Report on LNS theory group (GR4) activity

Istituto Nazionale di Fisica Nucleare

Danilo Gambacurta

Laboratori Nazionali del Sud (Catania)

Presentazione Attività e Preventivi 2024 18 e <u>19</u> Luglio 2024

Iniziative Specifiche di CSN4:

- MONSTRE
- ≻ SIM

MONSTRE

Unità: LNS, Bologna, CT,Milano, Padova, Trento FTE totale: ≈30, FTE (LNS) ≈4.5

Responsabile Nazionale: Danilo Gambacurta (LNS)

Responsabile Locale: Maria Colonna

Collaborazioni: LNS+CT (Chimera, Medea, NUMEN, ASFIN), Firenze, Napoli, Genova, IPN-Orsay, GANIL, GSI, Monaco, Bucharest, Giessen, Darmstadt, Siviglia, MSU, Pechino, Lanzhou, Rio de Janeiro, RIKEN, ...

Obiettivi generali:

Modeling nuclear structure and reaction properties

Four WorkPackages (WPs)

- WP1: **Ab initio many body methods for nuclei and nuclear matter**: increasing the accuracy and predictive power
- WP2: Advanced theoretical studies of nuclear phenomena: addressing the experimental challenges
- WP3: Nuclear matter under extreme conditions: from nuclear dynamics to compact objects
- WP4: Emerging computational technologies: quantum information and machine learning techniques

Obiettivi generali:

Modeling nuclear structure and reaction properties

Four WorkPackages (WPs)

- WP1: **Ab initio many body methods for nuclei and nuclear matter**: increasing the accuracy and predictive power
- WP2: Advanced theoretical studies of nuclear phenomena: addressing the experimental challenges
- WP3: Nuclear matter under extreme conditions: from nuclear dynamics to compact objects
- WP4: Emerging computational technologies: quantum information and machine learning techniques

LNS Activities: Nuclear Structure Studies

Theoretical Models and Techniques

Energy Density Functional Framework (Skyrme, Gogny, Covariant)

✓ Ground state: HF, HF+BCS, HFB

- ✓ **Excited states:** RPA, QRPA, Second RPA, TDHF
- ✓ Transport theories based on EDF

Fixtending models: including clusters d.o.f. , short range correlations, bridge with ab-initio theories, ...

Main Physical Cases of Interest

Collective nuclear excitations, especially in neutron-rich and exotic nuclei (Giant Resonances, Pygmy Dipole Resonance, ...)

EoS of asymmetric matter (symmetry energy, ...)

✓ Charge exchange excitations (Gamow-Teller, Fermi, etc,) and Beta Decay (single and double)

✓ Interdisciplinary aspects between nuclear and neutrino physics

LNS activities: Nuclear Reaction Studies

Theoretical Models and Techniques

- ✓ Semi-classical transport theories, incorporating many-body correlations
- \checkmark DWBA and/or coupled channel calculations
- ✓ Formulation of scattering theories and methods

Main Physical Cases of Interest

- Nuclear reactions at Fermi/intermediate energies
- Direct reaction (transfer, charge exchange, probing spin-isospin channels)
- Fragmentation reactions, also for medical applications
- Impact of Eos on nuclear reactions
- Double Charge Excitations and the connection to double beta decay
- Reactions for astrophysical studies (light systems, cluster structure)

Theoretical part of NUMEN project (Resp. M. Colonna)

For single charge exchange (SCE) Nuclear Reactions are a well tested approach to probe single β decay... MAGNEX at LNS allow to access *double charge exchange* (DCE)

Double β-decay
Within standard model

$$\begin{array}{c} \zeta(A,Z)\\ (A,Z+2)\\ ($$

0 L

48

76 82

96100

А

116 124 130 136

150

➔ Modelli di struttura nucleare per meccanismi SCE/DCE

Modelizzazione e studi formali di reazioni di doppio scambio di carica

Article

Theory of Majorana-Type Heavy Ion Double Charge Exchange Reactions by Pion–Nucleon Isotensor Interactions

