
Supergiant Fast X-ray transients as best candidate counterparts of unidentified transient y-ray sources

> **Vito Sguera** (INAF-IASF Bologna) In collaboration with: **A. Bazzano, P. Ubertini, Bulgarelli A. and the AGILE team**

SciNeGHE 2012, 20-22 June, Lecce, Italy

3EG J1837-0423: the EGRET legacy on galactic transients

Tavani et al. 1997
A detected only once (~6σ) and never again, bright γ-ray flare (4x10⁻⁶ ph cm⁻² s⁻¹) lasting only ~ 3.5 days
A no blazar-like counterpart inside the 00% error circle

inside the 99% error circle

3EG J1837-0423 as best prototype for a new class of galactic fast gamma-ray transients

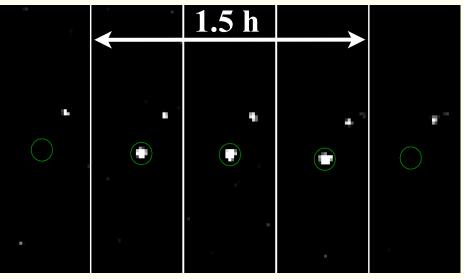
very unique case \rightarrow not a big surprise because the EGRET pointing strategy was not particularly suited to detect short events on the plane

3EG J1837-0423 is not alone anymore

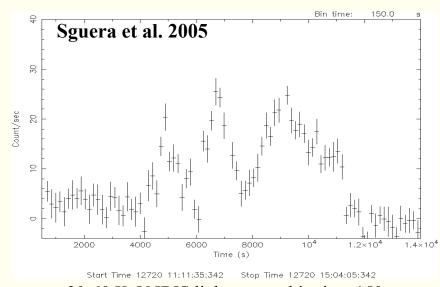
emerging new population of galactic fast γ -ray transients

(Hays et al 2009, Pittori et al. 2008, Bulgarelli et al 2009,2010,2011, Chen et al. 2007, Longo et . 2008, ecc. ecc.)

- 1FGL J0910-5041 1FGL J1057-6027 AGL J1410-6143 AGL J1734-3310
- 1FGL J0902-4624 AGL J2241+4454 AGL J2103+5630 AGL J2022+3622
- 1FGL J1746-2858 AGL J1037-5708 AGL J1958+3401

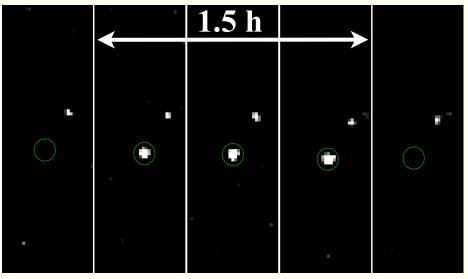

3EG J1837-0423 is not alone anymore

the identification of their counterparts at lower energies is a very challenging task \rightarrow large error boxes, fast transient nature


INTEGRAL observations (20-100 keV) are particularly suited to search for reliable best candidate counterparts because of:

- large field of view (30x30 degrees)
- good sensitivity (< 0.5 mCrab level for deep exposures)

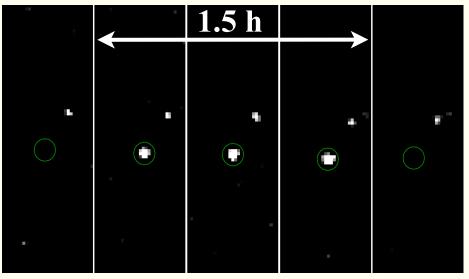
• recently newly discovered class of transient HMXBs (Sguera et al. 2005, 2006), massive blu supergiant (OB) + compact object (mainly NS)



