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THE FCC CHALLENGE
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The Physics you want – The Detector you need

<<<<<<<<<<<<<

<<<<<<<
I. Vivarelli (INFN & EU strategy)
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Higgs boson tagging and BR into invisibles sets 

requirements on: 

• Tracking performance 

• Material in the tracking volume. 

• Magnetic field (and thickness of solenoid). 

Higgs boson BR sets requirements on e, 𝛾 and jet 

energy and angular resolutions.

• Tagging sets requirements on tracking and vertexing. 

…and in general requirements grow as more and more 

physics is explored.

The physics case drivers

Benchmark physics channels
=> 

update on detector requirements
https://arxiv.org/abs/2401.07564
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The physics case drivers
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The physics case drivers

one problem – several solutions with different pros and cons
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From detector R&D to integrated experiment views

The Detector Concepts

ALLEGRO

CLD-like

IDEA
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The physics case drivers

one problem – several solutions with different pros and cons
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Efforts ongoing at different levels

• Technology selection

• DMAPS: Depleted Monolithic 

Active Pixel Detectors

• Curved MAPS

• LGAD for timing information in 

the wrapper

• Vertex mechanical integration in the 

MDI (Machine Detector Interface)

Vertex technologies 

Keywords:

• High spatial resolution (~ 3-5 μm)

• Lightweight (0.1% of X0/layer)

• Low power consumption to cope with 

a 400 MHz/cm2 estimated rate      

(10-30 mW/cm2)
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DMAPS

Vertex technologies Curved and stitched MAPS

Proposed layout using an ALICE ITS3 inspired 

design (~0.05%𝑋/𝑋0 material budget per layer) 

• ALICE smaller radius will be 18 mm 

(beam pipe 16 mm)

• To demonstrate bent MAPS 13.7 mm radius 

works electrically – mechanically is OK

Active pixels <95% of covered area (chip 

service zones)

• Which impact has on physics?

ARCADIA based:

• Lfoundry 110 nm process

• 50 µm thick

• Power density 30 mW/cm2

• 100 MHz/cm2

ATLASPIX3 based

• TSI 180 nm process

• 50 µm thick

• Power density 150 mW/cm2

• Up to 1.28 Gb/s downlink
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The physics case drivers

one problem – several solutions with different pros and cons



Momentum resolution 
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BES inherent to the machine. 
~ 0.16% @ 240 GeV

( ~ 0.13% @ the Z pole ) 

Muons in ZH events have rather small pT

Transparency more relevant than asymptotic resolution
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Challenges

• Total thickness: 1.6% of X0 at 90°

• Max drift time: 350 ns

• Single point precision σxy ~ 100 μm

(many points in the same track) ;      

σz < 1 mm 

Extremely transparent Drift Chamber

Based on MEG2 experience
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Open challenges

Complete mapping of dN/dx data in all relevant 

background regions

• Understand details of cluster counting performance

Build large mechanical prototype

• Inner radius Rin = 35 cm, outer radius Rout = 200 cm

• Mechanical deformation of the spokes (wire support) 

due to mechanical tension on wires

Develop on-detector cluster counting electronics 

Drift Chambers 
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All-Silicon Tracker
Excellent working 

example: CMS all-SI

Optimized for high-resolution, Particle Flow approach
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The physics case drivers

one problem – several solutions with different pros and cons



Calorimeter performance
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At 𝛿E/E ≃ 30% / √E [GeV], 

detector resolution comparable 

to W and Z

W Z

Jet final state will be dominant at FCC-ee
• higher BR

• clean environment

Disantangling W and  Z peak 

e.g. Separation of  ννH from WW fusion and HZ

e+e-→HZ physics constraints

H→ 𝛾𝛾➔ ECAL resolution 

As good as possible – at least 20%/ 𝐸 + 1%

for HF physics 3%/√E is required

EM resolution 
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Jet energy measurement by measurement of 

individual particles

Maximal exploitation of precise tracking 

measurement

Measure charged particles contribution to jets 

by using tracker rather than calorimeter. 

• Requirements: High granularity -

compactness (small Moliere radius) – high 

magnetic field. 

• Drawbacks: confusion term (possible error in 

subtracting charged contribution)

Particle-Flow calorimeter
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EM Calorimeter: 

• Noble liquid calorimeters: good energy resolution, long-term 

stability, easy to calibrate. • Ideas to achieve high granularity 

targeting particle flow. 

• Solution heavily inspired to ATLAS: LAr + copper

• different geometry. 

Liquified Noble Gas Calorimeter

Hadronic section 
with an increased granularity scintillator 

tile + steel (a la TileCal)
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Currently 2 options under study:

• Longitudinal unsegmented dual-readout fibre calorimeter 
(combined EM+HAD)

• Dual-readout crystal (EM calo) + dual-readout fibre 
calorimeter (HAD calo)

Measure simultaneously:

• Scintillation signal (S)

• Cherenkov  signal (C)

Calibrate both signals with e-

Unfold event-by-event fem to 

obtain corrected energy

Dual-readout calorimeter(s)

Natively High-Resolution Calorimeter

High-granularity for PF-friendly approach
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RPC traditional approach

Requirements on muon detector not strict

Using known technology widely spread in HEP 

μ-Rwell proposal

• Good spatial resolution
• Good rate capability

Muon detectors

MPGD  innovative approach
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THE MUON COLLIDER 
CHALLENGE
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The requirements 

for the detector 

specifications 

from physics are 

similar to those of 

other multi-TeV

machines

but

Beam Induced 

Background is 

dominant source 

of background

Detector challenge
M. Casarasa (INFN & EU strategy)
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Bringing an experiment to live is much more

Detector simulation and performance 

study 

Physics benchmark studies

Data model

Data Acquisition 

...

It’s not all about detector construction 
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INFN strategically placed in many 

of the key R&Ds.

There is for sure a DRDx activity in 

your institute. 
Join the effort!



When it’s going to happen?
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Is this far away? Nope! 
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Learning from experience

Brief History of LHC experiments
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Atlas example

“Rome Experiment wasn't built in a day”

1998-2003:
Point-1 Civil Engineering

Underground cavern 56 x 32 x 35m3

Barrel toroid+calorimeter
& solenoid: 2004-2005

ATLAS installation of all the 
detectors



29

Atlas (MDT) example

“Rome Experiment wasn't built in a day”

1998: testing 

prototypes on beam  

1999-2004: detector 

mass production & 

commissioning

2006: detector 

installation in ATLAS
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09.2008: False start: the LHC incident

11.2009: the first collisions @ 900 GeV
03.2010: First 7 TeV collision in ATLAS

... and then there was the Physics
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You will not “wait” 20 or 40 years for 

FCC-ee and FCC-hh.

You will be overwhelmed by all the work 

needed to make them happen!

M. Cobal
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