r-process nucleosynthesis and Kilonovae in the PANDORA project

5. Cristallo

in collaboration with M. Bezmalinovich, D. Vescovi, E. Loffredo

INAF - Osservatorio Astronomico d'Abruzzo

GW170817: «THE» gravitational signal

A revolution similar to Jupiter observations by Galileo...

Hosting galaxy: NGC 4993 (distance ≈44 Mpc)

Neutron Star Mergers (NSMs)

The corresponding Lightcurve

The various components of a NSM

Rosswog & Korobkin 2022

v [c] 0.8 0.6 ...shock'' 0.4 ...shock'' 0.2 ...shock'' ...shock''' ...shock'' ..

The NSM ejecta

Metzger 2019

Bolometric curve of GW170817

It accounts for the whole energy leaving the «surface» at all wavelenghts

Italiadomani Piano nazionale Di Rippresa e resilienza

Ministero dell'Università e della Ricerca

Ministero dell'Università e della Ricerca

In low entropy environment (s ~ a few tens of k_b /baryon) Y_e is the dominant parameter

- $Y_e \gtrsim 0.25$: 1st peak up to 2nd *r*-process peak
- 0.15 \lesssim Y_e \lesssim 0.25: 2nd and 3rd *r*-process peaks, but not the 1st
- $Y_e \lesssim 0.15$: <u>robust *r*-process</u>, due to several <u>fission cycles</u>

The role of neutrinos

The presence of neutrinos increases Y_e in the polar direction

Bolometric curve of GW170817

It accounts for the whole energy leaving the «surface» at all wavelenghts

Atomic opacities

Opacity (κ_v) , which is proportional to the plasma atomic level population and to radiative process cross sections, regulates the energy exchange between radiation and plasma, via multiple absorption-scattering processes through the radiative transport, and arises from the blending of millions of atomic line transitions.

Atomic opacities

Kilonova emission is centered in the optical/IR band, as this is the first spectral window through which the expanding merger ejecta becomes transparent.

Throughout the far UV and X-ray bands, bound-free transitions of the ejecta dominate the opacity (blue line). This prevents radiation from escaping the ejecta at these frequencies.

VERY EARLY TIME KILONOVA

Atomic opacities

Kilonova emission is centered in the optical/IR band, as this is the first spectral window through which the expanding merger ejecta becomes transparent.

At optical/near-IR frequencies (brown line), the dominant source of opacity is a dense forest of line transitions. (bound-bound) The magnitude this of opacity is determined by the strengths and wavelength density of the lines, which in turn depend sensitively on the ejecta composition.

0.5d - 5d KILONOVA

Atomic opacities

Kilonova emission is centered in the optical/IR band, as this is the first spectral window through which the expanding merger ejecta becomes transparent.

At the lowest frequencies (radio and far-IR), free-free absorption from ionized gas dominates (red line). As the ejecta expands, the free-free opacity will decrease rapidly due to the decreasing density $\rho \alpha t^{-3}$ and the fewer number of free electrons as the ejecta cools and recombines.

LATE TIME KILONOVA

Atomic opacities

Chemical elements contribute to the global opacity with very different contributions, basing on their **electronic configuration** and their **abundance**.

Atomic opacities

Chemical elements contribute to the global opacity with very different contributions, basing on their **electronic configuration** and their **abundance**. In particular, open f-shell elements (lanthanides) have larger opacities than the elements with other outermost electron shells.

f-shell orbitals

1 14	1	195		Т	he P	erio	dic	Table	e of	Elen	nent	S					18 VIIA
н	2 84											13 108	14 MA	15 VA	16 VIA	17 VIA	He
Li	Be	ATOMIC N	VUMBER - 1 SYMBOL -	H								5 B	°C	'N	⁸ O	۴	¹⁰ Ne
"Na	¹² Mg	3 100	4 MB	s VB	6 Vi8	2 118	8 VIIB	9 V108	10 V108	11	12 18	¹³ Al	¹⁴ Si	¹⁵ P	¹⁶ S	¹⁷ CI	¹⁸ Ar
¹⁹ K	²⁰ Ca	Sc	22 Ti	23 V	24 Cr	Mn	Fe	27 Co	28 Ni	29 Cu	³⁰ Zn	Ga	32 Ge	³³ As	³⁴ Se	35 Br	³⁶ Kr
37 Rb	³⁸ Sr	³⁹ Y	⁴⁰ Zr	41 Nb	42 Mo	43 Tc	⁴⁴ Ru	45 Rh	* Pd	47 Ag	⁴⁸ Cd	49 In	^{so} Sn	si Sb	⁵² Te	53 	⁵⁴ Xe
⁵⁵ Cs	se Ba	57-71 La-Lu	" Hf	73 Ta	⁷⁴ W	⁷⁵ Re	76 Os	" Ir	Pt	79 Au	[∞] Hg	⁸¹ TI	⁸² Pb	⁸³ Bi	⁸⁴ Po	⁸⁵ At	⁸⁶ Rn
⁸⁷ Fr	Ra	89-103 Ac-Lr	¹⁰⁴ Rf	105 Db	¹⁰⁶ Sg	107 Bh	¹⁰⁸ Hs	109 Mt	Ds	Rg	Cn	¹¹³ Nh	II4 FI	Мс	116 Lv	117 Ts	118 Og
LANTH	IANIDES	57 La	^{ss} Ce	⁵⁹ Pr	⁶⁰ Nd	⁶¹ Pm	⁶² Sm	63 Eu	⁶⁴ Gd	55 Tb	[©] Dy	67 Ho	⁶⁸ Er	⁶⁹ Tm	⁷⁰ Yb	²¹ Lu	1
ACTI	NIDES	89 Ac	°″Th	Pa Pa	92 U	93 Np	94 Pu	95 Am	[%] Cm	97 Bk	⁹⁸ Cf	99 Es	Fm	101 Md	102 No	¹⁰³ Lr	1

