dose reconstruction framework based on
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Data exploration

We collected 210 pairs of EPID-PD images from various phantoms representing different material
densities (lung, solid water, titanium, and bone), along with corresponding simulated dose images).

Experimental Setup
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Pipeline of the analysis

(1) Data collection

/ Treatment Planning System
: PD
347x347
6 bit

= EPID image
Dataset
> [ 1024x1024
16 bit (=210 couple of EPID-PD)
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Pipeline of the analysis

(2) Preprocessing

(1) Data collection

/ Treatment Planning System

PD
347x347
6 bit
—. i(P)IZTTngZ Dataset » Matching physical size
EPID devT;:?E > 16 bi: (=210 couple of EPID-PD) « Standardization (z-score)
J kResize to (256, 256)
T




Pipeline of the analysis

(2) Preprocessing

(1) Data collection

/ Treatment Planning System

(3) Data partition

PD

347x347

6 bit . |- -

» 75% of the whole sample
. . QN +rain
EPID image Dataset « Matching physical size 80Atra!n|ng
> il 1024x1024 Standardizati * 20% validation
EPID device 16 bit (=210 couple of EPID-PD) + Standardization (z-score)
J kResize to (256, 256)
T




Unet architecture

(256x256x32)
(256x256x32)

Skip connection

(128x1286x64) (126x126x64)

Input
EPID image

(64x64x128)
(64x64x128)

(32x32x256) (32x32x256)

(16x16x512)

I — |

(32x32x512)

(12£;x-1zexaz) (64x64x64) (32x32x128) (16x16x256) (64x64x256) (128x128x128) "(256X256X64)
N J U J  Output Ground Truth
Input A Y Predicted PD PD
EPID image Encoder
(256x256x1) Decoder 1 N ,
— — A ) MSE = —Z (Dose,- — Dose. red)
Con2D + Relu MaxPooling2D ConTranspose2D N i,p

i=1

lflé
N7 -

Optimization
Loss function: Mean Square Error (MSE)

KN
=\

Model Architecture
U-net designed to map EPID

Evaluation Metric
Mean Absolute Error (MAE)

images to PD distributions.

| Optimizer: Adam | Batch size of 8, 200
epochs.

9

between model predictions and true PD
images.



Pipeline of the analysis

(1) Data collection

Treatment Planning System

PD
347x347
6 bit

EPID image
1024x1024
16 bit

Dataset
(=210 couple of EPID-PD)

(2) Preprocessing

» Matching physical size

_J

(3) Data partition

* 75% of the whole sample
* 80% training
* 20% validation
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Pipeline of the analysis

(3) Data partition

* 75% of the whole sample
* 80% training
* 20% validation

(2) Preprocessing

(1) Data collection

Treatment Planning System
PD

L._J 347x347
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| 20 .
] EPID image Dataset » Matching physical size
> - 1024x1024 (=210 couple of EPID-PD) - Standardization (z-score)
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(4) Training phase
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-
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(5) Prediction of the model

1 \ Maxpooling
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- Vs — DL model R & D 1 &
2
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Z| -

Predicted PD

N
Z (Dose; — Dosei’p@
i=1

Real PD

@rics : MAE =



How to evaluate the accuracy of the reconstruction?

Input: EPID image Output: predicted PD V'lndex analySIS

. e > -
VS

Ground truth:

® The agreement between simulated
and reconstructed doses is assessed
by comparing both dose and
position.

® The y-index merges dose difference
and distance to agreement (DTA)
into one metric.

® Points with y > 1 fail the test.

e A planeis clinically acceptable if over

real PD
95% of points havey < 1.
Ar(Treql, Iored) AD X(Treal Iored)
[(Treal Tpred) =\/ 572 + sD? #}, < 1

-passing rate =
J #toty

Y(Treals Fpred) = MIn{I (Treq), Fpred) } V'real
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Pipeline of the analysis

(1) Data collection

Treatment Planning System

(2) Preprocessing

» Matching physical size
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(3) Data partition

* 75% of the whole sample
* 80% training
* 20% validation

(4) Training phase
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MSE
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Raw images

Preprocessing

Dataset

Pipeline of the analysis

Training &
validation

Model 1

Y
Prediction of

Model 2

test set
—_

Y
Prediction of

Model 5

test set

-

Prediction of
test set

Test set
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y-index analysis
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Trained model
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Normalized Intensity
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Thank you for the attention!

