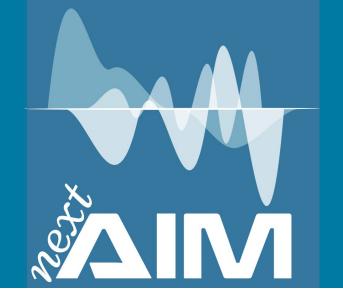
Artificial Intelligence in Medicine



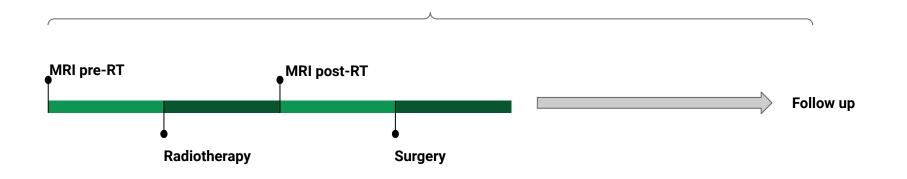
Explainable Artificial Intelligence for sarcoma patients

Speaker: Leonardo Ubaldi

Soft-tissue-sarcomas (STS)

Soft-tissue-sarcomas (STS) represent a rare and heterogeneous group of tumors, with more than 100 histological subtypes and account for 1% of solid cancers in adults. Limbs are the most common primary site.

Their clinical management is particularly challenging.

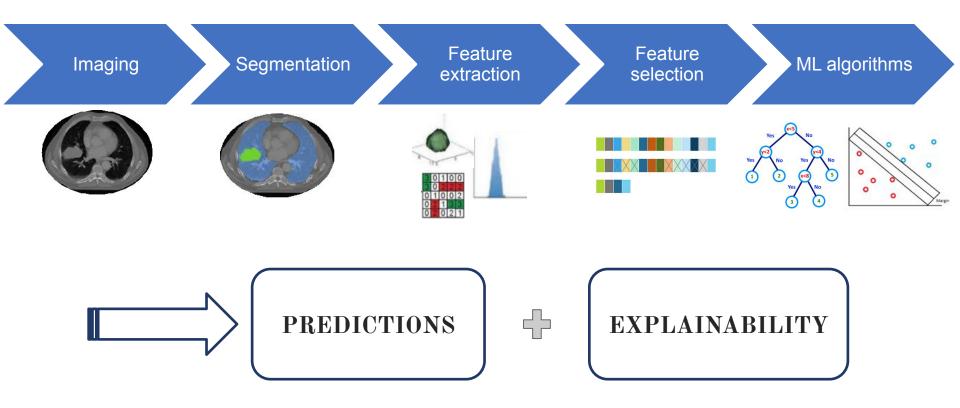


Task

The goal of this study is to predict STS patients outcome to radiotherapy, in terms of distant metastasis development

To address this task we consider an approach based on Radiomics, Dosiomics and Machine Learning

Radiomics: workflow



Dataset Careggi

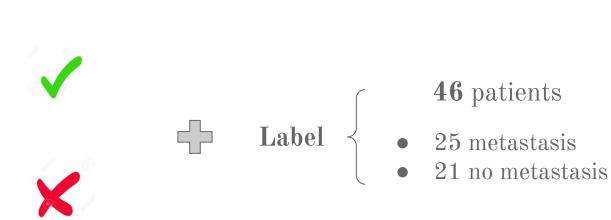
Images

Structures

Dose distribution

T1mdc

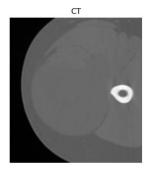
T2

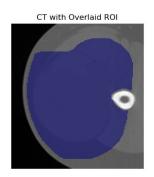


Dataset Careggi: ROI

Radiomic approach \rightarrow CT

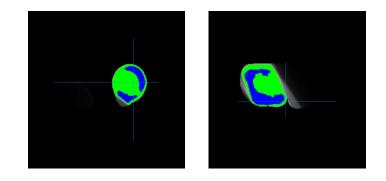
• PTV, GTV, CTV



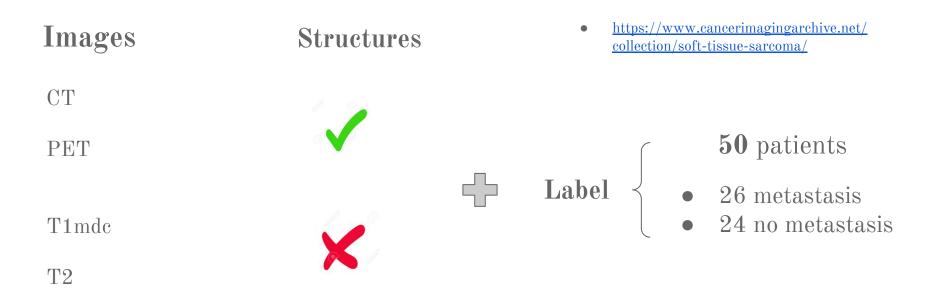


Dosiomic approach: which ROI?