LANTHANIDES

ACTINIDES

Identification of strontium in the merger of two neutron stars

Darach Watson^{1,2}, Camilla J. Hansen^{3,*}, Jonatan Selsing^{1,2,*}, Andreas Koch⁴, Daniele B. Malesani^{1,2,5}, Anja C. Andersen¹, Johan P. U. Fynbo^{1,2}, Almudena Arcones^{6,7}, Andreas Bauswein^{7,8}, Stefano Covino⁹, Aniello Grado¹⁰, Kasper E. Heintz^{1,2,11}, Leslie Hunt¹², Chryssa Kouveliotou^{13,14} Giorgos Leloudas^{1,5}, Andrew Levan^{15,16}, Paolo Mazzali^{17,18}, Elena Pian¹⁹ [See end for affiliations]

G. Gaigalas⁹, ¹* P. Rynkun⁹, ¹* S. Banerjee, ² M. Tanaka⁹, ^{2,3} D. Kato^{94,5} and L. Radžiūtė⁹¹

¹Institute of Theoretical Physics and Astronomy, Vilnus University, Saulétekio Ave. 3, L1-10237 Vilnus, Lithu ²Astronomical Institute, Tohoku University, Sendai 980-8578, Japan

³Division for the Establishment of Frontier Sciences, Organization for Advanced Studies, Tohoku University, Sendai 980-8577, Japan
⁴National Institute for Fusion Science, 322-6 Oroshi-cho, Toki 509-5292, Japan

⁵Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, Kasuga, Fukuoka 816-8580, Japan

INAF ISTITUTO NAZIONALE DI ASTROFISICA Deservatorio Astronomico d'Abruzzo

1 IA	6			Т	he P	erio	dic ⁻	Table	e of	Elen	nent	S					18 VIIA 2
н	2 84														122		He
Li	⁴Be	ATOMIC N	VMBOL -	H		ato	oms										
Na	Mg	3	4 MB	s VB	Articla Re	, lativi	stic	Atom	ic St	ructu	ire of	Au	IV ar	nd the	e Os	Isoel	lectro
¹⁹ K	°Ca	Sc	Ti	23 V	Sec	quen	ce: C	pacit	ty Da	ita fo	r Kil	onov	a Eje	cta			
³⁷ Rb	s Sr	39 Y	∞ Zr	41 Nb	Zahra Joan I	n Sadat T Marler ³ ,	aghadon Chad So	ni ¹ , Yier osolik ³ a	Wan ¹ , A nd Stuar	licia Flo rt Loch ^{2,}	wers ¹ , P	hillip St	ancil ¹ , B	rendan N	/IcLaugh	lin ¹ , Ste	even Bron
55 Cs	se Ba	57-71 La-Lu	²² Hf	73 Ta	74 W	Re	⁷⁶ Os	" Ir	Pt	Au	[∞] Hg	⁸¹ TI	Pb	⁸³ Bi	Ро	⁸⁵ At	⁸⁶ Rn
⁸⁷ Fr	* Ra	89-103 Ac-Lr	Rf	¹⁰⁵ Db	Sg	¹⁰⁷ Bh	¹⁰⁸ Hs	Mt	Ds	""Rg	Cn	¹¹³ Nh	¹¹⁴ Fl	Мс	Lv	117 Ts	118 Og
LANTH	ANIDES	57 La	^{ss} Ce	^{s9} Pr	∞ Nd	Pm	⁶² Sm	63 Eu	⁶⁴ Gd	65 Tb	⁶⁶ Dy	67 Ho	68 Er	⁶⁹ Tm	²⁰ Yb	⁷¹ Lu	1
ACTIN	IDES	⁸⁹ Ac	[∞] Th	91 Pa	92 U	⁹³ Np	94 Pu	95 Am	* Cm	97 Bk	⁹⁸ Cf	99 Es	Fm	Md	No	103 Lr	1
	2		-										-		_		

INAF ISTITUTO NAZIONALE DI ASTROFISICA Osservatorio Astronomico d'Abruzzo

i.		200		Т	he P	erio	dic ⁻	Table	e of	Elen	nent	S	5/				18 VIIA
́н	2 11A											13 100	t4 NA	15 VA	16 VA	17 VEA	He
Li	Be	ATOMIC	NUMBER - 1 SYMBOL - NAME -	H								^s B	° c	'N	⁸ O	F	Ne
Na	¹² Mg	3	4	S VB	6 V18	2	8	9 VIII	10 V108	:	12 18	¹³ Al	¹⁴ Si	15 P	¹⁶ S	¹⁷ Cl	¹⁸ Ar
¹⁹ K	20 Ca	Sc	22 Ti	23 V	24 Cr	Mn	Fe	27 Co	²⁸ Ni	29 Cu	³⁰ Zn	Ga	Ge	³³ As	Se	Br	³⁶ Kr
³⁷ Rb	[™] Sr	39 Y	⁴⁰ Zr	41 Nb	Mo	43 Tc	[#] Ru	45 Rh	* Pd	47 Ag	** Cd	49 In	⁵⁰ Sn	⁵¹ Sb	⁵² Te	53 	⁵⁴ Xe
55 Cs	⁵⁶ Ba	57-71 La-Lu	n Hf	Та	74 W	75 Re	⁷⁶ Os	" Ir	Pt	⁷⁹ Au	®Hg	⁸¹ TI	⁸² Pb	⁸³ Bi	84 PO	⁸⁵ At	⁸⁶ Rn
87 E-	hly Notic	89-103 Acle	104 Df	105	106	107 Db	108 H.c	109 N.A.+	110	111 Po	112 Cn	113 Nib	114 FI	Мс	116 Lv	Ts	118 Og
OYAL ASTRO	of the DNOMICAL S	OCIETY											Royal Astronomical Society	69	120	171	

