

AMS-02 one year in space

Cecilia Pizzolotto

on behalf of the AMS-02 Collaboration INFN Perugia and ASDC Frascati

SciNeGHE 20-22 June 2012, Lecce

AMS-02 goals

The experimental challenge: perform accurate, high statistics, long term measurements of charged cosmic rays (0.5 GV – O(TV)) and γ rays (E>1GeV)

- Primordial Antimatter search with 10⁻⁹ sensitivity
- Indirect Dark Matter search (e⁺,..., γ)
- Relative abundance of nuclei and isotopes in primary cosmic rays
- γ ray astrophysics

AMS in the shuttle cargo bay

AMS international collaboration

16 Countries, 60 Institutes and 600 Physicists, 17 years

AMS-02: A TeV precision, multipurpose spectrometer

Cecilia Pizzolotto

Particle Identification with AMS

	e-	Р	He,Li,Be,Fe	^	Y	e+	P , D	$\overline{H}e, \overline{C}$
TRD		۲	7				۲	γ
TOF	•	* *	۲۲	•		۲	• •	۲۲
Tracker	\mathcal{I}			八				ノ
RICH								
ECAL		****	Ŧ				*****	₩₩
Physics example			Cosmic Ray Physics Strangelets	-		Dark	matter	Antimatter

May 19, 2011: AMS installation completed at 5:15 CDT, data taking started at 9:35 CDT

May 19: AMS installed on ISS 5:15 CDT, start taking data 9:35 CDT

1.03 TeV electron

High energy e+

369 GeV Positron

Photon 40 GeV

AMS collected over 18 billion of events

Every year, we will collect 16*10⁹ events **This will provide unprecedented sensitivity to search for new physics.**

First year of data reproduction is completed after detector calibration and ready for analysis

AMS data on the ISS: He rate

17

AMS data: He rate and Solar flare

Polar region

The first year: → Operation → Calibration in Space

AMS Operations

Ku-Band High Rate (down): Events <10Mbit/s>

AMS Payload Operations Control and Science Operations Centers (POCC, SOC) at CERN

S-Band Low Rate (up & down): Commanding: 1 Kbit/s Monitoring: 30 Kbit/s

Payload Operations Control Center (POCC) at CERN since 19th June 2011

SOC (Science Operation Center): production of *root* files for science analysis

Orbital DAQ parameters

ISS orbits at about 400km with an inclination of 51.7 degrees

Particle rates: 200 to 2000 Hz per orbit

Orbit average: DAQ efficiency 85% DAQ rate ~530Hz

AMS Flight Electronics for Thermal Control

One of the major challenges of operating in space is the extreme thermal environments to which the experiment is exposed.

AMS developed computers which are programmable from the POCC for all the monitoring and control. They readout the 1118 temperature sensors and control 298 heaters.

The Tracker and TRD have dedicated Thermal Control Systems. Thermal control of the other detectors is done by the Global Thermal Control System.

Tracker on orbit performance

Temperature effects

Time stability of Tracker alignment

Stability of Layer 1 alignmnent tracker alignment with respect to the inner tracker

TRD on orbit performance

All 5248 channels operational

Typical spectrum in TRD

Time of Flight: Trigger & Beta

Single plane efficiencies > 99.5 %

Charge identification

RICH: Nuclei in the TeV range

ECAL

Energy Resolution: Test Beam

Better than 2% @ 100GeV

Angular Resolution: Flight Data

evaluated with electrons, comparing tracker track with ecal shower axis

Better than 1.5 deg for E>40GeV

Calibration & analysis

- An intense effort on detector calibration has been developed during the past year
- Important results on stability, alignment, energy calibration have been achieved: the detectors operate smoothly with excellent performances, sometimes better than measured on earth

31

Tomography of support plane

Conclusions

- AMS02 is in orbit since May 16th 2011
- No damage due to the launch stress or to the space environment, all the systems are working in both the primary and redundant part
- All the detectors are properly functioning with DAQ in nominal conditions since May 19th 2011
- Ground operations (POCC and SOC) run smoothly
- Detector calibration procedures are completed and costant monitoring will continue
- 10-20 years on board the ISS: great discovery potential

