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permits the simultaneous non-invasive quantification of multiple important properties
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The MRF maps are quantitative: the value of the pixels is the real value of T, and T, of
the tissues expressed in ms

Neural Network map reconstruction
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Neural Network map reconstruction Why accelerating the NN training?
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Field Programmable Gate Array (FPGA)

Configurable integrated circuit that can be repeatedly programmed after

manufacturing.

Consist of configurable logic blocks, programmable interconnects, and

flexible 1/0, allowing for custom hardware solutions.

Key Advantages:

e Parallel Processing: FPGAs can handle multiple operations
simultaneously, ideal for high-performance computing and
real-time processing.

e Low and Fixed Latency: Direct hardware implementation
reduces delay compared to software running on a CPU or
GPU.

e Custom Logic: Designers can implement specific algorithms
directly in hardware, allowing for optimized performance.
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Neural Networks on FPGA

While GPUs have traditionally powered neural networks, FPGAs are gaining traction for their customizable hardware,
better parallel processing, low and fixed latency and lower power consumption making then suitable for real time

applications.
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Neural Networks on FPGA

While GPUs have traditionally powered neural networks, FPGAs are gaining traction for their customizable hardware,
better parallel processing, low and fixed latency and lower power consumption making then suitable for real time
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e All of these works are just about inference on FPGA.
What about training?
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Why training a Neural Network on FPGA?

Performance and speed
Efficient parallel processing & custom architecture optimization
Energy efficiency
Lower power consumption compared to CPU and GPU
Flexibility
Reconfigurability for different neural network architectures and algorithms

Latency

Lower and fixed latency due to parallel processing and closer memory access
High throughput

The parallel processing capabilities of FPGAs can handle high data throughput

These characteristics make FPGAs particularly well-suited for real time applications of Neural Networks that require
extensive and repeated training, also with very large datasets.



Our project workflow
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Neural Network Quantization Aware Training

1. Reduce network dimensions to meet available FPGA resources
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Neural Network Quantization Aware Training

1. Reduce network dimensions to meet available FPGA resources
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Neural Network Quantization Aware Training

1. Reduce network dimensions to meet available FPGA resources

Adapted NN - Validation
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2. Perform Quantization Aware Training so that the network operates with integers only

T T2 The quantized model uses lower precision without
Original | Quantized | Original | Quantized affecting the neural network performance.
MAPE (%) 2.15 2.36 8.89 11.1
MPE (%) -0.66 0.12 0.02 -3.12
RMSE (ms) 75 78 145 148




Neural Network VHDL implementation -

Low-level approach, writing every firmware component in E - _

VHDL B 5

\ S Eslo B»8»3»8r
ode working principle E g

Implemented in VHDL the functiony = o(Wx + b) 3 e -

that represents the behaviour of a single node. L

Backpropagation process

Implemented in VHDL the following formulae for
backpropagation
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These two blocks will cover all the NN operations by serial
iterations. The whole NN operations cannot be
implemented in FPGA concurrently because of resource
limitation.




FPGA Neural Network synthesis and resource estimation

Node resources Backpropagation resources
Resource Estimation HEREITEs Estimation Accelerator FPGA based card: Alveo U250
LUT 3382 LUT 24928 (1.7M LUTs, 3.4M Flip-Flops, 12k DSPs, 2.6k BRAMs)
FF 38 FF 13312
DSk 256 DsP 768
Resources used LUTs | 8%
Percentage of the available
FFs 4%

resources that are used,
including the internal DSPs | 40%
memory.




FPGA Neural Network synthesis and resource estimation

Node resources Backpropagation resources

Accelerator FPGA based card: Alveo U250

Resource Estimation Resource Estimation

LUT 3382 LUT 24928 (1.7M LUTs, 3.4M Flip-Flops, 12k DSPs, 2.6k BRAMs)