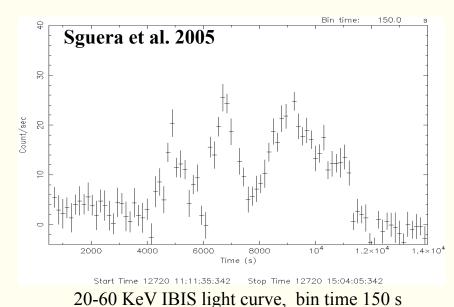
Sequence of 20-60 KeV IBIS significances images

20-60 KeV IBIS light curve, bin time 150 s

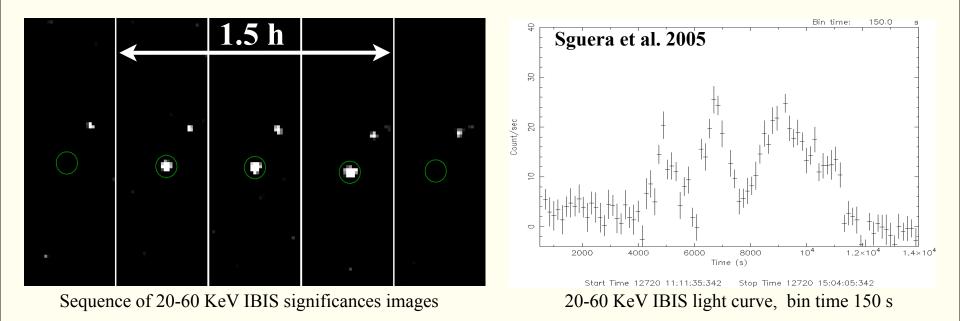
- recently newly discovered class of transient HMXBs (Sguera et al. 2005, 2006), massive blu supergiant (OB) + compact object (mainly NS)
- fast X-ray flares (few hours to few days, $L_x \sim 10^{36}$ -10³⁷ erg s⁻¹)

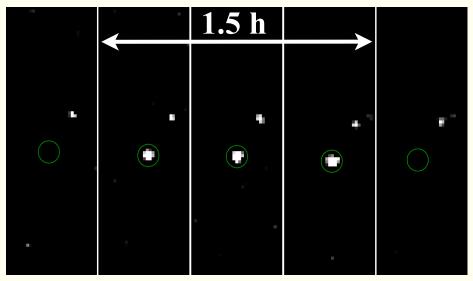


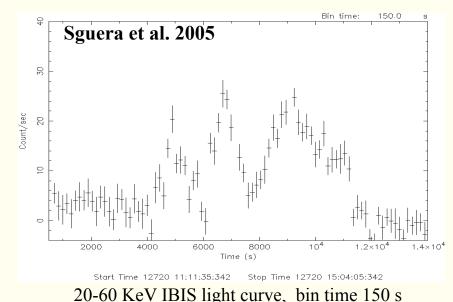
Sequence of 20-60 KeV IBIS significances images



20-60 KeV IBIS light curve, bin time 150 s


- recently newly discovered class of transient HMXBs (Sguera et al. 2005, 2006), massive blu supergiant (OB) + compact object (mainly NS)
- fast X-ray flares (few hours to few days, $L_x \sim 10^{36} 10^{37} \text{ erg s}^{-1}$)
- short duty cycles (0.05% 3%), dynamic range of $10^3 10^5$


Sequence of 20-60 KeV IBIS significances images


- recently newly discovered class of transient HMXBs (Sguera et al. 2005, 2006), massive blu supergiant (OB) + compact object (mainly NS)
- fast X-ray flares (few hours to few days, $L_x \sim 10^{36} 10^{37} \text{ erg s}^{-1}$)
- short duty cycles (0.05% 3%), dynamic range of 10³ 10⁵
- SFXT behaviour is **at odds** with that of their **historical parent population of supergiant HMXB**, i.e X-ray persistent with $L_x \sim 10^{36}$ erg s⁻¹

- recently newly discovered class of transient HMXBs (Sguera et al. 2005, 2006), massive blu supergiant (OB) + compact object (mainly NS)
- fast X-ray flares (few hours to few days, $L_x \sim 10^{36} 10^{37} \text{ erg s}^{-1}$)
- short duty cycles (0.05% 3%), dynamic range of $10^3 10^5$
- SFXT behaviour is at odds with that of their historical parent population of supergiant HMXB, i.e X-ray persistent with $L_x \sim 10^{36}$ erg s⁻¹
- clumpy wind scenario? centrigual/magnetic barrier?
- to date 10 firm SFXTs plus about 10 candidate SFXTs

Sequence of 20-60 KeV IBIS significances images

SFXTs as γ-ray emitters: a timely idea exciting time to explore this possibility!