MNRAS 515, L89–L93 (2022) Advance Access publication 2022 July 29

Tm

Md

101

Yb

No

102

Lu

Lr

103

Tungsten versus Selenium as a potential source of kilonova nebular emission observed by Spitzer

Kenta Hotokezaka, ^{1,2} * Masaomi Tanaka ⁰ , ^{3,4} Daiji Kato ^{5,6} and Gediminas Gaigalas ⁷	
¹ Research Center for the Early Universe, Graduate School of Science, The University of Tokyo, Bunkyo, Tokyo 113-0033, Japan	
² Kavli IPMU (WPI), UTIAS, The University of Tokyo, Kashiwa, Chiba 277-8583, Japan	
³ Astronomical Institute, Tohoku University, Sendai 980-8578, Japan	
⁴ Division for the Establishment of Frontier Sciences, Organization for Advanced Studies, Tohoku University, Sendai 980-8577, Japa	m
⁵ National Institute for Fusion Science, 322-6 Oroshi-cho, Toki 509-5292, Japan	

⁶Department of Advanced Energy Engineering Science, Kyushu University, Kasuga, Fukuoka 816-8580, Japan

⁷Institute of Theoretical Physics and Astronomy, Vilnius University, Saulètekio Ave. 3, Vilnius, Lithuania

INAF ISTITUTO NAZIONALE DI ASTROFISICA Osservatorio Astronomico d'Abruzzo

1 UA 1		3.22		Т	he P	erio	dic 7	Fable	e of	Elem	nent	S					18 VIIA 2
н	2 84	\sim	7												~		He
Li	Be	- C	s at	oms	5										MÒ	PI	¹⁰ Ne
Na	¹² Mg	Artic	le	C	1 1					1 1 1	D	1					18 Ar
ĸ	20 Ca		lono	re Ca vae N	Mode	atior	ns in g	Na I	II ar	ia U	III K	eleva	ant fo	or		r	³⁶ Kr
Rb	[™] Sr	³⁹ Ricar and J	do F. Si osé P. M	lva ^{1,2,} *[] larques ¹	, Jorge 1	M. Samp	aio ^{1,2} 0	, Pedro A	Amaro ³	D, Andre	eas Flörs	⁴©, Gab	oriel Mai	rtínez-Pi	nedo ^{4,5,}	60	54 Xe
Cs	56 Ba	57-71 La-Lu	ⁿ Hf	Та	74 W	Re	Os	" Ir	Pt	Au	[∞] Hg	TI	Pb	Bi	PO	At	⁸⁶ Rr
2	88	89-103	104	105 Dh	106 S.a.	107 Ph	108 H.c	109	110	111 	112	113 N.I.	114	115	116	117 T-	
Fr	Ra	AC-Lr	K		J	DII		Mit	DS	Rg	Cn	IND	FI	MC	LV	IS	118 Og
Fr	Ra	Ac-Lr	RT ©Ce	³⁹ Pr	∞°Nd	⁶¹ Pm	⁶² Sm	63 Eu	⁶⁴ Gd	Tb	© Dy	67 Ho	⁶⁸ Er	⁶⁹ Tm	⁷⁰ Yb	⁷¹ Lu	¹¹⁸ O <u>c</u>

INAF
 INAF
 INAF
 INTITIO NAZIONALE
 DI ASTROFISICA

Osservatorio Astronomico d'Abruzzo

1	٦.			Т	he P	erio	dic 7	Table	e of	Elen	nent	S					18 VIIA 2
н	Mon	thly Not	ices												16 VSA	17 VIA	He
Li	ROYAL ASTI MNRAS 50	of the RONOMICAI 9, 6138–61:	. society 54 (2022)								httj	ps://doi.org	/10.1093/m	nras/stab342	3 0	۴	¹⁰ Ne
Na	Advance A	ccess pub	lication 2	021 Nove	mber 26										s	17 CI	18 Ai
¹⁹ K	Large early	e-scale kilon	e ator ova e	nic da missi	ata ca on fro	lcula m ne	tions eutror	in Ce 1 star	e V – merg	X ion gers	s for	appli	catior	1 to	Se	35 Br	36 Kr
Rb	H. Carva ¹ Physique A	ajal Gal tomique et	lego, ¹ J	J. C. Be	rengut,	² P. Pali ns, B-7000	meri ^{© 1} Mons, Belg	and P. (Quinet	1,3*					Те	53 	54 Xe
SS Cs	² School of F ³ IPNAS, Un Da	Physics, Uni iversité de l	iversity of L Liège, Sart	New South Tilman, B-	Wales, Sydi 4000 Liège	ney NSW 20 , Belgium NC)52, Austra	lia II	FL	Au	119		10	0	Ро	⁸⁵ At	⁸⁶ Rr
SS Cs	² School of F ³ IPNAS, Un Da Ra	Physics, Uni iversité de l La-Lu 89-103 Ac-Lr	104 Rf	New South Tilman, B- 105 Db	Wales, Sydi 4000 Liège ¹⁰⁶ Sg	ney NSW 20 , Belgium NC 107 Bh	108 HS	lia I 109 Mt	110 Ds	III Rg	112 Cn	III Nh	114 FI	115 Mc	Po 116 Lv	At 117 Ts	86 Rr
⁵⁵ Cs ³⁷ Fr	² School of F ³ IPNAS, Un Da Ra Ra	Physics, Uni iversité de J B9-103 Ac-Lr	104 Rf	New South Tilman, B- 105 Db	Wales, Sydi 4000 Liège ¹⁰⁶ Sg	ey NSW 20 Belgium 107 Bh 61 Pm	108 Hs	lia 109 Mt 63 Eu	Ds	III Rg ⁶⁵ Tb	112 Cn © Dy	113 Nh ⁶⁷ Ho	114 Fl 68 Er	115 Mc	Po 116 Lv 70 Yb	At 117 Ts	86 Rr 118 Og

