Simulations with directional optical module

Vladimir A. Kulikovskiy

Spring 2008 I.N.F.N. Sezione di Genova

Outline

the Directional Optical Module (DOM) comparison with standard OM calculating

- effective area
- angular resolution

considering different detector geometries

- NEMO-KM3
- Optimized NEMO-KM3 geometry
- ANTARES

Directional Optical Module

Effective area

Effective area - quantity which, when multiplied by a differential neutrino flux and integrated gives a rate of observed events:

$$N_{observed} = \int V_{eff}(E_{\nu}, \theta_{\nu})(\rho N_A)\sigma(E_{\nu})P_{Earth}(E_{\nu}, \theta_{\nu})\frac{d\Phi_{\nu}}{dE_{\nu}d\theta_{\nu}}dE_{\nu}d\theta_{\nu}$$

number of selected events, divided by number of generated events multiplied by generation volume gives effective volume for some selection

$$V_{eff}(E_{\nu}, \theta_{\nu}) = \frac{N_{selected}(E_{\nu}, \theta_{\nu})}{N_{generated}(E_{\nu}, \theta_{\nu})} \times V_{generation}$$

So, the effective area of the detector for fluxes from the source will be

$$A^{\nu}_{eff}(E_{\nu},\theta_{\nu}) = V_{eff}(E_{\nu},\theta_{\nu}) \times (\rho N_A) \times \sigma(E_{\nu}) \times P_{Earth}(E_{\nu},\theta_{\nu})$$

Angular resolution

For angular resolution difference between directions of reconstructed μ and true μ tracks was used. Exactly it was median of this distribution.

Median - the number separating the higher half of a probability distribution from the lower half.

Simulation parameters.

Range of neutrino energy – 100GeV-10PeV. Direction – upgoing (θ = 90° -180°). Type – muon neutrino Number of generated neutrino – 5*10⁸ (for km³) 5*10⁹ (for ANTARES)

Number of events, saved for reconstruction $\sim 10^6$

RECOnstruction Software

- Using ANTARES RECO 4.4 modified for NEMO project (for standard OM)
- The same RECO was optimized for DOM
- After reconstruction only artificial cut applied – difference between true & reconstructed tracks should be less than 2°(5°)

NEMO-KM3 configuration

- 81 towers (9x9)
- distance between towers from 140m
- 18 bars at each tower
- length of console 20m
- 2 PMT at each end of a bar
- 1 PMT looking down
 1 PMT horizontal
- standard or directional PMT

Effective area for NEMO-KM3

Effective area for NEMO-KM3 (ratio of DOM to STD)

Angular resolution of NEMO-KM3

NEMO-KM3 optimization

- Achieve the same effective area, like standard NEMO-KM3 detector has, but using lower number of towers.
- DOM optical modules gives a possibility to increase effective area at lower energies.
- At high energy effective area depends generally on detector instrumental volume.

8x8 towers with 180m distance between them was accepted for simulations

Effective area of 8x8 NEMO-KM3 180m

Effective area of NEMO-KM3 180m (ratio to standard)

Angular resolution of NEMO-KM3 180m

Conclusion about reducing towers using DOM

- Using DOM can increase reconstruction quality at low energies.
- Using DOM to decrease the number of towers seems to be resonable. It was proved, that practically one can reach the same effective area as with standard NEMO-KM3 configuration, allowing potential reduction of constuction elements to 80% from original.

ANTARES 0.1km³ configuration

- 25 storeys on each string
- 3 OMs on each storey

MC Simulations

	Simulations made by me	Bari-Valencia production
Number of events	5*10 ⁹ (ν _μ)	5*10 ¹⁰ (ν _μ)
Energy range	10 ² -10 ⁸ GeV	10 – 10 ⁷ GeV
Direction	upgoing	upgoing
Software	genhen v5r5km3 km3 v2r1km3 modk40 v4r8km3	genhen v5r6 km3 v2r2 geagmu v4r9 modk40 v4r9
	reco v4r4km3_new	recov4r4

Effective area of ANTARES detectors

Efffective area of ANTARES detectors (ratio to standard)

Angle resolution of ANTARES detector

Further goals

Work with reference configuration

(WaterCube geometry)

- reprodude Sebastian Kuch simulations,
 which were done for KM3 Project
- work with WaterCube equipped with DOMs
- Sensitivity calculations
 - For configurations from this presentation
 - For WaterCube configuration

WaterCube geometry

IceCube Geometry: 9600 OMs looking up & down in a hexagonal grid. 80 Strings, 60 storeys each. 17m between storeys

THANKYOU!