Review of indirect cosmic ray measurements

Andrea Chiavassa

Universita’ degli Studi di Torino \& INFN

- $10^{13}-10^{15} \mathrm{eV}$
- Overlap with direct measurements
- Galactic radiation
- $10^{14}-10^{18} \mathrm{eV}$
- knee
- Galactic-Extragalactic transition
- $>10^{18} \mathrm{eV}$
- Extragalactic radiation
- Information required are:
- Arrival Direction
- Energy
- Mass

EAS development in atmosphere

- Near maximum of the EAS $e^{ \pm}$and μ numbers are nearly similar for H or Fe primaries
\rightarrow ok for E
\rightarrow bad for A
- Height of maximum depends on E
\rightarrow array location
- Calorimetric measurements
- Faint signals (only high energies)
- Fluorescence Light $\boldsymbol{\rightarrow} \mathbf{1 0 \%}$ duty cycle
- Radio \rightarrow very promising
- Sampling
- Stable and reliable techniques
- Hadronic interaction models dependence

$10^{13}-10^{15} \mathrm{eV}$

- MILAGRO
- Water cherenkov detector
- 2630 m
- TIBET AS- γ
- Scintillation counters
- 4300 m
- ARGO-YBJ
- RPC carpet
- 4300 m
- Ice-Cube
- High energy μ detector
- Cherenkov light emitted in Ice
- 1450 m ice deep

ARGO-YBJ mesurement of the light (i.e. $\mathrm{H}+\mathrm{He}$) spectrum
$\cdot 5 \times 10^{12}<\mathrm{E}<2 \times 10^{14} \mathrm{eV}$
-Multiplicity distribution $\mathrm{N}(\mathrm{M})$

$$
N(M)=\Omega \int_{E_{1}}^{E_{2}} \bar{A}_{\mathrm{eff}}\left(E^{\prime}, M\right) N\left(E^{\prime}\right) d E^{\prime} .
$$

- Unfolding procedure $\rightarrow \mathrm{N}(\mathrm{E})$
- Total uncertainty lower tan 10%
- CNO contribution <2\%

Anisotropy

- MILAGRO (PRL 101, 221101 (2008))
- Events with $\theta<45^{\circ}$ and $\mathrm{N}_{\text {PMT }}>20 \rightarrow \mathrm{E}_{\text {median }} \sim 10^{12} \mathrm{eV}$
- Significance map made with 10° smoothing and no discrimination between γ and charged cosmic rays
- Excesses called "Region A" and "Region B" have peak significance of 15.0σ and 12.7σ

- ARGO-YBJ detected the same structures with higher resolution and as a function of primary energy.

G. Di Sciascio presentation at Vulcano 2012

Medium Scale Anisotropy by ARGO-YBJ

Map smoothed with the detector PSF for CRs

Anisotropies in the Southern emisphere

Ice Cube as μ detector, 1450 m below ice level $\mathrm{E}_{\text {median }} \sim 20 \mathrm{TeV}$

Most significant structure extends over 20° in r.a. Post trial significance 5.3 σ

ApJ 740:16 (2011)
Milagro + IceCube TeV Cosmic Ray Data (10° Smoothing)

Combined Ice Cube and Milagro sky maps.
Smoothing 10°

10^{14} < $\mathrm{E}<10^{18} \mathrm{eV}$

Experimental results

- Proton spectrum agrees with direct measurements
- Knee observed in the spectra of all EAS components
- Primary chemical composition gets heavier crossing knee energies
- Knee is attributed to light primaries
- Radiation is highly isotropic.

