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Covid19-WG [PI,MI,PV,GE,FI,PA,CA]

Both qualitative and guantitative characteristics of chest CTs
can be used to define the severity of COVID-19 pneumonia

Signs of critical disease:
CT images (3D)

Con
s
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Explainability in Covid19 pneumonia

2) Issues related to reproducibility and robustness impede the full trustworthiness.

CT scans =
*+ Finding consistent
. . featuresin
1 ML pl.pell ne fOI’ . multicenter analysis
severity prediction | - possible
Trustworthiness

harmonization
\_ strategies

and
R and clinical feature Explaining the prediction

Explalnablllty Multi-input CNN [ Grad-CAM visualization }

[ 1) It is difficult to provide a meaningful explanation for a deep complex model. ]

2 for Severity Clinical Features
prediction importance
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ML pipeline for severity prediction

Data set CTscans with the related clinical outcome on severity (died or

intubated) about one month after CT acquisition from 5 clinical centers.

Acquisition site

(Site ID)

Total number of cases

Severe cases

Not-Severe cases

Florence (FI)
Milan (MI)
Palermo (PA)
Pavia (PV)
Pisa (PI)

100
160
78
25
69

50
62
30

7
24

50
98
48
18
45

Different vendor machines, acquisition parameters, and reconstruction filters have

been used.

Prediction of the clinical prognosis (severe / not severe) for

A| M COVID-19 patients by means of a traditional ML-based classifier

trained on radiomics features extracted from CT scans.
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ML pipeline for severity prediction

pyradiomics
. . Segmentation of Extraction of radiomics @ python
p I pe | I n e CT scan === Covid lesions with == features with o RATOMICS
LungQuant [1] software Pyradiomics
100 features per
| second order features | | First order features | X
m pazient
10 trials I:, : ? original_shape_ original_shape_ original_shape_original_shape_
15% of the datasetin Test ou]a A ":":4‘:"‘ ';:5: ‘:‘6;7'7“‘" M"‘Z’::;"“"
4-fold CV of remaini ng 85% 04414 02589 82,8061 3197771

0,6158 0,3757 130,4102 347,0554

0,4626 0356 1325752 3723892

Gamma:[O.S,],].S,Z,S] \/

max_depth: [3, 4, 5] XGBoost + Nested Cross Validation
subsample: [0.6, 0.8, 1.0] R N ————— , et
colsample_bytree: [0.6, 0.8, e e '"’"'?é:'?"'ﬁ“ o [ e """ m.n - | Classification
-l' O] 5 Q g ® § [ ] o Traln - pipeline
min_child_weight: [1, 5,10] ¢ e | & e | o e || | *”'“ T.am
learning_rate=0.02 . |o 00w EIR IR TR AN /\

. _ ' : Train
n_estimators=600 ] S EL | e Severe  Not severe
objective='binary:logistic’ b outcome  outcome
nthread=1 / : e

Predicted value y, e /
[1] Lizzi, F., et al. k

https://doi.org/10.1140/epjp/s13360-023-03896-4
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ML pipeline for severity prediction

First results

Florence + Milan + Palermo + Pisa + Pavia (432 cases)’

|

/\ Stratifying on severity classes and acquisition sites

Train set (90%) Test set (10%)

l

Nested CV Independent test with best parameters from nested CV
roc_auc roc_auc accuracy  precision recall
0.77 £ 0.06 0.80 0.73 0.62 0.76

C.Scapicchio, NEXT-AIM meeting, 17 October 2024
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Finding consistent features