FF 38 FF 13312

DsP 256 DsP JE8

Resources used
. . LUTs | 8%
Backpropagation synthesis Percentage of the available
. . 0,
Name Slack “1 High Fanout From To Total Delay \ Logic Delay MNet Delay FFS 4%)
Path 1 7 480 delta_layer_arrivo[11][0]  MN_layer_parte...g[0][11][71/D 2.668 1.004 1.664 resources that are usedl
Path 2 7 480 delta_layer_arrivo[13][0]  N_layer_parte...g[0][13][71/0 2,668 1.004 1.664 InCIUdlng the |nterna| DSPS 40%
Path 3 7 480 delta_layer_arrivo[15][0] N _layer parte...g[0][15][71/P 2,668 1.004 1.664
Path 4 7 480 delta_layer arrivo[1][0] M _layer parte...g[0][1][7]/D 2.668 1.004 1.664 memaory.
Path 5 7 480 delta_layer_arrivo[3][0] N_layer parte...g[0][3][7]1/D 1.004 1.664
Path 6 7 480 delta_layer_arrivo[5][0] N_layer parte...g[0][5][7]1/D 1.004 1.664
Path 7 7 480 delta_layer_arrivo[7][0] N_layer parte...g[0][7][7]1/D 1.004 1.664 .
Path 8 ® 7 480 delta layer arrivo[9][0]  N_layer parte...g[0][9][7]/D 1.004 1.664 Based on SyntheSIS results, clock frequency of
200 MHz is feasible, but aiming at 250 MHz.
Node synthesis
. Name Slack ~1 High Fanout From To Total Delay \ Logic Delay MNet Delay

Path 1 22 3 array_3_reg[...PUT_INST/CLK u_temp_reg[31]/D 4,821 2,267 2,554
Path 2 21 3 array_3_reg[...PUT_INST/CLK u_temp_reg[l7]/D 4,530 1.947 2,583
Path 3 21 3 array_3_reg[...PUT_INST/CLK u_temp_reg[l6]/D 4,510 1.827 2,583
Path 4 20 3 array_3_reg[...PUT_INST/CLK u_temp_reg[l5]/D 4,424 1.845 2,579
Path 5 20 3 array_3_reg[...PUT_INST/CLK u_temp_reg[l4]/D 4,416 1.837 2,579
Path 6 20 3 array_3_reg[...PUT_INST/CLK u_temp_reg[l3]/D 4,381 1.803 2,578
Path 7 20 3 arrav 3 real...PUT INST/CLK u temp reall2liD 4,349 1.771 2,578



FPGA preliminary simulation Node simulation
Python run

16 nodes implemented both in python
and on the FPGA.

Same input and weights were given to the
nodes in python and on the FPGA.

174786

Exactly the same results were obtained. 117091
35498

Mathematical syntax has been correctly 207245

implemented on the FPGA 85993
%)
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Time estimates

200 MHz targeted clock frequency, feasible based on synthesis results

The network is trained with 250 Millions simulated data:
* 250M forward passes, each pass taking 56 clock cycles

16 nodes
16 nodes ‘ . 1 clock cycle

Real and Imaginary

parts of signal
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200 MHz targeted clock frequency, feasible based on synthesis results

The network is trained with 250 Millions simulated data:
* 250M forward passes, each pass taking 56 clock cycles

16 nodes
16 nodes ‘ . 1 clock cycle

e 250M backpropagations, each pass taking 104 clock cycles

32-16 backprop
32-16 backprop
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Time estimates

200 MHz targeted clock frequency, feasible based on synthesis results

The network is trained with 250 Millions simulated data:
* 250M forward passes, each pass taking 56 clock cycles

16 nodes
16 nodes ‘ . 1 clock cycle
* 250M backpropagations, each pass taking 104 clock cycles

32-16 backprop
32-16 backprop

Total latency (5 - (250000000 - (56 + 104))) = 200 s + PCle

. 1 clock cycle

Real and Imaginary
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Conclusions and future work

MRF is an important and powerful technique that provides quantitative brain maps with a single acquisition
* Helps to move in the direction of personalized healthcare

Neural Networks are crucial in the reconstruction of MRF quantitative maps
* Once the neural network is trained it is accurate and fast, but its training is really demanding

We are developing a hardware accelerated neural network able to reconstruct MRF quantitative maps
e With a clock frequency of 250 MHz, we are expecting to be able to train the network in less than 3 minutes

Implement optimizing algorithms for
* Pipelines for additions and multiplications
* Clock domain management

* Optimizers for backpropagation

This approach has the potential to enable real-time brain map reconstruction
e Scanners with integrated NN hardware accelerator for map reconstruction
* Analysis on mobile devices
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