• HMXBs firmly detected as persistent (and variable) MeV to TeV emitters

LS 5039, LS I +61 303, PSR B1259-63, HESS J0632+057, 1FGL J1018.6-5856; Abdo et al. 2010, Paredes 2008, Corbet et al. 2011, Hinton et al. 2008

microquasars HMXBs detected as fast γ-ray emitters on few days timescale Cyg X-1 and Cyg X-3, Sabatini et al. 2010, Tavani et al. 2009, Abdo et al. 2010

SFXTs as γ-ray emitters: a timely idea exciting time to explore this possibility!

- HMXBs firmly detected as persistent (and variable) MeV to TeV emitters LS 5039, LS I +61 303, PSR B1259-63, HESS J0632+057, 1FGL J1018.6-5856; Abdo et al. 2010, Paredes 2008, Corbet et al. 2011, Hinton et al. 2008
- microquasars HMXBs detected as fast γ-ray emitters on few days timescale Cyg X-1 and Cyg X-3, Sabatini et al. 2010, Tavani et al. 2009, Abdo et al. 2010

Plenty of models to explain high energy emission from HMXBs

- Microquasar accretion/jet framework, both leptonic and hadronic scenarios (Bosch-Ramon et al. 2006, Paredes et al. 2006, Dermer & Boettcher 2006, Romero et al. 2003, 2009)
- Interaction between the relativistic wind of a young NS and the wind of the massive stellar companion (Maraschi & Treves 1981, Tavani & Arons 1997, Dubus 2006)
- **Cheng-Ruderman mechanism** in the magnetosphere of accreting NS (Orellana et al. 2007)

In principle, SFXTs have all the "ingredients" to possibly be MeV to TeV emitters:

accreting compact object (neutron star or black hole)

bright and massive supergiant OB star which could be the source of seed photons (for the inverse Compton emission) and target nuclei (for hadronic interactions)

Drawback

flaring γ -ray emission should be very difficult to detect because of:

- very short duration (from hours to few days)
- very short duty cycles (0.05% 3%)

Associations between unidentified transient γ-ray sources and SFXTs or candidates:

✓ IGR J11215-5952 / EGR J1122-5946 (Sguera et al. 2009)

(Sguera et al. 2009)

(Sguera et al. 2010)

(Sguera et al. 2010)

- ✓ IGR J20188+3657 / AGL J2022+3622
- ✓ AX J1841.0-0536 / 3EG J1837-0423
- ✓ MAXI J1409-619 / AGL J1734-3310
- ✓ IGRJ 17354-3255 /AGL J1735-3258 (Sguera et al. 2011)

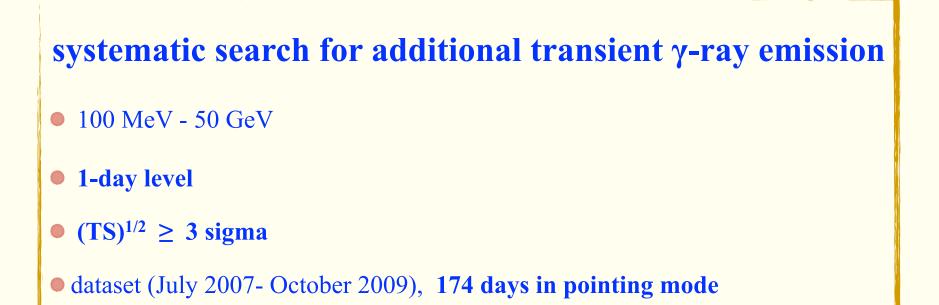
*** based on intriguing hints** i.e. **spatial correlation and similar** transient behaviour on short timescale (although not simultaneous)