ComBat harmonization

Evaluation of the acquisition site effect

roc auc roc_auc
ARTIFICIAL NEURAL = 0.64 + 0.08
NETWORK 0.92 + 0.04 04 T 0.
—_—
LOGISTIC REGRESSION roc_auc roc_auc
0.87 + 0.03 0.52 £ 0.06
Severity prediction .
, _ roc_auc accuracy precision recall
Florence + Milan + Palermo + Pisa +
Pavia (432 cases) 0.85 0.80 0.70 0.82
Analysis of consistent most relevant features selected on p N\
features different datasets and with different gldm DependenceNonUniformity
selection methods gldm GrayLevelNonUniformity
. . girim GrayLevelNonUniformity
+  mMRMR The same Non-Uniformity features are glrim RunLenghtNonUniformity
* Feature Importance significant before and after data glszm GrayLevelNonUniformity

harmonization!
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Multi-input CNN for severity prediction

Data Set . A fully automated algorithm for the prediction
Al M of covip-19 patient severity outcomes based
Severity prediction dataset: on Chest X-Ray images and clinical data.

Training set:

1103 subjects -> Chest X-Ray + clinical parameters such Al4COVID Hackathon
as age, sex, presence of cough, difficulty in breathing...

with missing data. (https://ai4covid-hackathon.it/)

Test set:

486 subjects with both CXR images and clinical data taken CRX image Clinical features

from one single hospital not included in the training set.

I Age
Sex
Body Temperature (°C)

Lung Segmentation Eough
yspnea

dataset: el

CRP

2 datasets collected for
tuberculosis:

Fibrinogen
-+ g
LDH

Shenzhen (340 normal and D-dimer
275 abnormal images) o2

Pa02 |
Montgomery (80 normal and [sa02
58 abnormal images) bH

| Cardiovascular Disease I

Respiratory Failure
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Multi-input CNN for severity prediction

Pipeline

Clinical Features: o
~ Age. Temp_C. WBC, : erecn
| Conv2D CRP, LDH, D_dimer, W R
[ LeakyReLU | PaO2, Sa02, pH, iaiog R
_Input 1024x1024 | Sex, Cough, i Reskdd Bok [
~ Com2D | DifficultylnBreathing, s s
| Resi RespiratoryFailure Bl
esidual Block . Residual Block
[ LeakyRelU | .
| BatchNorm ; . Dense®) ooty
_ Resitue) Block *LeakyRelU — S
~ Residual Block [ Dropout | iy
i { iy
wHaxFoolng™ ) Residual Block i oo
__ Residual Block The AIM-WG team ||| :
" Dense(16) the 4th place with a FE |
[ LeakyRelU | 9 ][22
Hyperparamters "~ Dense (16) | . 74;_’ a;:curacg " G
Training for 100 epochs [ LeakyRelU | In predicting pik']en
Adam optimizer  Denses) Prognosisontne -
Binary Cross-Entropy loss [ LeakyRelU | independent test set
function _ Dense(8) i
; ; [ LeakyRelU |
Accu racy as evaluation metric _
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Explainability

— wmep Clinical features branch —
e %W.Saéﬁw‘*. - Features that can better predict the outcome:
Lo g —RespiratoryFkite—
e PR + Pa02
Add - e (Partial pressure of oxygen in arterial blood)
MR R Sk T * Sa02
| GlobalaveragePooing | > (arterial oxygen saturation)
[ Dense (16) |
[ LeakyRelU |
| Dense(16) |
[ LeakyRelU |
Conv feature maps [ Dense (8)
[ LeakyRelU |
[ Dense® |
| LeakyRelU |
[ Dense(1) |

—p |IMages branch

Backprop till conv

e
Lﬂ'md— CAM

= ReLU() afA") =533 =
E X
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SAIM

By using only these
features the
performance is the
same as obtained by
using all the features.