Questions?

e Contacts:
lorenzo.marini@phd.unipi.it
lorenzo.marini@pi.infn.it

e My office
Largo Bruno Pontecorvo, 3/Building C, 56127 Pisa Pl, Room 142 (first floor)
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Improvements

-

Augmented EPID Augmented EPID

Dataset
Correction of artefacts
Data size
Heterogeneity
Data augmentation

2nd Year PhD Project, Oct. 2024
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Explainability
Transparency

Saliency map
GradCAM
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Timeline of the project, and next steps

Phase | Task | 2nd Year | 2nd Year | 3rd Year | 3rd Year

I Data Generation

LI Data acquisition on phantoms
[.II TPS simulation

II DL models

ILI 2D DL model

ILII 3D DL model

11 PhD Thesis Compilation

10P Publishing Phys. Med. Biol. 69 (2024) 065011 htps://doi.org/10.1088/1361-6560/ad2a99

Physics in Medicine & Biology |PWE§M“§ EPID images 3D dose
distr. (TPS)

PAPER
@ e

Synthetic CT imaging for PET monitoring in proton therapy: a
simulation study

OPENACCESS
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26 September 2023 Martina Moglioni' ©, Pietro Carra"*", Silvia Arezzini’, Nicola Belcari'?, Davide Bersani', Andrea Berti"”,
Maria Giuseppina Bisogni", Marco Calderisi’, Ilaria Ceppa’, Piergiorgio Cerello’, Mario Ciocca’,
CCCCCCCCCCCCCCCCCCCCCC Veronica Ferrero’ (7, Elisa Fiorina’, Aafke Christine Kraan', Enrico Mazzoni', Matteo Mnrmcchi’"‘\

19 February 2024 Francesco Pennazio® (, Alessandra Retico' @, Valeria Rosso', Francesca Sbolgi’, Viviana Vitolo’ and

Giancarlo Sportelli"”

REVISED
8 February 2024

3D Unet
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Phase 2

MLP

LN N .
Patch prediction

Some ideas regarding possible
models...
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Conclusions

Q

ary

@
@
©

Study Overview: We converted the measured EPID response into
actual PD using a DL network and compared it with the simulated PD
calculated by TPS.

Gamma-Analysis: A standard y-analysis of 3%/3mm was performed
on the PD predicted by the DL network, with a mean y-pass rate of
(81.50 + 4.45)%.

Summary: The DL-based approach for EPID dose reconstruction
shows promise for clinical use, with high accuracy in some cases.

Key Challenges: Predicting dose distribution for complex phantom
configurations remains a significant challenge.

Next Steps: Expand the dataset, improve the model's accuracy in
difficult cases, and explore potential applications in clinical workflows.

next-AIM workshop, Bari, Oct. 2024 lorenzo.marini@phd.unipi.it
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Cross validation & ensemble learning

4 ™
Prediction of
onet test set
\ Y,
4 ™
Prediction of
onet2 test set
\ Y,
4 ~N (
icti Average
Prediction of €ere
Dataset - Unet 3 test set L prediction of
test set
\ Y,
é ™
Prediction of
onets test set
\ Y,
é ™
Unet 5 Prediction of
test set
\ Y,

e CVis employed to ensure the model is robust and generalizes well to unseen data.

e Evaluate the performance on different subsets of the dataset, reducing the risk of overfitting
and providing a more reliable estimate of its ability to predict new images.

10
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How to evaluate the accuracy of the reconstruction?
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The agreement between simulated and
reconstructed doses is assessed by comparing
both dose and position.
The y-index merges dose difference and distance
to agreement (DTA) into one metric.

The y-test creates a 2D space with dose
difference (AD) and DTA (Ar) as axes.

Points with y > 1 fail the test.
A plane is clinically acceptable if over 90-95% of

points havey £ 1.

11
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M. Hussein et al. / Physica Medica 36 (2017) 1-11
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Limitations

Limited Data Availability — influence on the results’ quality and
reliability, limiting the developed model's generalizability.

Data Coming from a single Center — introducing a potential bias in the
results.

Complexity of the problem — at the moment it is not possible to predict
with certainty the level of accuracy that will be able to be achieved in the
dose reconstruction on the 3D problem.

Evaluation of the Model Performance — Using metrics such as MAE or
y-index for model evaluation may not be the best choice.

Explainability — Developing an extremely complex algorithm could
reduce its explainability. Finding a trade-off between performance and
explainability will be required.
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Explainability & interpretability

Visualizing what unet learn...
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Heatmaps produced with Grad-CAM are a powerful tool for improving the
transparency of the model, by helping to understand the model's decision pathway.
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Sources: data & codes

[lmio Drive > InTrEPID_ARTEMIS > InTrEPID ~ &

[ Tipo ~ ][ Persone ~ }( Data modifica ~ ]

