

Artificial Intelligence in Medicine: next steps, October 17th 2024

Unraveling the network signatures of oncogenicity in virus-human protein-protein interactions

Francesco Zambelli, Vera Pancaldi, Manlio De Domenico

Università degli Studi di Padova

The Problem

A

6000 m

Helicobacter pylori

The Question

associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.

Known Interactions from curated datable experimentally dete

	Predicted	Others	
ases	0-0	gene neighborhood	0-
ermined	0-0	gene fusions	e-
	0-0	gene co-occurrence	0

0 0

textmining

co-expression

protein homology

Dataset

5/14

Methods

Dataset

→ Highlight the common features

→ Look for differences to use for classification

Methods

Multilayer approach

INTERPRETATION: different way in which the human proteome can be influence by viral infections

ADVANTAGES: focus on shared properties

Methods

Multilayer approach, combination sets

Oncogenic

COMBINATION SETS

- Combine oncogenic and not-oncogenic layers in <u>different</u> <u>proportion</u>
- Focus on the "oncogenicity" feature
- Creating **many samples** to perform statistics
- Look for:
 - **clear distinction** of the extreme cases
 - **progressive transition** between them

Results

Topological features

TOPOLOGICAL FEATURE		BIOLOGICAL INTERPRETATION	enterforma in a seconda in a se
 Largest components size 	→	Common targeted regions	2500 2000 1500 1500 500 -500 N NIO N2O N3O Ó
• Percolation • critical point	→	Robustness to attacks, e.g. drugs	
• Community • structure	→	Quantification of " systemic" degree	800 • • • • • • • • • • • • • • • • • • •

Ń

0.00

.

NIO

N2O

N3O

ò

9/14

Topological features

Combined features analysis 有

UMAP reduced parameter space separation

> Classification between oncogenic and not-oncogenic regions

Progressive shift between the two regions

Machine learning

Input features correspond to human proteins

Perceptron weights analysis

Set of proteins potentially connected to some oncogenic mechanisms

GO Pathway Enrichment Analysis

gene expression regulation chromatin structure

Conclusions

Overview

Twofold approach for oncogenic / not-oncogenic distinction:

- topological feature statistical analysis
- machine learning

Conclusions

- With both methods evidence of relevant distinction between the 2 cases
- Set of proteins with potential connection with oncogenicity in viruses

Perspective

- Classification of early discovered viruses
- Sars-Cov2 analysis ongoing

Thanks for the attention

any questions?