Horst Lenske ^{1,*,†}, Jessica Bellone ^{2,†}, Maria Colonna ^{2,†} and Danilo Gambacurta ^{2,†}

Article

Induced Isotensor Interactions in Heavy-Ion Double-Charge-Exchange Reactions and the Role of Initial and Final State Interactions

Horst Lenske ^{1,*,†}, Jessica Bellone ^{2,†}, Maria Colonna ^{2,†}, Danilo Gambacurta ^{2,†} and José-Antonio Lay ^{3,4,†}

The role of **initial state (ISI) and final state (FSI)** ion–ion interactions for double single-charge-exchange (DSCE) reactions has been investigated.

Virtual pion–nucleon charge exchange interactions are investigated as the source for induced isotensor interactions, giving rise to the **Majorana DCE (MDCE) reactions** in the projectile and target nucleus.

Connections to neutrinoless Majorana double beta decay (MDBD) are also discussed at various levels of the dynamics, from the underlying fundamental electro-weak and QCD scales to the physical scales of nuclear MDBD and MDCE physics.

Figure 1. Schematic representation of the collisional processes contributing to a DCE reaction $A(Z, N) \rightarrow B(Z \pm 2, N \mp 2)$. The DSCE reaction scenario of second-order in the isovector NN T-matrix (left) competes with the direct MDCE mechanism proceeding by an isotensor interaction induced by off-shell pion–nucleon DCE scattering.

From t- to s-channel representation

S-channel: separation and factorization of the 2-step process in target and projectile => Selective information on target and projectile

Two-body transition densities

⁷⁶Se ($\tau^+\tau^+$) (L,S,S₁,S₂) = (0,0,0,0)

J.I. Bellone, M. Colonna, D. Gambacurta, H. Lenske, submitted

Dissipative reactions provide a unique opportunity to create nuclear matter in several conditions of density and temperature in laboratory

Femto-nova explosion created by heavy ion collisions !

from A. Ono

Explore the nuclear matter
 phase diagram
 and access the nuclear
 Equation of State (EOS)

The EOS of asymmetric nuclear matter

Semi-classical approx: from ETDHF to *transport theories* Challenges for transport theories: TMEP

physical input (EOS, $\sigma_{inmed,}$ $\pi\Delta$ physics, ..)

→ transport code

- Quite complex: simulations with many technical details
- Model dependence for some observables
- \rightarrow Establish a sort of systematical theoretical error

→ Transport Model Evaluation (Comparison) Project -- **TMEP**

.....

- About 30 participants

Core group:

MC (Catania) Dan Cozma (Bucharest) Pawel Danielewicz & Betty Tsang (MSU) C-M Ko and Z.Zhang (Texas A&M) Akira Ono (Sendai) Jun Xu (Shanghai) Herman Wolter (Munich) Yingxun Zhang (Beijng) Calculations of **Nuclear Matter** (box with periodic boundary conditions)

test separately ingredients in a transport approach:

observables

- a) collision term without and with blocking (Cascade) Y.X. Zhang, et al., Phys. Rev. C 97, 034625 (2018)
- b) mean field propagation (Vlasov)
- c) pion, Δ production in Cascade
- d) instabilities , fragmentation
- e) momentum dependent fields

ent neius

A.Ono et al., PRC 100, 044617 (2019) M. Colonna et al., PRC, 104, 024603 (2021)

pl in progress

H.Wolter et al, PPNP 125 (2022)

Comparing pion production in transport simulations of heavy-ion collisions at 270A MeV under controlled conditions

• **CASCADE**: difference **BUU/QMD** due to better treatment of Pauli-Blocking in **BUU**

• **FULL**: difference **BUU/QMD** due to «softer» effective interaction in **QMD**

Comparing pion production in transport simulations of heavy-ion collisions at 270A MeV under controlled conditions

FIG. 2. Contours of reduced densities ρ/ρ_0 in the x-0-z plane at different indicated times in the Full-nopb mode.