***** good test cases in order to get quantitative proofs for a real physical association

Associations between unidentified transient γ-ray sources and SFXTs or candidates:

✓ IGRJ 17354-3255 /AGL J1735-3258	(Sguera et al. 2011)
✓ MAXI J1409-619 / AGL J1734-3310	(Sguera et al. 2010)
✓ AX J1841.0-0536 / 3EG J1837-0423	(Sguera et al. 2010)
✓ IGR J20188+3657 / AGL J2022+3622	(Sguera et al. 2009)
✓ IGR J11215-5952 / EGR J1122-5946	(Sguera et al. 2009)

*** based on intriguing hints** i.e. **spatial correlation and similar** transient behaviour on short timescale (although not simultaneous)

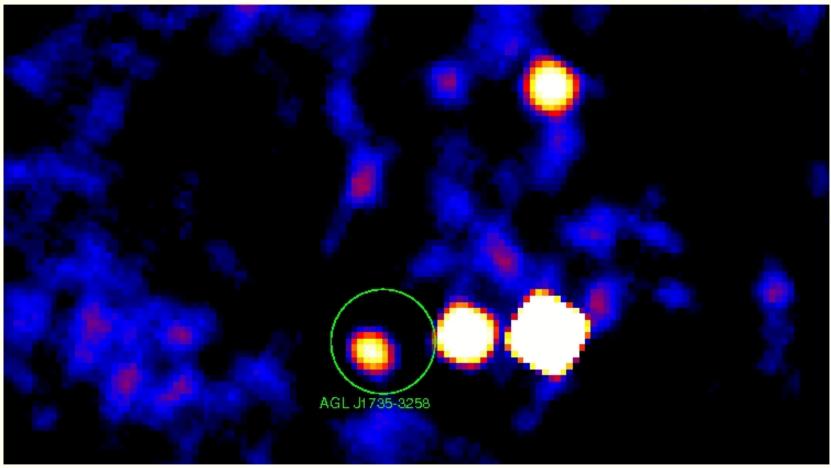

***** good test cases in order to get quantitative proofs for a real physical association

AGL J1734-3310

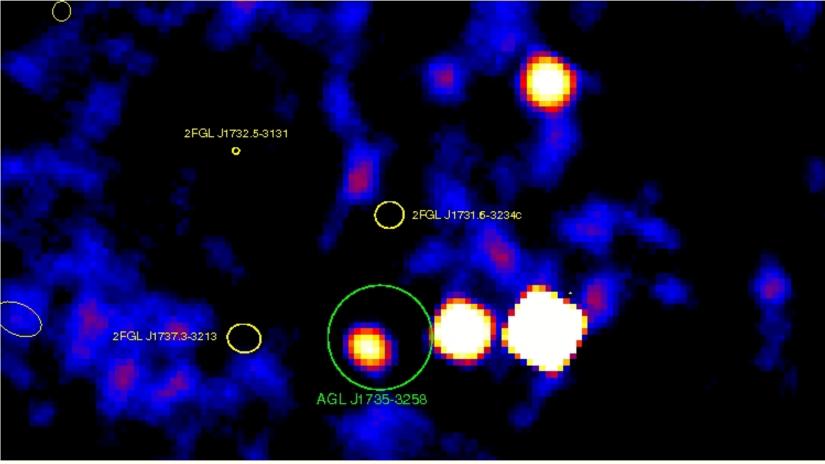
- ***** unidentified fast γ-ray transient **discovered by AGILE on April 2009** (Bulgarelli et al. 2009)
- ***** fast flare lasting only ~ 1 day, ~ 5σ detection
- ***** flux (3.5±1)x10⁻⁶ photons cm⁻² s⁻¹ (E>100 MeV)
- * l = 355.17 and b = -0.28, 95% confidence radius 0.65 degrees