1 1A	1	32		Т	he P	erio	dic	Fable	e of	Elen	nent	S					18 VIIA
н	2 11A											13 108	14 NA	15 VA	16 VA	17 VIA	He
Li	Be	ATOMIC N THE	ASTROPHYS	sical Journ	AL SUPPLEM	ient Series	, 248:17 (15	pp), 2020 M	ay		69	5 https://	doi.org/10.3	7 847/1538-43	8 365/ab8312	۴ F	¹⁰ Ne
Na	¹² Mg	€ 202	20. The America Exter	an Astronomical	l Society. All rig	tions of	f Energ	ev Leve	els and	Trans	ition R	ates fo	or Singl	v Ioniz		CI	18 Ar
¹⁹ K	²⁰ Ca	21 S		Laima	Radžiūtė ¹	, Gedimir	Lantha	nide E as ¹ , Dai	lement iji Kato ^{2,3}	, Pavel Ry	r-Gd ynkun ¹ , ar	nd Masaon	mi Tanaka	4 1 0		Br	³⁶ Kr
Rb	³⁸ Sr	39		¹ Institute ³ I	of Theoretic Department o Received 20	cal Physics a ² National I of Advanced ⁴ Astr 019 Decemb	and Astronor Institute for I Energy Eng conomical In- per 17; revise	ny, Vilnius U Fusion Scien ineering Scie stitute, Tohol ed 2020 Mar	Jniversity, S ce, 322-6 O nce, Kyush ku Universit ch 20; accept	aulėtekio Av roshi-cho, To u University, y, Sendai 98 pted 2020 M	ve. 3, Lithua oki 509-5292 , Kasuga, Fu 0-8578, Japa (arch 20; pul	nia; Laima.H 2, Japan kuoka 816-8 an blished 2020	Radziute@tfa 8580, Japan) <i>Ma</i> y 7	i.vu.lt		T	⁵⁴ Xe
SS Cs	⁵⁶ Ba	La-Lu	Hf	Та	W	Re	Os	lr	Pt	Au	Hg	TI	Pb	Bi	Po	At	⁸⁶ Rn
⁸⁷ Fr	** Ra	⁸⁹⁻¹⁰³ Ac-Lr	¹⁰⁴ Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn	¹¹³ Nh	114 Fl	Мс	116 Lv	117 Ts	118 Og
LANTH	IANIDES	⁵⁷ La	[®] Ce	^{s»} Pr	∞Nd	Pm	⁶² Sm	63 Eu	Ğd	55 Tb	Dy	67 Ho	⁶⁸ Er	⁶⁹ Tm	⁷⁰ Yb	²¹ Lu]
		89	90	91	92	93	94	95	96	97	98	99	100	101	102	103	1

1 UA	1	_		Т	ho P	orio	dic	Table	of	Flom	hent	c					18 VIIA
н	2 11A	THE AST © 2021. The	ROPHYSICA e American A	AL JOURNAL stronomical So	. SUPPLEME ciety. All right	ENT SERIES	, 257:29 (1	9pp), 2021	December				https://doi	.org/10.384	17/1538-43	65/ac1ad2	He
Li	Be] _F	vtend	ed Ca	lculati	ions of	f Ener	σνι	vels ai	nd Tre	ansitio	n Rat	es for	Singly	Ioniz		Ne
Na	¹² Mg		Atenu		vle	L	antha	nide H	Elemer	nts. II.	Tb-	Yb			4.0	cu	¹⁸ Ar
¹⁹ K	20 Ca		La	Institute of ³ Interd	Theoretica	Gedimir I Physics a ² National I Graduate S ⁴ Astrono	nas Gaiga and Astrono institute for institute for institute for institute for	uas [™] , I omy, Vilniu Fusion Sci ngineering tute Tobok	Jaiji Kato is Universit ience, 322- Sciences, I u Universi	o ²⁰ , Pa y, Saulėtek 6 Oroshi-cl Kyushu Uni ty Aoba S	avel Kyn io Ave. 3, ho, Toki 50 iversity, Ka Sendai 980-	Kun [°] , and Lithuania; 9-5292, Ja suga, Fuku 8578 Japa	d Masaor Laima.Rad: pan loka 816-85 p	ni Tanaka ziute@tfai.v 580, Japan	a ' 🖤 ru.lt		³⁶ Kr
Rb	[™] Sr	\checkmark	۷r	DN	Received 20	D21 June 1	I; revised 2	2021 July 1	5; accepted	4 2021 Aug	gust 2; publ	lished 2021	November	12 SD	le		Xe
Cs	56 Ba	57-71 La-Lu	ⁿ Hf	Та	⁷⁴ W	Re	⁷⁶ Os	" Ir	Pt	Au	[∞] Hg	⁸¹ TI	Pb	Bi	Po	⁸⁵ At	⁸⁶ Rn
⁸⁷ Fr	Ra	89-103 Ac-Lr	Rf	Db	Sg	Bh	¹⁰⁸ Hs	Mt	Ds	Rg	Cn	Nh	II4 Fl	Мс	116 LV	Ts	118 Og
LANTH	IANIDES	⁵⁷ La	[®] Ce	^{s9} Pr	∞Nd	Pm	⁶² Sm	Eu	⁶⁴ Gd	55 Tb	∞Dy	67 Ho	⁶⁸ Er	° ⁹ Tm	Yb	Lu	1
ACTI	NIDES	⁸⁹ Ac	°″Th	Ра	92 U	93 Np	Pu	⁹⁵ Am	[%] Cm	97 Bk	⁹⁸ Cf	99 Es	¹⁰⁰ Fm	Md	¹⁰² No	Lr	