| InTrEPID &

Nome Proprietario Ultima.. v /A  Dimensionif  }
main intrepid v Histor Find fil Edit v o .
¥ v intrepid / | + oy inda e ! - ‘ B data io 2 nov 2023 = : ‘
demo for prfaProcessing 21Fd55¢9 | 3 B notebook io 2 nov 2023 -
lorenzo marini authored 4 months ago
8 verbali_meeting io 2 nov 2023 —
Name Last commit Last update
8 presentazioni io 2 nov 2023 -
B3 analysis demo for preprocessing 4 months ago
Eadata readme file of the data 4 months ago BB bibliografia 1o 2nov 2023 -
E3docs added contributing file 4 months ago [ io 10 apr 2024 —
EJresults added some figures for readmefile 4 months ago .
3 abstract io 10 apr 2024 —
B3 LICENSE Add LICENSE 10 months ago
B3 paper io 19 lug 2024 -
~+ README.md work on readme 4 months ago
B DS Store = io 2nov 2023 6kB :
[ README.md
InTrEPID Nome Proprietario Ultima modifica~ 4 Dimensioni f
This is the repository of the In vivo 3D dosimetry in radiotherapy Treatments with EPID (InTrEPID) project. 8 Portal_Dose_Organizzato_tagliato o carlotta.mozzi 23 lug 2024 carlotta.mozzi —_ & L 2 0
Table of Contents B3 EPID_Organizzato @ corlottamozzi 231ug 2024 carlottamozzi  —
« INTYEPID project B3 Portal_Dose_Organizzato @ cariottamozai 23lug 2024 carlottamozzi  —
o Introduction
o Aim of the project
o Materials and Methods
o Metrics and evaluation Predict_UNet.ipynb & io 17 set 2024 io 17 kB & 4 2 Y
o Preliminary results
Sionclusions Gamma_Analysis.ipynb % o 17 set 2024 io 344 kB
« Repo structure
XALipynb 2% io 17 set 2024 io 324 byte
Train_UNet 2% io 18 set 2024 io 479 kB

/4
https://baltig.infn.it/lomarini/intrepid INTrEPID_ARTEMIS
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Data preprocessing

Q. e

S 2) 3)
Mat.chmg of physical Image resizing Pixel scaling —
size and images (256x256) normalization
centering
. It can help the training
Do the images have the A trade-off between phase of the NN
same dimensions and resolution and
have the same physical computing capacity

position?
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1) Matching of physical size

Do the images have the same dimensions?

(EPID Image 3 A X ) PD Image 3

s
200 1
150
150 1
100
100 1
50
50 4
E E
£ 0 r € 0
> >
~50 1
=50
—100
-100
—150 1
-150
—200
™ T T T T . T —T .
—-200 -150 -100 =50 0 50 100 150 200 -150 -100 =50 0 50 100 150
X [mm] x [mm]

- Total dimensions are not the same
- Signals are not always perfectly centered

|s it better cut the EPID images or add background pixels to PDs?
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2) Image resizing — (256x256)

A trade-off between resolution and computing capacity

65000

EPID Image 3 PD Image 3
0 - 60000 0

- 25

80 -55000 o

50000

100 A 100

256

45000

150 A 150

40000

200 A 200
35000

250 1 : . : ' . 250
0 50 100 150 200 250 30000 0 50 100 150 200 250

256

e Image resizing (using OpenCV, Python) refers to the scaling of images.

e Reduces the number of pixels, speeding up NN training and reducing model
complexity (Training efficiency).

e Lowers computational and memory requirements by decreasing image size.
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3) Pixel scaling

It can help the training phase of the network

Pair 3

1.0 1.0
EPID Image 3 PD Image 3 1.0 1
0 0 '\
0.8 0.8 | N
50 - 50 : ~ -
100 0.6 100 0.6 6 -
] ; “?.‘\
2 e ’;.‘
150 - 0.4 150 - g 041 ]
" g
~
200 - 200 I ke
0.2 0.2 d -
250 + T T T T T 250 \
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0.0
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o
[es]

[a.u.]
o
[}

4

PD Pixel Values [a.u.]

o
N

EPlD| — PD, R . "EPID Pixel Values [a.u.] .
EPID/max(EPID or CV) PD /max(PD or CV)

e Normalization is the process of converting an actual range of values which a
numerical pixel can take, into a standard range of values, typically in the
interval [0, 1].

e Why do we normalize? It is not a strict requirement. However, in practice, it
can lead to an increased speed of learning (Gradient descent, weight updates

and numerical overflow)
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EPID normalization factor

50 MU - Image 200MU - Image 500MU - Image
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65000 - 65000 71 74
60000 60000
61 61
55000 55000 -
5 1 5 4
50000 50000
41 41 — 50 MU
45000 45000 — 200MU
— 500MU
34 31
40000 40000
35000 35000 B 21
30000 1 — 50 MU 30000 { — somu 1 1
— 200MU —— 200MU \ / \ |
25000 { — S00MU 25000 { — 500MU o "
o 200 400 600 800 1000 A 200 400 600 800 1000 0 200 400 600 8OO 1000 0 200 400 600 800 1000
Divided by normalization factor
(tag 21x1002 DCOM file)
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Preprocessing Results

PD: 6510_500MU
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Preprocessing Results

PD: _6s20b1_2
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Normalized intensity

EPID: _6s20b1 2
400

350
300
250

200

mm

150

100

50

0 100 200

mm

300

400

Profilo della colonna centrale - Shift Along X Axis

0.12 — PD
- EPID
0.10 4 j ,
f J
0.08 y
!
0.06 - |
0.04 -
0.02 -
J y
D00 < e
0 50 100 150 200 250 300 350 400
mm

lorenzo.marini@phd.unipi.it



mailto:lorenzo.marini@phd.unipi.it

Preprocessing Results

PD: _CIRS_Ogradi_ISOcentro_9
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Normalized intensity
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EPID: _CIRS_Ogradi_ISOcentro_9
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Preprocessing Results

PD: Multiplug_ PMMA 0g 3
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