Dynamics of low-energy heavy-ion collisions (HIC)

- Mean-field models based on (Skyrme-like) energy density functionals (EDFs)
 - Time-Dependent Hartree-Fock (TDHF) theory (or semi-classical counterpart)

$$i\hbar\dot{\hat{
ho}}(t)+\left[\hat{
ho},\hat{H}_{eff}[
ho]
ight]=0$$

- Equilibration mechanisms in charge-asymmetric reactions around Coulomb barrier
 - Pre-equilibrium emission in ${}^{40}Ca+{}^{152}Sm$ at $E_{beam}=11$ AMeV \Rightarrow Dynamical dipole

[L. Shvedov, S. Burrello, M. Colonna, H. Zheng, in preparation]

- Understanding microscopic processes underlying complex HIC dynamics
- Unraveling connection between effective interaction and equation of state (EOS)
- Crucial insights on mechanism for the formation of super-heavy elements

Dynamics of low-energy heavy-ion collisions (HIC)

- Mean-field models based on (Skyrme-like) energy density functionals (EDFs)
 - Time-Dependent Hartree-Fock (TDHF) theory (or semi-classical counterpart)

$$i\hbar\dot{\hat{
ho}}(t)+\left[\hat{
ho},\hat{H}_{eff}[
ho]
ight]=0$$

- Equilibration mechanisms in charge-asymmetric reactions around Coulomb barrier
 - Pre-equilibrium emission in ${}^{40}Ca + {}^{152}Sm$ at $E_{\text{beam}} = 11 \text{ AMeV} \Rightarrow$ Dynamical dipole

- Understanding microscopic processes underlying complex HIC dynamics
- Unraveling connection between effective interaction and equation of state (EOS)
- Crucial insights on mechanism for the formation of super-heavy elements

Improving models for HIC at intermediate energies

- Kinetic approach for **HIC** at $E_{\text{beam}} \approx (30 300) \text{ AMeV} \Rightarrow$ (beyond) Boltzmann eqs. $(\partial_t + \nabla_{\mathbf{p}} \varepsilon_{\tau} \cdot \nabla_{\mathbf{r}} - \nabla_{\mathbf{r}} \varepsilon_{\tau} \cdot \nabla_{\mathbf{p}}) f_{\tau} = I_{\tau}^{\text{coll}}[f_n, f_p, \dots], \quad \tau = n, p, d, t, h, \alpha$
 - Consistent description of light clusters (+ in-medium effects) and fragments

• Linear response to collision-less Boltzmann \Rightarrow linearized Vlasov eqs. ($\omega = \omega(k)$)

[R. Wang, S. Burrello, M. Colonna, F. Matera, arXiv:2405.02157, accepted on PRC Letter]

• $\omega = Im(\omega) \Leftrightarrow unstable mode (spinodal region)$

w/o in-medium: clusters cooperate to fragments
with in-medium: clusters separately emitted

Improving models for HIC at intermediate energies

- Kinetic approach for **HIC** at $E_{\text{beam}} \approx (30 300) \text{ AMeV} \Rightarrow$ (beyond) Boltzmann eqs. $(\partial_t + \nabla_{\mathbf{p}} \varepsilon_{\tau} \cdot \nabla_{\mathbf{r}} - \nabla_{\mathbf{r}} \varepsilon_{\tau} \cdot \nabla_{\mathbf{p}}) f_{\tau} = I_{\tau}^{\text{coll}}[f_n, f_p, \dots], \quad \tau = n, p, d, t, h, \alpha$
 - Consistent description of light clusters (+ in-medium effects) and fragments

EOS and modelization of compact stellar object

- Embedding clusters and short-range correlations in EDFs [coll. G. Röpke & S. Typel]
- Treatment of low-density matter in meta-modeling approach [coll. F. Gulminelli]
 - EFT-inspired & ab-initio benchmarked EDFs [S. Burrello & M. Grasso, EPJA 58:2 (2022)]]

• Theoretical support for interpretation of GW signals for Einstein Telescope

Gamow-Teller Strength in ⁴⁸Ca and ⁷⁸Ni with the Charge-Exchange Subtracted Second Random-Phase Approximation

D. Gambacurta[®],¹ M. Grasso[®],² and J. Engel[®]³

Improving beta decay half lives description

Implications for NME in neutrino-less double-β decay,
 PANDORA and NUMEN project

FIG. 4. (a) Cumulative sum for different models (see legend and text) for the nucleus ⁷⁸Ni; (b) β -decay half-life for ⁷⁸Ni predicted by SSRPA, compared with predictions of other models and the experimental value [58]. The yellow band represents the experimental uncertainty.