1 UA	1	32		Т	he P	Perio	dic ⁻	Table	e of	Elen	nent	S					18 VIIA
н	2 84											13 108	14 MA	15 VA	16 VIA	17 VIA	He
Li	Be	ATOMIC	NUMBER - 1 SYMBOL -	н								^s B	° C	'N	⁸ O	۶F	¹⁰ Ne
Na	¹² Mg	3	A MB	S VB	6 118	2	8 V18	9 V18	10 V118	1	12 18	¹³ Al	¹⁴ Si	¹⁵ P	¹⁶ S	¹⁷ Cl	¹⁸ Ar
¹⁹ K	²⁰ Ca	21 Sc	22 Ti	23 V	²⁴ Cr	Mn	Fe	27 Co	28 Ni	29 Cu	³⁰ Zn	Ga	32 Ge	³³ As	³⁴ Se	³⁵ Br	³⁶ Kr
Rb	[™] Sr	³⁹ Y	⁴⁰ Zr	41 Nb	42 Mo	43 Tc	[#] Ru	45 Rh	* Pd	47 Ag	** Cd	49 In	^{so} Sn	51 Sb	⁵² Te	53 	⁵⁴ Xe
SS Cs	⁵⁶ Ba	57-71 La-Lu	²² Hf	73 Ta	74 W	75 Re	76 - 05	⁷⁷ Ir	Pt	⁷⁹ Au	Hg	⁸¹ TI	⁸² Pb	⁸³ Bi	84 Po	⁸⁵ At	⁸⁶ Rn
⁸⁷ Fr	* Ra	⁸⁹⁻¹⁰³ Ac-Lr	104 Rf	¹⁰⁵ Db	Sg	107 Bh	108 Hs	109 Mt	Ds	Rg	Cn	Nh	II4 FI	Мс	116 Lv	117 Ts	118 Og
v	Monthly	57 v Notices	58	59	60	61	62	63	64	65	66	67	8	"Tm	⁷⁰ Yb	⁷¹ Lu	1
ROY. MNF Adv	AL ASTRONO RAS 506, 35 ance Acces	^{the} DMICAL SOCI 560–3577 (20 ss publicati	iety 021) ion 2021 J	July 02						htt	ps://doi.org/	/10.1093/m	Aras/stab180	¹⁰¹ Md	¹⁰² No	Lr	1

Constraints on the presence of platinum and gold in the spectra of the kilonova AT2017gfo

J. H. Gillanders⁰,¹* M. McCann,² S. A. Sim,¹ S. J. Smartt¹ and C. P. Ballance²

¹Astrophysics Research Centre, School of Mathematics and Physics, Queen's University Belfast, BT7 1NN Belfast, UK ²Centre for Theoretical Atomic, Molecular and Optical Physics, School of Mathematics and Physics, Queen's University Belfast, BT7 1NN Belfast, UK

