Artificial **I**ntelligence in **M**edicine

Explainable Artificial Intelligence for sarcoma patients

Speaker: Leonardo Ubaldi

Soft-tissue-sarcomas (STS)

Soft-tissue-sarcomas (STS) represent a **rare** and heterogeneous group of tumors, with more than **100 histological subtypes** and account for **1% of solid cancers in adults**. **Limbs are the most common primary site.**

Their clinical management is particularly challenging.

Task

The goal of this study **is to predict** STS patients outcome to radiotherapy, in terms of **distant metastasis development**

To address this task we consider an approach based on **Radiomics, Dosiomics and Machine Learning**

Radiomics: workflow

Dataset Careggi

CT **Structures Images**

Dose distribution

T1mdc

T2

Dataset Careggi: ROI

Radiomic approach → CT

● PTV, GTV, CTV

Dosiomic approach: which ROI?

- PTV, GTV, CTV
- Isodose volume of the $50\%, 70\%, 90\%,$ 95%, 98% of the maximum value.

Dataset TCIA

TCIA Dataset: ROI

 $ROI \rightarrow Tumor Mass$

PET

CT

PET

8

Features extraction

107 Features:

- Size- and Shape-based Features
- **First Order Statistics** Features
- Texture Features

Image intensity discretization (bin count)

Bin count = 32, 50

The computation of the **texture-based and some of the intensity features**, as defined in the PyRadiomics package, requires **binning the intensity histogram**. It specifies the number of bins to create when making a histogram and for discretization of the image gray level.

Machine Learning Classifiers

Test

Train

- Trained and tested using a **3-fold Nested Cross-Validation**, which allowed us to perform hyperparameter optimization through a **grid search**.
- This strategy allows us to have stable and reliable performance even if we are working with a small dataset
- The experiment was repeated using all possible combinations of the available features (combination set). **Separately for each dataset.**

Results: Random Forest

$Careggi$ Dataset

Explainability

Random Forest

In a random forest, a ranking of feature importance can be performed by calculating **the average depth** at which each feature appears in the trees of the forest.

SHAP (SHapley Additive exPlanations) method computes the contribution of each feature to the prediction by **considering all possible combinations of feature inputs**.

Explainability: Careggi Dataset

- **Maximum_DOSE**_iso_70_bc_32
- Sphericity DOSE iso 70 bc 32

SHAP

13

Explainability: TCIA Dataset

RF features importance

- **glrlm_RunPercentage_PET**_mass
- **Maximum_PET**_mass

Gray Level Run Length Matrix (GLRLM) quantifies gray level runs, which are defined as the length in number of pixels, of consecutive pixels that have the same gray level value

SHAP

Conclusions

Work by FI and PI groups

Challenges:

- Difficulty to collect large datasets in the field of medical imaging.
- **Small and high-dimensional datasets** (instability, overfitting).

Principal results:

• Radiomic features extracted from **Dose distribution** and **PET** showed encouraging results in predicting distant metastasis development

Next Steps:

- Provide medical interpretation of radiomic features
- We would like to introduce **clinical data** and **radiomic features from MRI** into the model

AIM, CSN5, 2019-2021

Thank you for your attention!

AIM, CSN5, 2019-2021 CINER

Explainability: Cohen's d

- **Maximum_DOSE**
- **Sphericity_DOSE**
- **Maximum_PET**
- **GLRLM_RunPercentage_PET**

sign

라

라

Probability of belonging to Cohen's d the metastasis class

Cose interessanti

<https://github.com/ncaptier/radshap>

TABNET rete che consente di capire la features importance