The explanation
visualization enabled
the detection of the

bias and the
optimization of the
entire pipeline
suggesting the
addition of a
segmentation step.
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Pipeline optimization

Correct gray level CXR lung mask

m-

200
400
600
800

1000

0 200 400 600 800 1000
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Clinical Features:
Age, Temp_C, WBC.
CRP. LDH, D_dimer,
Pa02, Sa02, pH,
Sex, Cough,
DifficultyinBreathing,
RespiratoryFailure

Severity Net Model
(Multi-input CNN)

vl
W%

0334

l Lung Segmentation

Severe / Mild 0.
Test set: 10% of Outcome prediction

Shenzen and
Montgomery dataset

Accuracy 76%

This helped the Sensitivity 77%
network to Dice Similarity Specificity 76;%
concentrate on the Coefficient (DSC): AUC 84%

right area of the image. 0.96 + 0.03
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Explainability 4

Correctly
classified by
the multi-input
CNN

Misclassified
by the
multi-input ' :
CNN = GT: mild GT: severe

Al: severe Al: mild

C.Scapicchio, NEXT-AIM meeting, 17 October 2024
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Conclusions

An ML pipeline trained on a multi-center dataset of
radiomics features can predict the severity outcome for
COVID-19 patients.

* Some features mainly describing spatial
iInhomogeneity of the lesion appear to be robust
with respect to the site and method of selection, and
could therefore be specific to the pathology.

The multi-input CNN is able to predict the COVID-19
severity prognosis starting from both CXR images and
related clinical variables.

* The explanation is in line with the clinical routine.

C.Scapicchio, NEXT-AIM meeting, 17 October 2024
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Thank you for your attention!

Istituto Nazionale di Fisica Nucleare

UNIVERSITA DI P1sA
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|| software di segmentazione LungQuant
® U-netin cascata allenate per la segmentazione T
o Maschera del polmone H
o Maschera della lesione COVID-19 E*
o CT-Severity Score (CTSS), indice di gravita del polmone coinvolto
dall'infezione:l (<5%), 2 (5%-25%), 3 (25%-50%), 4 (50%-75%), 5 (>75%)

L = Dicejpes +CEoyeiohie
The LungQuant2.0 system : anted

CEweighted = ’LU(LL') Zilog(Mtruezx) 'Mpred(x))
. xe

Input CT l
Lung Bounding-box =
refinement containing lungs
[F.Lizzi et al. Quantification of pulmonary involvement in

\ COVID-19 pneumonia by means of a cascade of two U-nets:
Lung training and assessment on multiple datasets using different
Mask annotation criteria. International Journal of Computer

| I Assisted Radiology and Surgery, 2021.]
CT Severity Score

C.Scapicchio, NEXT-AIM meeting, February 2023



® \ersione 2.0

CT-SS

prediction:
Accuracy: 80%

table_resulis

lesions_volume mm3 Lesions_fo_Lung ratic CTSS consolidation wol  grownd glass wol

ground_glass R ratio  ground glass L ratio  consolidation R_ratic  consclidation_L_ratio

® CNN basata su regressione all'inizio della
pipeline per predire il bounding box attorno ai
polmoni.
® Funzione per separare polmone destro e sinistro.
® Soglia perdistinguere GGO da consolidamenti.
sDSC vDSC
(5mm)
Lung 0.97 £0.01 | 0.96 +0.01
CoVID
Lesion 0.83 £0.07 | 0.69 +0.08
(s} lursg_volurme_mm3
ﬂiwﬁrne-m‘idm-h-ﬂﬂ-h EA5N2 42 305574.50
ﬂlmmm-.ﬁmm 43060751 ST4T06.34
ulmmm-nmm J3T8643.30 48209.30
n_m-mﬂm-ﬁ.m 2TTEON9.56 413522.35
ﬂ_\dm-cm‘ldm-ﬂu-{ﬂﬂ 4230178.70 58051283
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Machine Learning pipeline: Nested CV

Test

Train

V.

Train

Test

Train

Test

Train

Train

Test

Train

Train

Test

Test

Nested

Validation

Train

Validation

Train

Train

Train

Validation

Train

Train

Validation

Ccv

Train

Test

Train
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La Cross-validation puo essere usata sia per
I'ottimizzazione degli iperparametri sia per stimare la
generalizzabilita del modello. Tuttavia, usarla per
entrambi gli scopi contemporaneamente puo portare a
una sottostima dell'overfitting dalla procedura stessa di
ottimizzazione.