1 LA	-	100		Т	he P	erio	dic 7	Table	e of	Elen	nent	s					18 VIIA
Н	2 84											13 100	14 IVA	15 VA	16 VIA	17 VIA	He
Li	Be	ATOMIC	NUMBER - 1 SYMBOL -	H								^s B	° C	'N	⁸ O	F	¹⁰ Ne
Na	¹² Mg	3	4	5	6	2		9	10		12	¹³ AI	¹⁴ Si	15 P	¹⁶ S	¹⁷ CI	¹⁸ Ar
к	20 Ca	21 Sc	22 Ti	23 V	24 Cr	²⁵ Mn	²⁶ Fe	27 Co	28 Ni	29 Cu	³⁰ Zn	Ga	32 Ge	³³ As	³⁴ Se	35 Br	³⁶ Kr
Rb	³⁸ Sr	³⁹ Y	⁴⁰ Zr	41 Nb	42 Mo	43 Tc	⁴⁴ Ru	45 Rh	* Pd	47 Ag	48 Cd	49 In	^{so} Sn	51 Sb	^{s2} Te	53 	54 Хе
S	56 Ba	57-71 La-Lu	²² Hf	73 Ta	74 W	75 Re	⁷⁶ Os	" Ir	Pt	Au	[∞] Hg	81 T	⁸² Pb	es Bi	в	×5 At	⁸⁶ Rn
Fr	** Ra	89-103 Ac-Lr	¹⁰⁴ Rf	105 Db	¹⁰⁶ Sg	¹⁰⁷ Bh	¹⁰⁸ Hs	Mt	Ds	Rg	Cn	¹¹³ Nh	II4 FI	Мс	Lv	Ts	¹¹⁸ Og
LANTH	IANIDES	⁵⁷ La ⁸⁹ Ac	M ROYAL . MNRAS Advanc Tell	fonthly N of the ASTRONOMI S 526 , L155 Xe Access I urium	Notices	3) 2023 Sep	tember 28	, n kilor	nova .	AT 20	17gfo	,	htt	ps://doi.org	/10.1093/m	Annot Society nrasi/slad12	28
			Kenta ¹ Resean ² Astrono ³ Nationa ⁴ Interdis	a Hotoke ch Center fo omical Institu al Institute f sciplinary G	ezaka, ¹ * or the Early tute, Tohoku for Fusion S fraduate Sch	Masao Universe, C University, icience, 322 bool of Eng	omi Tana Graduate So , Aoba, Sen 2-6 Oroshi-o ineering Sci	aka [©] , ²] chool of Scie dai 980-857 cho, Toki 50 iences, Kyu	Daiji K ence, Unive 78, Japan 9-5292, Jaj shu Univer	AT 20 ato ^{3,4} an ersity of Toky pan sity, Fukuok	d Gedin yo, Bunkyo,	ninas G Tokyo 113- , Japan	aigalas [:] 0033, Japa	5 in			

 INAF INAF ISTTUTO NAZIONALE DI ASTROFISICA Ocservatorio Astronomico d'Abruzzo

1 IA	1			Т	he P	erio	dic 1	Table	of	Elem	nent	s					18 VIIA
н	2														35		He
Li	Be	ATOM	COPEN A	ROPHYSICAI	blished by the	, 953:17 (1 American Ast	1pp), 2023 ronomical Soc	3 August 10						https://do	oi.org/10.3	847/1538-	-4357/acd
Na	¹² Mg	3 108	Cer	ium F	eatur	es in l	Kilono	ova Ne	ar-inf Pe	rared culiar	Spect Star	ra: In	nplicat	tion fr	om a	Chem	Cross
к	°Ca	²¹ Sc	Masac	omi Tana Kyohe	ka ^{1,2} 0, ci Kawag	Nanae D guchi ^{5,8,9}	omoto ¹ (Daiji	, Wako Kato ^{10,1}	Aoki ^{3,4} ¹ 10, Jae-	, Miho Joon Le	N. Ishig	aki ³ ®, S o-Gyu L	Shinya W ee ^{12,13}	Vanajo ⁵ @ , Teruyu), Kenta ki Hiran	Hotokez o ^{3,4,14}	zaka ^{6,7}
Rb	[™] Sr	39 Y	Takayu	ki Kotan	i ^{3,4,14} ©,	Masayu	ki Kuzuł		, Jun Ni , Aki	shikawa toshi Ye	1 ₁₂ 3,4,14	Masashi		"", Moi	tohide T	amura ^{3,1}	^{4,15} ⁰ ,
Cs	56 Ba	57-71 La-Lu	²² Hf	73 Та	⁷⁴ W	⁷⁵ Re	⁷⁶ Os	" Ir	Pt	Au	[∞] Hg	⁸¹ TI	Pb	Bi	Po	At	⁸⁶ Rr
Fr	Ra	⁸⁹⁻¹⁰³ Ac-Lr	Rf	Db	Sg	Bh	108 Hs	Mt	Ds	III Rg	¹¹² Cn	^{HI3} Nh	II4 Fl	Мс	Lv	Ts	118 Og
LANTH	IANIDES	57 La	[®] Ce	^{s9} Pr	⁶⁰ Nd	Pm	Sm	63 Eu	Ğd	55 Tb	∞Dy	⁶⁷ Ho	Er	۳Tm	⁷⁰ Yb	²¹ Lu	1
			44	01	03	63	94	36	96	97	QR.	99	100	101	102	103	-

Check for updates

PHYSICAL JOURNAL D

1 IA	-	200		Т	he P	erio	dic [¬]	Table	e of	Elen	nent	s					18 VIIA
ήН	2 84			1.54								13 108	14 MA	15 VA	16 VIA	17 VIA	He
2 Li	Be	ATOMIC	NUMBER - 1 SYMBOL -	H								^s B	° c	'N	⁸ O	۴	¹⁰ Ne
3 Na	¹² Mg	3	4	S VB	6 VB	2 100	8	9 V08	10 V108		12	¹³ Al	¹⁴ Si	¹⁵ P	¹⁶ S	¹⁷ CI	¹⁸ Ar
4 ¹⁹ K	°Ca	21 Sc	²² Ti	23 V	²⁴ Cr	Mn	Fe	27 Co	28 Ni	²⁹ Cu	³⁰ Zn	Ga	³² Ge	³³ As	[™] Se	³⁵ Br	³⁶ Kr
s Rb	³⁸ Sr	39 Y	⁴⁰ Zr	"Nb	42 Mo	43 Tc	^₄ Ru	45 Rh	* Pd	47 Ag	* Cd	⁴⁹ In	^{so} Sn	si Sb	sz Te	53 	⁵⁴ Хе
6 Cs	se Ba	57-71 La-Lu	ⁿ Hf	73 Ta	24 W	⁷⁵ Re	⁷⁶ Os	" Ir	Pt	Au	[∞] Hg	⁸¹ TI	⁸² Pb	⁸³ Bi	⁸⁴ Po	⁸⁵ At	RA
7 F	ur. Phy tps://d	s. J. D loi.org/	(2023) (10.114)	77:126 0/epjd/	5 /s10053	-023-00)695-5					Тне	EUF	ROPE	AN		