PHYSICAL REVIEW C 109, 044315 (2024)

Symmetry-restored Skyrme-random-phase-approximation calculations of the monopole strength in deformed nuclei

A. Porro0, 1, 2, 3, * G. Colò $0, 4, 5, \dagger$ T. Duguet $0, 1, 6, \ddagger$ D. Gambacurta0, 7, \$ and V. Somà^{1, ||}

A. Angular momentum projection

$$P_{MK}^{J} \equiv \frac{2J+1}{8\pi^2} \int d\Omega \, \mathcal{D}_{MK}^{J*}(\Omega) \mathcal{R}(\Omega),$$

FIG. 2. Angular momentum decomposition of the HF ground state in $^{24}{\rm Mg}$ ($N_{\rm sh}$ = 11).

PHYSICAL REVIEW C 109, 044315 (2024)

Symmetry-restored Skyrme-random-phase-approximation calculations of the monopole strength in deformed nuclei

A. Porro $(0, 1, 2, 3, * G. Colo (0, 4, 5, † T. Duguet (0, 1, 6, ‡ D. Gambacurta (0, 7, § and V. Somà^{1, \parallel}))$

A. Angular momentum projection

$$P_{MK}^{J} \equiv \frac{2J+1}{8\pi^2} \int d\Omega \, \mathcal{D}_{MK}^{J*}(\Omega) \mathcal{R}(\Omega),$$

(a)

S₀₀ [fm⁴MeV⁻¹]

S₂₀ [fm⁴MeV⁻¹]

200

150

100

50

0

100

50

Attività 2025: MONSTRE

- Single and double beta decay studies (RPA, QRPA and Second RPA), *in progress*
- Nuclear excitations in deformed nuclei and link with Equation of State
- Transport theories: formation of light clusters, treated as explicit degrees of freedom
- Equation of State including light clusters, *Short Range Correlations* (important also for the modeling of compact stellar objects=>Einstein Telescope physics)

Nuclear Reactions

- Charge Exchange: Compare the results of different structure models (shell model vs. QRPA), in progress
- Consistent description of competing channels (multi-nucleon transfer) and, more in general, of all open reaction channels (multi-channel approach)
- Correlated Double Charge Echange mechanism (*short-range correlations*) and interference with DSCE
- **Theoretical support** to LNS experiments (Numen project, ASFIN, PANDORA, ...)

Attività 2025: MONSTRE

- Single and double beta decay studies (RPA, QRPA and Second RPA), *in progress*
- Nuclear excitations in deformed nuclei and link with Equation of State
- Transport theories: formation of light clusters, treated as explicit degrees of freedom
- Equation of State including light clusters, *Short Range Correlations* (important also for the modeling of compact stellar objects=>Einstein Telescope physics)

Nuclear Reactions

- Charge Exchange: Compare the results of different structure models (shell model vs. QRPA), in progress
- Consistent description of competing channels (multi-nucleon transfer) and, more in general, of all open reaction channels (multi-channel approach)
- Correlated Double Charge Echange mechanism (*short-range correlations*) and interference with DSCE
- **Theoretical support** to LNS experiments (Numen project, ASFIN, PANDORA, ...)