AGL J1734-3310

- ***** unidentified fast γ-ray transient **discovered by AGILE on April 2009** (Bulgarelli et al. 2009)
- ***** fast flare lasting only ~ 1 day, ~ 5σ detection
- ***** flux (3.5±1)x10⁻⁶ photons cm⁻² s⁻¹ (E>100 MeV)
- * l = 355.17 and b = -0.28, 95% confidence radius 0.65 degrees

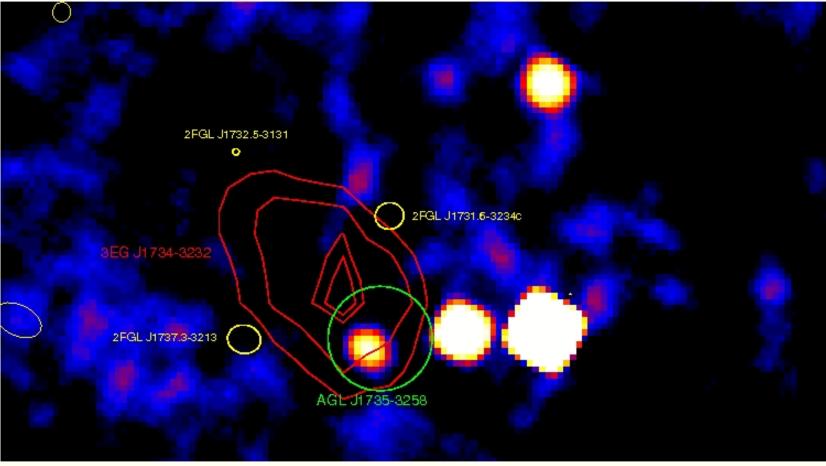

Bulgarelli et al. in preparation

- **14** fast γ-ray flares
- typical duration 1 day at most (in some cases even less)
- significance detection in the range 3σ 5σ
 as comparison, 11 fast γ-ray flares (1-2 days) detected from Cyg X-3 have significance in the range 3.3σ 4.2σ (Bulgarelli et al. 2012)
- (1.7 3.5) x10⁻⁶ photons cm⁻² s⁻¹ (100 MeV 50 GeV)


summing up all the flares detected by AGILE

8.5σ detection

error circle radius of 0.34 degrees (statistical + systematic) centered at 1 = 355.36 and b = -0.2



INTEGRAL/IBIS deep mosaic significance image (~ 10 Ms, 18-60 keV)

INTEGRAL/IBIS deep mosaic significance image (~ 10 Ms, 18-60 keV)

• 2FGL J1732.5-3131 γ-ray pulsar, 2FGL J1731.6-3234c probably fake source, 2FGL J1737.3-3213 likely SNR or PWN, persistent and non variable

INTEGRAL/IBIS deep mosaic significance image (~ 10 Ms, 18-60 keV)

- 2FGL J1732.5-3131 γ-ray pulsar, 2FGL J1731.6-3234c probably fake source, 2FGL J1737.3-3213 likely SNR or PWN, persistent and non variable
- <u>3EG J1734-3232</u>: unidentified and persistent with average flux (40.3±6.7)10⁻⁸ ph cm⁻² s⁻¹ It is likely the blend of 2FGL J1732.5-3131 (20x10⁻⁸ ph cm⁻² s⁻¹) and AGL J1735-3258 (18±5)x10⁻⁸ ph cm⁻² s⁻¹. Hint of variability in the EGRET data

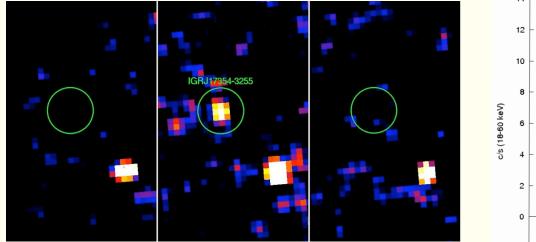
IGR J17354-3255 (Sguera et al. 2011)