Regular Article – Atomic Physics

Calculations of multipole transitions in Sn II for kilonova analysis

A. I. Bondarev^{1,2,a} , J. H. Gillanders³, C. Cheung⁴, M. S. Safronova^{4,5}, and S. Fritzsche^{1,2,6}

ACT

Finanziato dall'Unione europea NextGenerationEU

INAF ISTITUTO NAZIONALE DI ASTROFISICA Osservatorio Astronomico d'Abruzzo

5	1 14	1	2.01		Т	he P	Perio	dic ⁻	Table	e of	Elen	nent	S					18 VIIA
1	н	2 84	2										13 108	14 NA	15 VA	16 VIA	17 VEA	He
2	Li	Be	ATOMIC	NUMBER - 1 SYMBOL - NAME -	H								^s B	° C	'N	* 0	F	Ne
3	Na	¹² Mg	3	4	s VB	6 VB	2 V18	8 V18	9 V108	10 V18		12	¹³ Al	¹⁴ Si	¹⁵ P	¹⁶ S	¹⁷ CI	Ar
4	к	20 Ca	Sc	22 Ti	23 V	24 Cr	Mn	Fe	27 Co	28 Ni	29 Cu	³⁰ Zn	Ga	³² Ge	³³ As	» Se	³⁵ Br	³⁶ Kr
37	Rb	³⁸ Sr	³⁹ Y	[∞] Zr	Nb	42 Mo	43 Tc	[#] Ru	45 Rh	⁴⁶ Pd	47 Ag	[≪] Cd	49 In	^{so} Sn	51 Sb	^{s2} Te	53 	⁵⁴ Xe
6	Cs	⁵⁶ Ba	La-Lu	" Hf	73 Ta	74 W	75 Re	⁷⁶ Os	" Ir	Pt	Au	[∞] Hg	⁸¹ TI	⁸² Pb	Bi	в	⁸⁵ At	Rn
7	Fr	Ra	89- 103 Ac-Lr	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn	¹¹³ Nh	FI	Мс	LV	Ts	Og

A&A 675, A194 (2023) https://doi.org/10.1051/0004-6361/202346421 © The Authors 2023

Astronomy Astrophysics

Discovery of a 760 nm P Cygni line in AT2017gfo: Identification of yttrium in the kilonova photosphere

Albert Sneppen^{1,2} and Darach Watson^{1,2}

1 LA	7			T	he P	erio	dic T	able	e of I	Elem	nent	s					18 VIIA 2
н	Mor	Monthly Notices of the ROYAL ASTRONOMICAL SOCIETY															He
Li	MNRAS 49 Advance A	NRAS 493, 4143–4171 (2020) doi:10.1093/mnras/staa485 dvance Access publication 2020 February 26															Ne
¹¹ Na	A line	A line-binned treatment of opacities for the spectra and light curves from															¹⁸ Ar
¹⁹ K	neutr	neutron star mergers													³⁶ Kr		
37 Rb	C. J. F	ontes	[©] ,1★	C. L.	Fryer	,1,2,3	A. L.	Hung	erford	l, ¹ R.	T. Wo	ollaeg	ger ¹				s4 Xe
⁵⁵ Cs	and O. ¹ Los Alama ² Physics De	s Nationa epartment	DDK111 al Laborate t, Universi	ory, Los A ty of Arize	lamos, NI ona, Tucso	M 87545, m, AZ 852	USA 721, USA										⁸⁶ Rn
⁸⁷ Fr	³ Physics an	nd Astrono	omy Depar	tment, Ur	niversity of	f New Me	xico, Albu	querque, 1	NM 87131	, USA		110					Og
LANT	HANIDES	57 La	^{ss} Ce	^{s9} Pr	∞Nd	Pm	⁶² Sm	63 Eu	Ğd	^{۵۶} Tb	бу	67 Ho	⁶⁸ Er	[∞] Tm	Yb	⁷¹ Lu]
		89	90	91	92	93	94	95	96	97	98	99	100	101	102	105	-

INAF
 INAF
 ISTITUTO NAZIONALE
 DI ASTROFISICA

S. J. Smartt[™], T.-W. Chen, A. Jerkstrand, M. Coughlin, E. Kankare, S. A. Sim, M. Fraser, C. Inserra, K. Maguire, K. C. Chambers, M. E. Huber, T. Krühler, G. Leloudas, M. Magee, L. J. Shingles, K. W. Smith, D. R. Young, J. Tonry, R. Kotak, A. Gal-Yam, J. D. Lyman, D. S. Homan, C. Agliozzo, J. P. Anderson, ... O. Yaron + Show authors