Serve un altro loop esterno di cross-validazione per
valutare la generalizzabilita della performance.

4 )

10 trials

15% del dataset totale in Test

4-fold CV del restante 85% dei dati
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Machine Learning pipeline: XGBoost classifier

<G

objective function

training dataset
Performance in a dataset with Good

Al

EXTREME b Interpretability < Good > Fair
G R AD | E N T | Performance in a dataset with  Fair Good
a linear relationship
BOOSTING | Treel{X.03 )1 Treed{X,8} | "i,ai-{lféf;"' Performance in a large Poor
! ! number of features
i Node splitting by Performance in a small Poor
1
1
1

I
|
I
|
I
I
|
I
|
|
|

__________

lot of outlier

Poor (or remove the outlier from
the dataset)

ity ity S (A A Performance in a skewe Poor (or rebalance weight to the
Residual Residual Residual dataset minor)

T AX.6) ) a _f_(X .0:)_.: """ L fiAX.6, :_)-: e -: Performance in a continuous ~ Bad Good

---------------------------- dataset
Missing values handling in Good Poor (or remove/patch the
dataset missing values from the dataset)
Ease of Decision Making Automatically handles Threshold can be set
Commonality C Rapidly trending up > Widely adopted

> fX.6) |

Alberi decisionali aggiunti in forma sequenziale per correggere gli
erroridi predizione del modello precedente.

Il peso delle variabili predette erroneamente dall'albero viene
aumentato e queste variabili vengono poi date in pasto al modello
SUCCesSIVO.

( gamma [051,152,5 )

* max_depth: [3, 4, 5]

* subsample: [0.6, 0.8, 1.0]

* colsample_bytree: [0.6, 0.8, 1.0]
* min_child_weight: [1, 5, 10]

) . - o . . * learning_rate=0.02
L'ensamble di tutti gli alberi da un modello piu robusto e preciso. . h_estimators=600

Gradient Boosting perché usa un algoritmo gradient descent per . obiective="bi logistic'
minimizzare la loss quando vengono aggiunti i modelli. \ 2%‘?;‘;: INary:logistic /

C.Scapicchio, NEXT-AIM meeting, February 2023
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Combinazione dei dataset

Cross-Validation ROC of XGB

Cross-Validazione (Firenze + Milano + Palermo B80f) H

con best parameters ricavati dalla nested CV 8 os
o
Y o061
roc_auc S
8 04
0.80 + 0.07 % --- Chance
3 02/ —— Mean ROC (AUC = 0.80 + 0.07)
[
7 + 1 std. dev.
00422 : . . : .
. ° ° 00 02 04 06 08 10
Train (Firenze + Milano + Palermo B80f) False Positive Rate
Test (Pisa + Pavia)
40
. . ) ) roc_auc
2 Train (Firenze + Milano + Palermo)
roc_auc . 8 Test (Pisa) 0.61
0.61 : >
) n 0 “ Train (Firenze + Milano + Palermo) '0c_auc
= Test (Pavia) 058

Predicted label

C.Scapicchio, NEXT-AIM meeting, February 2023
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AlM, CSN5, 2019-2021

Parametri XGBoost Wy

IMFN

Al

gamma: parametro di regolarizzazione

max_depth: profondita max dell’albero

subsample: fraction of the training set that can be used to train each tree
colsample_bytree: fraction of the features that can be used to train each tree.

min_child_weight: minimum sum of instance weight (hessian) needed in a
child.