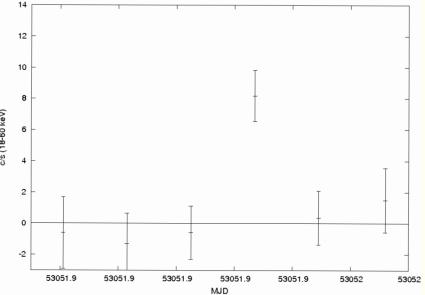
INTEGRAL/IBIS dataset: from **February 2003** to **October 2008** for a total on source time of ~ 10 Ms, (18-60 keV)

IGR J17354-3255 (Sguera et al. 2011)

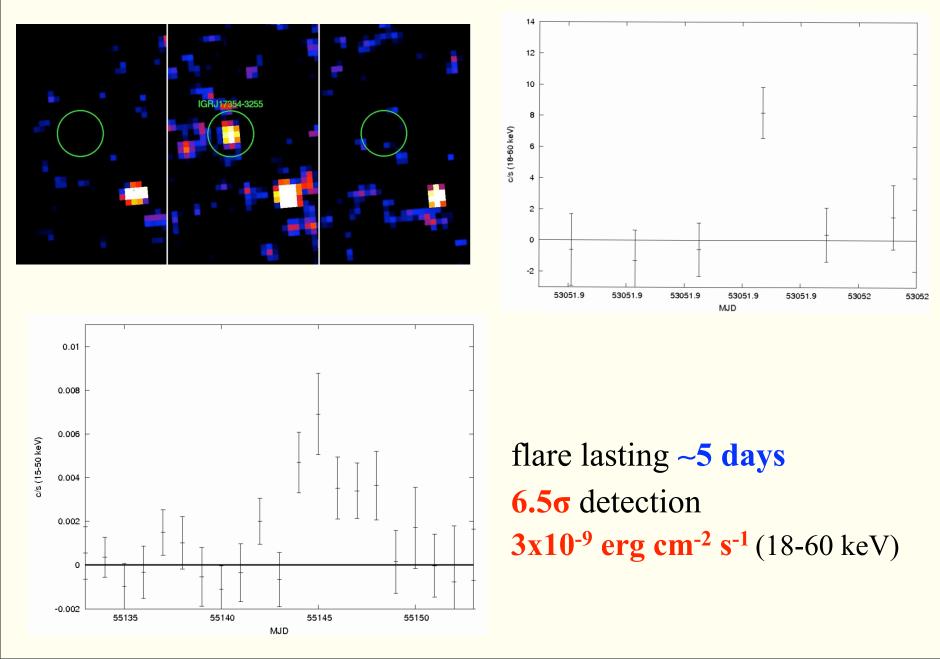
INTEGRAL/IBIS dataset: from **February 2003** to **October 2008** for a total on source time of ~ 10 Ms, (18-60 keV)

• It spends the majority of the time during out-of-outburst X-ray state, i.e. low X-ray flux level of 1.4x10⁻¹¹ erg cm⁻² s⁻¹ (18-60 keV) with <u>no sign</u> of flaring activity

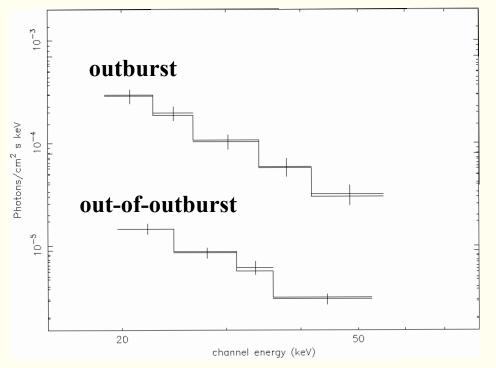

IGR J17354-3255 (Sguera et al. 2011)