INAF ISTITUTO NAZIONALE DI ASTROFISICA Osservatorio Astronomico d'Abruzzo

1 14	1	The Periodic Table of Elements															18 VIIA
н	2 84											13 mit	14	15 VA	16 VIA	17 VIA	He
Li	Be	ATOMIC N	VUMBER - 1 SYMBOL -	н								^s B	°C	⁷ N	* O	۴	¹⁰ Ne
Na	¹² Mg	3 100	4 MB	s VB	6 1/8	2 100	8 V18	9 Vii8	10 V108		12 18	¹³ Al	¹⁴ Si	¹⁵ P	¹⁶ S	"CI	¹⁸ Ar
ĸ	²⁰ Ca	Sc	22 Ti	23 V	²⁴ Cr	Mn	Fe	27 Co	28 Ni	29 Cu	³⁰ Zn	Ga	³² Ge	³³ As	[™] Se	³⁵ Br	³⁶ Kr
Rb	[™] Sr	39 Y	[∞] Zr	Nb	42 Mo	43 Tc	[#] Ru	45 Rh	* Pd	47 Ag	[≉] Cd	49 In	^{so} Sn	sı Sb	^{s2} Te	53 	⁵⁴ Xe
cs	^{se} Ba	57-71 La-Lu	ⁿ Hf	73 Ta	74 W	⁷⁵ Re	⁷⁶ Os	" Ir	Pt	Au	[∞] Hg	⁸¹ TI	Pb	⁸³ Bi	⁸⁴ Po	⁸⁵ At	⁸⁶ Rn
Fr	** Ra	89-103 Ac-Lr	Rf	Db	¹⁰⁶ Sg	Bh	Hs	Mt	Ds	"" Rg	Cn	¹¹³ Nh	II4 FI	Мс	116 Lv	117 Ts	118 Og
LANTHANIDES		57 La	^{ss} Ce	so Pr	⁶⁰ Nd	Pm	⁶² Sm	63 Eu	⁶⁴ Gd	55 Tb	⁶⁶ Dy	67 Ho	⁶⁸ Er	°″Tm	⁷⁰ Yb	²¹ Lu	1
		⁸⁹ Ac	[∞] Th	Ра	92 U	⁹³ Np	⁹⁴ Pu	95 Am	^{**} Cm	97 Bk	^{se} Cf	99 Es	¹⁰⁰ Fm	Md	102 No	Lr	1

Japan-Lithuania Opacity Database for Kilonova (version 1.1)

Daiji Kato and Izumi Murakami (National Institute for Fusion Science, Japan) Masaomi Tanaka and Smaranika Banerjee (Tohoku University, Japan) Gediminas Gaigalas, Laima Kitoviene, and Pavel Rynkun (Vilnius University, Lithuania)

Last input: nuclear heating rates

$$\dot{Q}_{r-process} = \sum_{i \in reactions} Q_i \lambda$$

 $Q = M_{initial} - M_{final}$ $\lambda = decay rate$

Heating efficiencies

$$\frac{d\varepsilon}{dt} = \dot{\varepsilon}_0 \left(\frac{1}{2} - \frac{1}{\pi} \arctan\left[\frac{t - t_0}{\sigma}\right] \right)^{\alpha} \left(\frac{1}{2} + \frac{1}{\pi} \arctan\left[\frac{t - t_1}{\sigma_1}\right] \right)^{\alpha_1} + C_1 e^{-t/\tau_1} + C_2 e^{-t/\tau_2} + C_3 e^{-t/\tau_3} \tag{2}$$

...13 free parameters...

Zhu+ 2020

Ò

1 s

 $L \propto \dot{Q}M$

time

Last input: nuclear heating rates

heating rate

$$\dot{Q}_{r-process} = \sum_{i \in reactions} Q_i \lambda$$

 $Q = M_{initial} - M_{final}$ $\lambda = decay \ rate$

Heating efficiencies

$$\frac{d\varepsilon}{dt} = \dot{\varepsilon}_0 \left(\frac{1}{2} - \frac{1}{\pi} \arctan\left[\frac{t - t_0}{\sigma}\right] \right)^{\alpha} \left(\frac{1}{2} + \frac{1}{\pi} \arctan\left[\frac{t - t_1}{\sigma_1}\right] \right)^{\alpha_1} + C_1 e^{-t/\tau_1} + C_2 e^{-t/\tau_2} + C_3 e^{-t/\tau_3} \tag{2}$$

...13 free parameters...

 $\propto t^{-1.3}$

With four parameters I can fit an elephant, and with five I can make him wiggle his trunk. [J. VON NEUMANN]

Ministero dell'Università e della Ricerca

...and finally...

RT equation

$\frac{\mathrm{d}I_{\nu}}{\mathrm{d}\tau_{\nu}} = S_{\nu} - I_{\nu}$

Optical depth

Source function (emissivity to absorption ratio)

Optical depth is a measure of the extinction coefficient or absorptivity up to a specific stellar layer.

$$\tau_{\nu}(D) = \int_0^D \alpha_{\nu}(s) \,\mathrm{d}s$$

 κ_v is the frequency-dependent / opacity of the medium

$$l_{\text{free},v} = \frac{1}{\rho \kappa_v}$$

Photon mean free path

 $\alpha_{\nu} \equiv \kappa_{\nu} \rho$

Model A Model B

Model C -----

Model D —

Model A1

100

A plethora of KN lightcurves

 $(10^{42})^{10^{42}}$ (erg/s) $\dot{O}_{10^{40}}$ Luminosity 0^{39} 10381 100 150 200250mass number, A 10^{37} 1 10 time (days)

Yang+2024

 10^{0}

 10^{1}

Time since merger (days)

A plethora of KN lightcurves

 10^{0}

 10^{1}

Time since merger (days)

Thanks for the attention