Experiments operating between $10^{16}-10^{18} \mathrm{eV}$

- KASCADE-Grande (110 a.s.l.)
- $\mathrm{N}_{\mathrm{ch}}, \mathrm{N}_{\mu}$ (Scintillators)
- Shower Size \rightarrow NKG like ldf
- TUNKA-133 (675 m a.s.l.)
- Atmospheric Cherenkov light
- Q125
- GAMMA (3200 m a.s.l.)
$-\mathrm{N}_{\mathrm{ch}}, \mathrm{N}_{\mu}$ (Scintillators)
- Shower Size \rightarrow NKG like ldf
- IceTop (2835 m a.s.l.)
- Cherenkov light emitted in ice
- S125
- Auger Infill (1400 m a.s.l.)
- Cherenkov light emitted in water tanks
- S450
- Hybrid detector

GAMMA, ICRC 2011

KASCADE-Grande

TUNKA-133, ICRC 2011
http://dx.doi.org/10.1016/j.astropartphys.2012.05.023

All particle Cosmic Rays Energy Spectrum

Same data as previous plot, results are grouped by the interaction model used to convert the experimental observable(s) to primary energy

Flux differences can mainly be attributed to hadronic interaction used to convert to primary energy

1. This difference mainly concerns the absolute energy scale
2. Structures are visible in most of the spectra

Residual plot obtained fitting each spectrum with a single slope power law above the structure claimed by KASCADE-Grande $\left(1.7 \times 10^{16}-1,3 \times 10^{17} \mathrm{eV}\right)$

Chemical composition studies

KASCADE-Grande $\mathrm{N}_{\mu} / \mathrm{N}_{\mathrm{ch}}$ distributions ICRC 2011

Ice Top $\rightarrow \mathrm{S}_{125}$ Ice Cube $\rightarrow \mathrm{K}_{70}$ Neural Network analysis ICRC 2011

Spectra of different Mass Groups

- KASCADE-Grande
- Events selected in two samples \rightarrow
$\mathrm{N}_{\mu} / \mathrm{N}_{\mathrm{ch}}$
- Change of slope of the heavy component spectrum detected at $\sim 8 \times 10^{16} \mathrm{eV}$

$E>10^{18} \mathrm{eV}$

- Auger
- 1600 water tank. 1500 m spacing
- 4 Fluorescence Light Telescopes
- Telescope Array
- 507 scintillators. $3 \mathrm{~m}^{2}$ each. 1200 m spacing
- 3 Fluorescence Light Telescopes

Slides from the talks given at the:
International Symposium on Future Directions in UHECR Physics.
CERN 13-16 February 2012
http://indico.cern.ch/conferenceDisplay.py?confId=152124

SD Energy: Scaled to FD energy, measured by means of calorimetry

$$
E=E_{\mathrm{FD}}\left(S_{38}^{\mathrm{CIC}}\right)=a_{\mathrm{h}} S_{38}^{b_{\mathrm{h}}} \quad E=E_{\mathrm{FD}}\left(E_{\mathrm{MC}}\left(S_{\theta}\right)\right)=\frac{1}{\left\langle\frac{E_{\mathrm{SD}}}{E_{\mathrm{FD}}}\right\rangle_{\mathrm{h}}} E_{\mathrm{MC}}\left(S_{\theta}\right)
$$

Pierre Auger Observatory

Telescope Array

UHECR Energy Spectrum

Three Power-law fit

Energy Uncertainty Budget

	HiRes	Auger	TA
Calibration	10\%	9.5\%	10\%
Fluorescence yield	6\%	14\%	11\%
Atmosphere	5\%	8\%	11\%
Reconstruction	15\%	10\%	10\%
Invisible energy	5\%	4\%	(included above)
Total	17\%	22\%	21\%
-HiRes: Abbasi et al., PRL 100101101 (2008) -Auger: ICRC2011 -TA: ICRC2011			

Scaling Energy Spectra

UHECR Composition

- Measurements based on $X_{\text {max }} \rightarrow$ Fluorescence Light Telescopes
- Composition obtained comparing the $<X_{\mathrm{max}}>$ and/or $\sigma_{\mathrm{X}_{\max }}$ behaviour vs. energy with the expectations from a full simulation

HiRes

- P.A.O. data indicate a change of chemical composition towards heavy elements
- HiRes data are compatible with a constant chemical composition