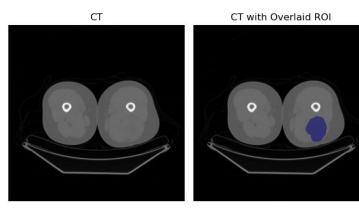
- PTV, GTV, CTV
- Isodose volume of the 50%, 70%, 90%, 95%, 98% of the maximum value.



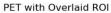
Dataset TCIA

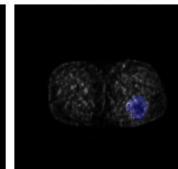


TCIA Dataset: ROI



PET





$ROI \rightarrow Tumor Mass$

PET

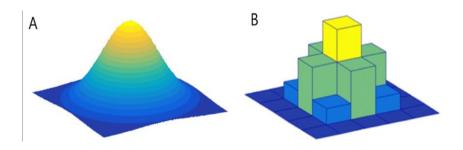
Features extraction

107 Features:

- Size- and Shape-based Features
- First Order Statistics Features
- Texture Features

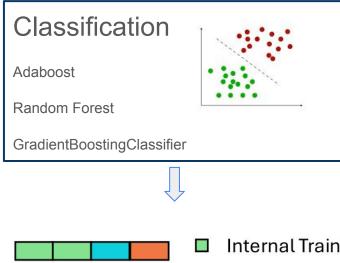
Image intensity discretization (bin count)

Bin count = 32, 50



The computation of the **texture-based and some of the intensity features**, as defined in the PyRadiomics package, requires **binning the intensity histogram**. It specifies the number of bins to create when making a histogram and for discretization of the image gray level.

Machine Learning Classifiers



- Train Test
- Internal Training
- Internal Validation

- Trained and tested using a **3-fold Nested Cross-Validation**, which allowed us to perform hyperparameter optimization through a grid search.
- This strategy allows us to have stable and reliable performance even if we are working with a small dataset
- The experiment was repeated using all possible combinations of the available features (combination set). Separately for each dataset.

Results: Random Forest

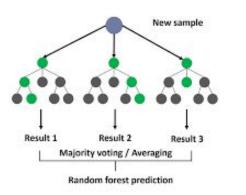
Careggi Dataset

	Features Combination	Test AUC-ROC Mean	Test AUC-ROC Std
	СТ	0,48	0,12
	DOSE_iso_70_bc_32	0,67	0,07
	CT + DOSE_iso_70_bc_32	0,58	0,04

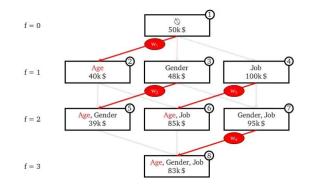
	Features Combination	Test AUC-ROC	Test AUC-ROC Std
	СТ	0,69	0,14
•	PET	0,80	0,10
	CT+PET	0,75	0,11

Explainability

Random Forest



SHAP



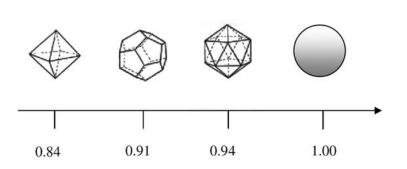
In a random forest, a ranking of feature importance can be performed by calculating **the average depth** at which each feature appears in the trees of the forest. SHAP (SHapley Additive exPlanations) method computes the contribution of each feature to the prediction by **considering all possible combinations of feature inputs**.

Explainability: Careggi Dataset

RF features importance

- Maximum_DOSE_iso_70_bc_32
- **Sphericity_DOSE_**iso_70_bc_32

Sphericity is a measure of the roundness of the shape of the tumor region relative to a sphere.



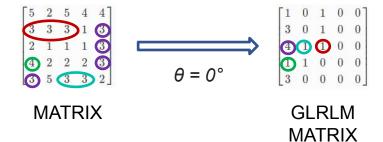
SHAP

Explainability: TCIA Dataset

RF features importance

- **glrlm_RunPercentage_PET_**mass
- **Maximum_PET_**mass

Gray Level Run Length Matrix (**GLRLM**) quantifies gray level runs, which are defined as the length in number of pixels, of consecutive pixels that have the same gray level value



SHAP

Conclusions

Work by FI and PI groups

Challenges:

- Difficulty to collect large datasets in the field of medical imaging.
- Small and high-dimensional datasets (instability, overfitting).

Principal results:

• Radiomic features extracted from **Dose distribution** and **PET** showed encouraging results in predicting distant metastasis development

Next Steps:

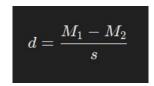
- Provide medical interpretation of radiomic features
- We would like to introduce **clinical data** and **radiomic features from MRI** into the model

AIM, CSN5, 2019-2021 (INFN

Thank you for your attention!

AIM, CSN5, 2019-2021 (INFN

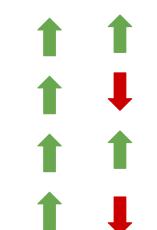
Explainability: Cohen's d



- Maximum_DOSE
- Sphericity_DOSE
- Maximum_PET
- GLRLM_RunPercentage_PET

Cohen's d sign

Probability of belonging to the metastasis class



Cose interessanti

https://github.com/ncaptier/radshap

TABNET rete che consente di capire la features importance