INTEGRAL/IBIS dataset: from **February 2003** to **October 2008** for a total on source time of ~ 10 Ms, (18-60 keV)

• It spends the majority of the time during out-of-outburst X-ray state, i.e. low X-ray flux level of 1.4x10⁻¹¹ erg cm⁻² s⁻¹ (18-60 keV) with <u>no sign</u> of flaring activity


- Occasionally fast X-ray flares (16 in total)
- ***** duration: typically 0.5 10 hours, occasionally a few days
- ***** duty cycle $\sim 0.1\%$
- **X-ray flux**: as high as **10**-9 erg cm⁻² s⁻¹ (18-60 keV)
- ***** dynamic range as high as 200
- ***** detection significance: in the range $5\sigma 10\sigma$

flare lasting 0.5 hour, 5.5 σ detection, 1.4x10⁻⁹ erg cm⁻² s⁻¹ (18-60 keV)



flare lasting 0.5 hour, 5.5 σ detection, 1.4x10⁻⁹ erg cm⁻² s⁻¹ (18-60 keV)

spectral shape (18-60 keV)

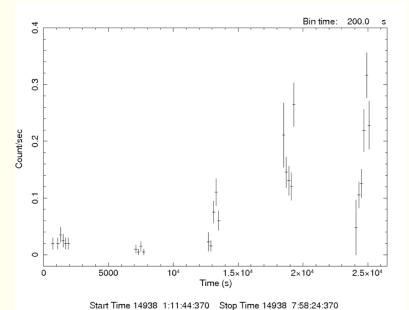
 $\Gamma = 2.4 \pm 0.4$ (out-of-outburst)

 $\Gamma = 2.4 \pm 0.4$ (flares)

accretion at work in both states although at different rates

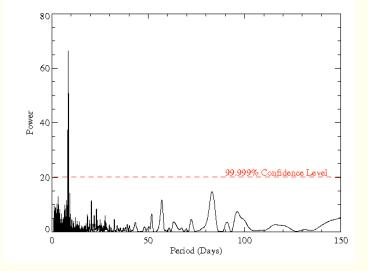
clumpy wind scenario

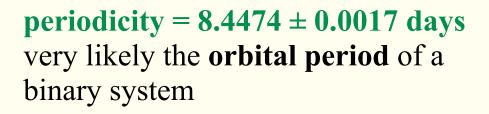
- fast X-ray flares likely due to the accretion of dense clumps
- **out-of-outburst X-ray state** likely due to accretion from the less dense **background wind**

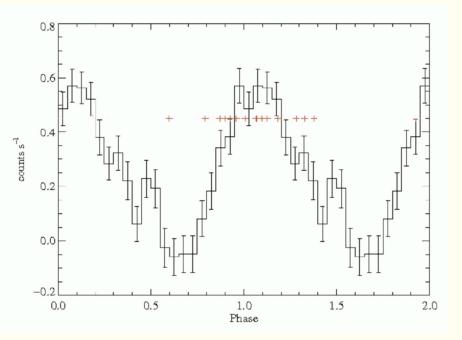

High dynamic range also in the softer X-ray band 0.2-10 keV: >311

Swift/XRT obs on 11 March 2008 (4.4 ks)

no detection, 3σ upper limit < 2.8x10⁻¹³ erg cm⁻² s⁻¹ (0.2-10 keV)


Swift/XRT obs on 17 April 2009 (5.3 ks)


detection, 8.7x10⁻¹¹ erg cm⁻² s⁻¹ (0.2-10 keV)



strongly variable by a
factor of ~ 50 on few
tens min timescale

INTEGRAL periodicity analysis

X-ray flux **peaks** at **periastron** and is consistent with **zero** at **apastron**

X-ray flares are clustered around periastron, they occur during 26% of periastron passages