Nn_estimators: number of trees
objective: objective function
Nnthread: maximum number of threads available



AlM, CSN5, 2019-2021 ¢"imrm

Parametri per armonizzazione m

_ PALERMO PISA PAVIA FIRENZE MILANO

Filtro di B20f LUNG FC51 — B80f Parenchima Diversi filtri
ricostruzione B8Of sharp

Slice 1,0 mm 2,5mm [0,5-2,00lmm [1,0-2,00mm [1,0-3,0] mm
thickness

kVp, Pixel Spacing, Manufacturer, FOV (acq — rec), sex, age
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o
Al

Performance metrics

Area Under the ROC Curve (AUC)

ROC Curve

100

CONFUSION g
MATRIX YES NO g %
P erf Or m a n Ce YES True Positive False Negative ::-:: .
. (TP) (FN) @ 404

@

eva I ua t’ on No  FalsePositive  True Negative ? 20-

(FP) (TN)

80 60 40 20 O
Specificity (%)

relevant elements

G wevows  Howmenyseed | Howmany et o TP
° . . o - Precision = m
ecall — TP
Precision = ——— Recall = —— recd - m
' Fl = 2 % precision x recall

precision + recall
Sensitivity = True Positive Rate (TPR) TP+ TN
. . accuracy =
Specificity =1 - False Positive Rate (FPR) TPLFN 4+ TN L FP

selected elements



AlM, CSN5, 2019-2021 ¢"imrm

Pre-processing of CXR images

Gray level encoding Image standardization by subtracting the mean and dividing by the standard deviation of each
image.
Resize to 50x50 to allow for a light and small CNN

Lung segmentation A contrast stretching between their 5th and 95th percentile and normalized.
Original i Cropped and resized to 512x512.
Data augmentation: rotations, zoom, and horizontal flip

&

Transformation Parameters
Permitted Rotation Angles | -20°,-15°, -10°, 10°, 15°, 20°
—— Zoom Percentage 5%, 4%, 3%, 2%

Severity prediction - clinical features

L)
L

Rotation Zoom Horizontal Flip

* Categorical features: missing entries (few) replaced with the most frequent class

Severity prediction - images * When missing in many patients and we filled it by training a K-Nearest Neighbors (KNN)
algorithm to assign the value.
Same as for segmentation + Continuous variables: missing data produced with univariate mean imputing.

Resize to 1024x1024
Each image was Z-scored

UNIVERSITA DI P1sA




CXR images split

AlM, CSN5, 2019-2021 ¢"imrm

The Gray Net Model was trained on 120 pre-processed images selected by visual assessment among the 1103 ones of the
Al4COVID dataset, 60 for each class. 30 images were used for the validation set. Then the prediction was computed on the

whole Al4COVID training dataset.

The U-net devoted to lung segmentation was trained on the Shenzhen and Montgomery datasets, divided into a training set (80%), a
validation set (10%), and a test set (10%). The performance was evaluated with the mean DSC on the internal test set.

For the Severity net, 888 images of the preprocessed dataset were used for the training of the model, 200 for the validation, and
the 486 additional CXR scans made available during the challenge as an external test set.

CNN Train | Validation Test
Gray-Level 60 30 1103 (external test)
Lung Segmentation | 545 70 68 (internal test)
Severity 888 200 486 (external test)

UNIVERSITA DI P1sA
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Ra d io m ic featu res e First Order Statistics (19 features)

e Shape-based (3D) (16 features)

[Scapicchio, Camilla, et
al. "A deep look into

— GLCM mainly represents the probability of observing different gray-level voxel ~— ® Shape-based (20) (10 features) radiomics." La radiologia
pairs in different directions. e Gray Level Co-occurrence Matrix (24 features) medica 126.10 (2021):
5 . . R 1296-1311].
— GLRLM quantifies the number of consecutive voxels that have the same gray- * Gray Level Run Length Matrix (16 features)
level intensity in a given direction. * Gray Level Size Zone Matrix (16 features)
— GLSZM measures the size of the area in which connected voxels share the * Neighbouring Gray Tone Difference Matrix (5 features)
same gray-lev(\/l intensity. ® Gray Level Dependence Matrix (14 features)

— NGTDM measures the difference between the gray-level intensity of a voxel
and the average intensity value of its neighbors within a given distance.

— GLDM measures the number of consecutive voxels within a given distance
that is dependent on the center voxel.

