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Exploring the Challenges of Radiomics Signatures:
A case study

The guestion that | pose at the heart of my research project in next_AlM is:

What I1s radiomics used for?

Most of you will answer: Radiomics will one day replace biopsy or predict a
patient's response to treatment.
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ARTICLE INFO ABSTRACT
Keywords: Radiomics, the high-throughput extraction of quantitative imaging features from medical images, holds immense

Radiomics potential for advancing precision medicine in oncology and beyond. While radiomics applied to positron

emission tomography (PET) imaging offers unique insights into tumor biology and treatment response, it is
imperative to elucidate the challenges and constraints inherent in this domain to facilitate their translation into
clinical practice. This review examines the challenges and limitations of applying radiomics to PET imaging,
synthesizing findings from the last five years (2019-2023) and highlights the significance of addressing these
challenges to realize the full clinical potential of radiomics in oncology and molecular imaging. A comprehensive
search was conducted across multiple electronic databases, including PubMed, Scopus, and Web of Science, using
keywords relevant to radiomics issues in PET imaging. Only studies published in peer-reviewed journals were
eligible for inclusion in this review. Although many studies have highlighted the potential of radiomics in
predicting treatment response, assessing tumor heterogeneity, enabling risk stratification, and personalized
therapy selection, various challenges regarding the practical implementation of the proposed models still need to
be addressed. This review illustrates the challenges and limitations of radiomics in PET imaging across various
cancer types, encompassing both phantom and clinical investigations. The analyzed studies highlight the
importance of reproducible segmentation methods, standardized pre-processing and post-processing methodol-
ogies, and the need to create large multicenter studies registered in a centralized database to promote the
continuous validation and clinical integration of radiomics into PET imaging.

PET imaging
Robustness
Reproducibility
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| have highlighted the problems rather than the strengths of the use of radiomics in PET.
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matRadiomics

A complete radiomics freeware
a7 Q@IBFM

It is a tool that was born with the
idea of making a radiomics study
replicable.
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matradiomics was not born with the idea of replacing pyradiomics or lifex but, over time,

it has allowed me to enter various Italian and even foreign hospitals.
A complete

/ radiomics software
' Pyradiomics and
Combat
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1.The impact of 3 segmentation methods on radiomics features extracted from 18F-PSMA-1007 PET of 78 patients with prostate cancer.
2. The performance of KNN, SVM, DA, RF, AdaBoost and NN in discriminating between low- and high-risk patients.

RESULTS:

1.Shape feature class demonstrated the least robustness, while the GLCM feature class exhibited the highest robustness.

Furthermore, segmentation methods significantly impacted feature selection.

2. High performance was achieved using region growing and DA to discriminate between low-risk and high-risk prostate patients.
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Summary
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The aim of this study is to investigate the role of [18F]-PSMA-1007 PET in
differentiating high- and low-risk prostate cancer (PCa) through a robust radiomics
ensemble model.

This retrospective study included 143 PCa patients.
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Preliminary Analysis

E:; tti?s; -Of extracted
oatres) A preliminary analysis is conducted to
identify subsets
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Subset of selected features

Dataset name Feature frequency Subset size
We created 11 datasets of features based on

features90 >90% 1 their frequency of appearance (from 0% to
features80 >80% p 90%) according to the feature frequency value
features70 >70% 4
features60 >60% 0 o
features50 >50% 8 Jeature frequency = rep Sl
features40 >40% 12
features30 >30% 16 In addition, the "finetuning” subset is obtained
Peatiites?( >20% 73 by considering the features with a feature

- frequency between 30 and 70.
features10 >10% 34
featuress >5% 50 The “features7030r” subset is the union
featuresO All 79 features 79 between“the Nacthingedng

features70.

features7030r Union between finetuning and 11

features70 subsets
finetuning fine-tuning subset Fi
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Ensemble model
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NEXT_AIM: LNS activities

The repository of the next_AIM project is on baltig:

https://baltig.infn.it/nextaim

« 2 2 [ (-": hitps:/fbaltig.infn.itfnextaim

O B mextam

nextAlM &

Subgroups and projects  Shared projects  Archived projects

M E example_code ()

i D DB classifier &

1 F Fibrosi_miocardica (&

0 D DET-EXPLAIN

» @ R Radiomics_matlab CNRINFN ()
0 F func_ABIDE )

M L LungQuantUl &

i [ Dragonflals &

0 N HNLP_notebooks (&

0 L LungQuant &

Package: Radiomics _matlab CNRINFN

This function allows importing an xlsx file containing the features of
a radiomics study, selecting the most significant features, and
implementing a predictive model based on Discriminant Analysis.

INPUT: a xIsx file, e.g. 'next_AIM.xIsx’;

OUTPUT: performance metrics including accuracy, and AUC ROC
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