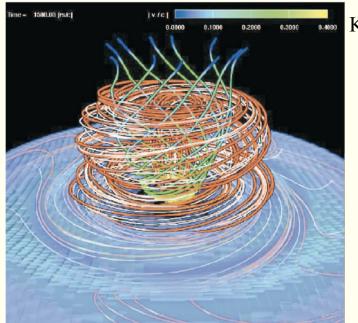
shape rather **smooth**, **dominated by lower level X-ray emission** rather than outbursts

All the reported findings strongly suggest that IGR J17354-3255 is a candidate SFXT

A Chandra observation (Tomsick et al. 2009) allowed to pinpoint a single 2MASS infrared counterpart but no optical counterpart

NIR spectroscopy is strongly needed to:

- fully confirm the SFXT nature
- estimate the distance


IGR J17354-3255 as best candidate counterpart of the fast γ-ray transient AGL J1734-3310

based on intriguing hints such as:

- i) spatial correlation
- **ii) similar transient behaviour on short timescale** (although not simultaneous yet)

Is there a physical mechanism to support such proposed association?

formation of a transient magnetic-tower jet during the accretion of a clump

p

Kato et al. 2004,2006,2007

Jets driven by magnetic pressure could be formed along the rotation axis of the disk.

Creation of a **magnetic tower** inside which the accelerated material is collimated as bipolar jets (0.1-0.2 c). Plasmoids, injected at the base of the tower, can collide giving rise to shocks. Diffusive acceleration at these **shocks can accelerate proton and electrons up to relativistic energies**

• electrons cool mainly by synchrotron radiation in the magnetic field producing X-ray

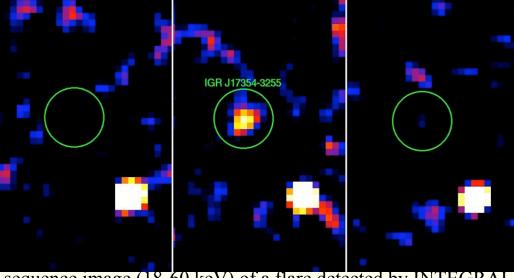
protons interact with synchrotron photon field to produce γ-rays, mesons, secondary pairs, neutrinos and neutrons according to the following reactions (see Romero & Vila 2008 for details)

$$p + \gamma \rightarrow p + a\pi^{0} + b(\pi^{+} + \pi^{-})$$

$$\pi^{+} \rightarrow \mu^{+} + \nu_{\mu}, \quad \mu^{+} \rightarrow e^{+} + \nu_{e} + \overline{\nu}_{\mu}$$

$$\pi^{0} \rightarrow 2\gamma$$

$$\pi^{-} \rightarrow \mu^{-} + \overline{\nu}_{\mu}, \quad \mu^{-} \rightarrow e^{-} + \overline{\nu}_{e} + \nu_{\mu}$$


✤ proposed association between IGR J17354-3255 and AGL J1734-3310 merely based on <u>intriguing hints</u>

- * <u>Next step</u> is to get <u>quantitative proofs</u> of a real physical association:
- **1) flare simultaneously detected** in hard X and γ-rays
- **2)** 8.4 days **periodicity** detected in γ -rays

We are on the right path to get quantitative proofs

• simultaneous flares

two flares quasi-simultaneously detected by INTEGRAL and AGILE

sequence image (18-60 keV) of a flare detected by INTEGRAL

INTEGRAL flare

~2.5 days, 7σ (18-60 keV), 4.3x10⁻¹¹ erg cm⁻² s⁻¹, Γ =3.2±1

AGILE flare ~1 day, 3.5σ (E>100 MeV), (2.2±0.8)x10⁻⁶ ph cm⁻² s⁻¹

Conclusions

Fermi and AGILE observations are revealing a likely population of galactic fast γ-rays transients

INTEGRAL observations suggest that SFXTs could be reliable best candidate counterparts, we are on the right path to hopefully get some quantitative proofs....

- **The firm detection** of high energy emission from SFXTs will have **important consequences** in:
- 1) opening the study to an unexplored energy window
- 2) allowing a deep inspection of the extreme physical mechanisms able to accelerate particles up to MeV TeV