Due to limited statistics no strong incompatibility between the results

Anisotropies and correlations with extragalactic objects

Correlations with AGN

November 9, 2007

Updated Auger analysis

Search for AGN correlation in HiRes

Auger collaboration, Astroparticle Phys. 34 (2010) 314

The updated analysis: 21 events correlate out of 55 total. The updated fraction of correlating events is $P=0.38$

2 events out of 13 correlate, 3.2 expected from random coincidences

Search for AGN signal in Telescope Array

- Original estimate of the correlating fraction is not supported
- Consistent with the updated estimate
- Consistent with no correlation
- ~ 3 times the present statistics is needed for a conclusive test

Conclusions

- Below the knee
- Unexpected CR anisotropy
- Around the knee
- Knee either due to limit of the acceleration in galactic sources (i.e. SNR) or of the containment inside galactic magnetic fields
- Not yet identified the transition to extragalactic radiation
- UHECR
- Well established spectral features: ankle \& GZK suppression
- Anisotropy E>60 EeV
- Controversial measurement of the chemical composition.

KASCADE-Grande
 = KArlsruhe Shower Core and $\underline{\text { Array DEtector }+ \text { Grande }}$ and LOPES

Measurements of air showers in the energy range $\mathrm{E}_{0}=100 \mathrm{TeV}-1 \mathrm{EeV}$

KASCADE-Grande detectors \& observables

- Shower Size (\mathbf{N}_{ch} number of charged particles)
- Grande array
- Fit NKG like Idf
- Shower core and arrival direction
- Grande array

Detector	Detected EAS compone nt	Detection Technique	Detect or aree $\left(m^{2}\right)$
Grande	Charged particles	Plastic Scintillators	37×10
KASCADE array e/ γ	Electrons, γ	Liquid Scintillators	490
KASCADE array μ	Muons $\left(\right.$ E $\mu^{\text {th }}=230$ MeV $)$	Plastic Scintillators	622
MTD	Muons $(T r a c k i n g)$ $\left(E \mu^{\text {th }}=800\right.$ MeV $)$	Streamer Tubes	4×128

- μ Size ($\mathbb{E}_{\mu}>230 \mathrm{MeV}$)
-KASCADE array μ detectors
-Fit Lagutin Function
- μ density \& direction ($\mathrm{E}_{\mu}>\mathbf{8 0 0} \mathbf{M e V}$)
-Streamer Tubes

Grande resolution measured with real events comparing the reconstruction with the KASCADE array.

Apel et al. NIMA 620 (2010) 202-216

Reconstruction of the energy spectrum

We use three different methods:

- N_{ch} as observable
- N_{μ} as observable
- Combination of \mathbf{N}_{ch} and N_{μ} as observables
- 1173 days of effective DAQ time.

- Performance of reconstruction and detector is stable.
- $\theta<40^{\circ}$
- $250 \mathrm{~m}<\mathrm{r}_{\text {KAS }}<600 \mathrm{~m}$

Spectra measured in the five different angular bins.

Spectra measured with different analysis are compatible.

Spectrum cannot be described by a single power law

Structure $\sim 10^{17} \mathrm{eV}$ studied by mass group spectra

Event selection based on the ratio between \mathbf{N}_{μ} and $\mathbf{N}_{\text {ch }}$

Spectra obtained cutting at different values of $Y=\ln N_{\mu} / \ln N_{c h}$

Spectra obtained cutting at different values of $\mathrm{Y}=\ln \mathrm{N}_{\mu} / \ln \mathrm{N}_{\mathrm{ch}}$

No spectra of "electron rich" events show a change of slope

KASCADE-Grande

- All particle spectrum in the $10^{16}-10^{18} \mathrm{eV}$ energy range cannot be described by a single power law
- Steeping of the spectrum around $8 \times 10^{16} \mathrm{eV}$ due to heavy component of primaries \rightarrow first detection of the change of slope