FTE: MONSTRE (4.4)^{4.7 in 2023}

cognome	nome	contratto	profilo	perc	sezione
Bonaccorso	Angela	Associato	Associazione Senior	0%	Pisa
Bonasera	Aldo	Associato	Associazione Senior	50%	LNS
Burrello	Stefano	Dipendente	Ricercatore	70%	LNS
Colonna	Maria	Dipendente	Dirigente di Ricerca	60%	LNS
Gambacurta	Danilo	Dipendente	Primo Ricercatore	80%	LNS
Greco	Vincenzo	Associato	Prof. Ordinario	10%	LNS
Gargano	Angelina	Dipendente	Primo Ricercatore	70%	Napoli
Shvedov	Leonid	Dipendente	Assegno di Ricerca	100%	LNS

SIM: Strongly Interacting Matter at high density and temperature

Units: Catania, Firenze, LNS, Torino, FTE totale: ≈20 FTE (LNS) ≈6.6

Responsabile Nazionale: Andrea Beraudo (TO) **Responsabile Locale**: Enzo Greco

Collaborazioni: CT, TO, Francoforte, Nantes, CERN, Berkeley LBL, Texas A&M, Duke U., Lanzhou University, University of Barcellona, IIT Ghoa, Jyväskylä, ...

Obiettivi generali: Study of strongly interacting matter at

high density and temperature

- Fenomenologia del Quark Gluon Plasma (QGP)
- Dinamica dei quarks e meccanismi di adronizzazione
- Equazioni del trasporto per i partoni (beyond hydrodynamics):
- Dinamica dei quark pesanti: charm e bottom
- Early stage, dinamica di non-equilibrio AA, pA e pp

An elephant in the liquid: Heavy Charm Quark

Heavy because:

 \Leftrightarrow M >> Λ_{QCD} (particle physics) \Leftrightarrow M >> T (plasma physics)

Fokker-Planck Equation – Brownian motion

→ Poorly dragged & long thermalization time (!?)

 $\tau_{c,\text{therm}} \approx O(10^2) >> \tau_{\text{QGP}} >> \tau_{q,\text{therm}} \approx O(1) \ fm/c$

Goal : determine strength of QCD interaction and thermalization time of Heavy quarks Long stand problem \rightarrow reproduce both p_T spectra (R_{AA}) and elliptic flow (v_2)

Hadronization from e⁺e⁻ to pp and AA

Extension to b quark dynamics

- Extension of QPM-Catania model employed for charm quarks to bottom quarks: no parameter adjustment!
- Comparison to electrons for semileptonic decays of B mesons: OK! (large error bars)

ML Sambataro et al., PLB849(2024) [hep-ph]

New: QPM ($N_f=2+1$) extension to QPMp ($N_f=2+1+1$)

> **QPMp** describes ε , P, χ_{a} , χ_{s} of LQCD

+ closer than QPM to D_s to new

LQCD with dynamical fermions

QPM

QPMp

charm

bottom

 $M_{o} \rightarrow$

 $m_{u,d,s}(p)$ expected on theoretical ground \rightarrow susceptibilities...

 $T \ \partial^2 \ln Z$

0.2

0.3

 $\chi_{u,s,c} = \frac{1}{V} \frac{1}{\partial \mu_{u,s,c}^2}$

0.8

0.2

 κ_{10}^{n/T^2}

lOCD [Francis (2015)] lQCD [Brambilla (2020)]

lQCD [Altenkort(2023)]

QPM [Case 1] N₅=2+1+1

 QPM_{p} [Case 1] $N_{f}=2+1+1$

 QPM_{p} [Case 3] N_f=2+1+1

 $QPM_{n} [m_{hott} = 4.7 \text{ GeV}] N_{f} = 2+1+1$

3.2

2.8

 $QPM N_c = 2+1$

2.4

 T/T_{c}

16

 \succ Can this new D_s(T) generate predictions for R_{AA}, in agreement with experimental data? V_{2}, V_{3} M.L. Sambataro et al. e-Print: 2404.17459

0.5

IOCD [WB]

QPM_p [Case 1] OPM [Case 1]

OPM [Case 2]

OPM [Case 3]

0.4

"Fragmentation" Fractions in pp Catania Coalescence

Daring to assume a small fireball according viscous hydro applied to pp as in AA, but size,time, flow given by hydro for pp