GLCM GLRM GLSZM
il k)l e NI 3
1 2|3 K 1|2 |
313|3 ]
1,01 101§
Neighbor pixel value Run length =3 voxels  Size zone = 4 voxels Neighbor pixel value
in one direction in any direction

UNIVERSITA DI PISA &




Radiomic features

AlM, CSN5, 2019-2021

IMFN

3. Gray Level Non-Uniformity (GLN)

> (24 Pa. )’

GLN =
N,

Measures the similarity of gray-level intensity values in the image, where a lower GLN value
correlates with a greater similarity in intensity values.

GLDM

4. Dependence Non-Uniformity (DN)

Ng
J=1

Ny
i=1

N,

s (2N P, )’

DN =

Measures the similarity of dependence throughout the image, with a lower value indicating
more homogeneity among dependencies in the image.

3. Gray Level Non-Uniformity (GLN)

N.H
i=1

(=¥, P jle)*
N, ®)

2

GLN =

GLN measures the similarity of gray-level intensity values in the image, where a lower GLN
value correlates with a greater similarity in intensity values.

GLRLM

5. Run Length Non-Uniformity (RLN)

N,
=1

(=¥ PG, j19)
N,©)

2
RLN =

RLN measures the similarity of run lengths throughout the image, with a lower value
indicating more homogeneity among run lengths in the image.

3. Gray Level Non-Uniformity (GLN)

GLSZM GLN =

2

Ng
i=1

(2% PG.))°

GLN measures the variability of gray-level intensity values in the image, with a lower value
indicating more homogeneity in intensity values.

N,

UNIVERSITA DI PISA &




AlM, CSN5, 2019-2021 ¢"imrm

Feature Selection methods

* minimum Redundancy — Maximum Relevance (MRMR): works iteratively by assigning a score to each feature given by
the ratio of the feature's relevance for the target to be predicted and the redundancy with the features selected in the
previous iteration. Thus, an algorithm that goes to select the k most significant and least redundant features for the target
to be predicted, and agnostically concerning the type of classifier we use. The mrmr_selection publicly available package
was used and imported in Python and k =15 was set as the number of selected features.

* Feature Importance: this works by assigning a score to individual features based on relevance, but it does not consider
redundancy with previous features and depends on the specific classifier used. Feature Importance in XGBoost was used
through the feature_importances__ attribute of scikit-learn. Since the selected features can change in the various trials
within the nested CV, to obtain a ranking of the features, a new score was given to each feature, which is the total score
on all trials, given by the sum of the scores for individual trials. The first 15 features were then considered in this final
ranking.

* Mutual Information: which measures the uncertainty reduction for one variable given the known value of another
variable. The mutual_info_classif function of scikit-learn was used, considering the 15 best features. 15 was chosen as
the number of selected features as a typically applied empirical rule
(Widrow-Hoff learning rule) suggests approximately 10 data (in our case patients) for each imaging feature used in the
model and, in this case, the most populated dataset of Milan with 160 patients was considered as a reference

UNIVERSITA DI PIsA |




AlM, CSN5, 2019-2021 ¢"imrm

ComBat HARMONIZATION METHOD

This method is based on the empirical Bayes frameworks and was initially developed for large-scale genomic data analysis to remove batch
effects.

In medical imaging radiomics, batches refer to scanners, imaging protocols, individual imaging parameters, etc.
Unlike imaging harmonization, the ComBat method operates directly on the computed feature values to remove any batch-induced bias.

This is a data-driven method that identifies the protocol effect assuming that the value of each feature y, measured in the VOI j, with imaging
protocol i, can be written as

a is the average value for feature y; ,
y; Is an additive protocol effect,
o; is a multiplicative protocol effect affected by an error term (g;)

Yij = &+ i + 0i€5

The compensation consists in estimating the model parameters d, Y;, and 6i by using a maximum o Yij & — i i
likelihood approach on the basis of the set of available observations: Yij - Of + «
i

UNIVERSITA DI P1sA
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