Altmann, Dubla, Greco, Rossi & Skands, arXiv:2405.19137

- Evidence of different "Fragmentation" Fractions in pp at LHC wrt e⁺e⁻(e⁻p) collisions while very similar to AA collisions
 - Catania Coal+Fragm. : same approach to pp and AA: pp@TeV like a little drop of AA

Coalescence $f_M \approx f_q \otimes f_{\bar{q}} \otimes \Phi_M \cdot \delta(\vec{p}_M - \vec{p}_q - \vec{p}_{\bar{q}})$

"Fragmentation" Fractions in pp Catania Coalescence

Daring to assume a small fireball according viscous hydro applied to pp as in AA, but size,time, flow given by hydro for pp

Altmann, Dubla, Greco, Rossi & Skands, arXiv:2405.19137

- Evidence of different "Fragmentation" Fractions in pp at LHC wrt e⁺e⁻(e⁻p) collisions while very similar to AA collisions
- Catania Coal+Fragm. : same approach to pp and AA: pp@TeV like a little drop of AA

Coalescence $f_M \approx$

$$\approx f_q \otimes f_{\bar{q}} \otimes \Phi_M \cdot \delta(\vec{p}_M - \vec{p}_q - \vec{p}_{\bar{q}})$$

From AA to pp baryon/meson vs $p_{\scriptscriptstyle T}$

Same hadronization approach in pp and AA: pp@TeV like a drop of AA with smaller size & radial flow

SMC: Space-Momentum correlation

"Extension to bottom baryons

> Similar but even larger $\Lambda_{\rm b}$ /B than $\Lambda_{\rm c}$ /D

 \succ Extension of coalescence probability in p_{τ} about proportional to the heqvy quark mass

Very early stage dynamics

<u>V. Nugara et al., 2311.11921</u> [hep-ph]

initial conditions and early stage attractions?

Impact of transition to hadronic matter

Even the strong rise of the shear viscosity at the transition to hadronic matter (\rightarrow increase of equil. time) does not break the evolution toward equilibration

 $\tau_{eq} = 5(\eta/s)/T(\tau)$

V. Nugara et al., 2311.11921 [hep-ph]

<u>Attività SIM 2024-26</u>

Develop a relativistic event-by-event transport theory suitable to perform realistic simulations of relativistic HIC's from AA to pA collisions.

→ Study the existence of dynamical attractors in 3+1 D
 → Heavy Quark dynamics in a unified frameworks in pA and AA(extensiontobquarks)
 → Early stage Heavy Quark in the Glasma (collaboration with INFN-CT)

- ★ Hadronization: coalescence+fragmentation to predict different charmed hadrons like D mesons Λc, Ξc and Ωc baryons as well as multi-charm baryons (Ξcc, Ωcc and Ωccc)
 → to different colliding systems from Pb+Pb to Kr+Kr, Ar+Ar and pA collisions (ALICE3)
 - Explore impact of open quantum system tecniques in high energy physics on quantum computing (NQSTI – PNRR)

FTE: SIM (6.0)^{5.9 in 2023}

cognome	nome	contratto	profilo	perc	sezione
Asta	Angelo	Associato	Dottorando III (proroga)	100%	LNS
Coci	Gabriele	Associato	RTDA- PNRR	10%	LNS
Greco	Vincenzo	Associato	Prof. Ordinario	90%	LNS
Nugara	Vincenzo	Associato	Dottorando III	100%	LNS
Parisi	Gabriele	Associato	Dottorando III	100%	LNS
Plumari	Salvatore	Associato	Prof. Associato	100%	LNS
Sambataro	Maria Lucia	Associato	Assegnista	100%	LNS

Budget (in k€)

	Missioni	Inviti	Seminari	Consumi	Inventariabile	Totale
Dotazioni	9	5	4	4	7	29
MONSTRE	9	-	-	-	-	9
SIM	14	-	-	-	-	14
Totale	30	5	4	4	7	52