The GAMMA-400 Space Experiment: Gammas, Electrons and Nuclei Measurements

Emiliano Mocchiutti INFN Trieste, Italy

On behalf of the GAMMA-400 collaboration

9th Workshop on Science with the New Generation of High Energy Gamma-ray Experiments

20 – 22 June, 2012 Lecce – Italy

Presentation outline

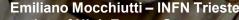
Introduction

GAMMA-400 mission

Baseline (Russian) project

Italian proposal

Summary


GAMMA-400 Mission

GAMMA-400 Collaboration

- Lebedev Physical Institute (leading organization)
- National Research Nuclear University MEPhl
- Ioffe Physical Technical Institute
- Open Joint Stock Company "Research Institute for Electromechanics" (Istra)
- Institute for High Energy Physics (Protvino)
- Space Research Institute
- Istituto Nazionale di Fisica Nucleare, INFN, Italy
- Istituto Nazionale di Astrofisica

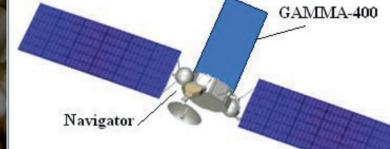
9th Workshop on Science with the New Generation of High Energy Gamma-ray Experiments – Lecce, Italy, June 22nd, 2012

Physico-Technica

ИXИ

GAMMA-400 project

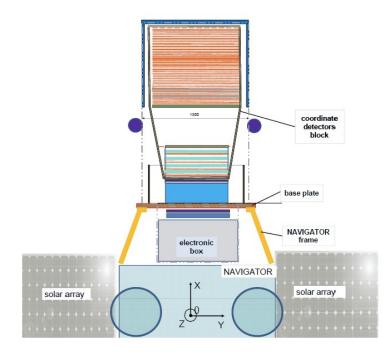
No gamma-ray space mission planned after Fermi and Agile GAMMA-400:

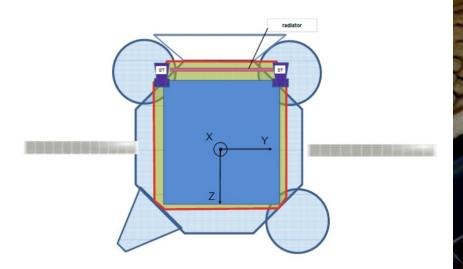

2600 kg

100 GB/day

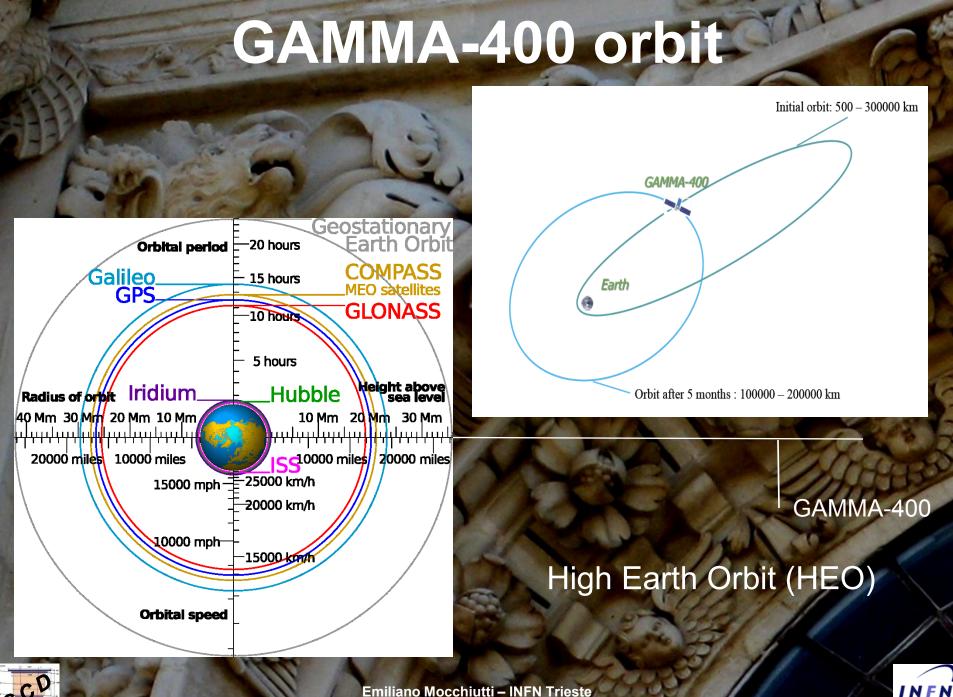
>7 years

- Total mass budget:
- Maximum power consumption: 2000 W
- Telemetry downlink:
- Lifetime:
- Orbit, initial parameters: apogee 300000 km, perigee 500 km, orbital period 7 days, inclination angle 51.8°.


GAMMA-400 space observatory installed on the Navigator service module.



GAMMA-400 project



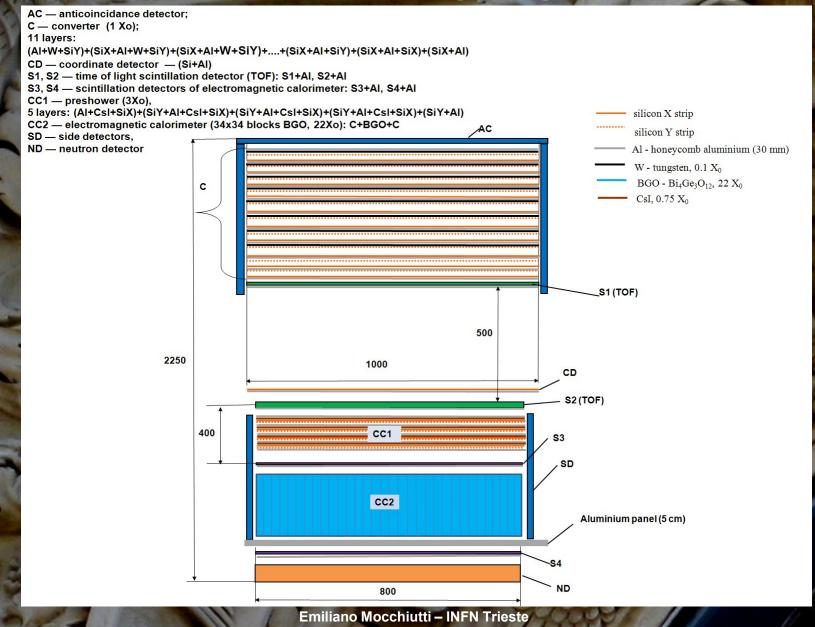
Emiliano Mocchiutti – INFN Trieste

9th Workshop on Science with the New Generation of High Energy Gamma-ray Experiments – Lecce, Italy, June 22nd, 2012

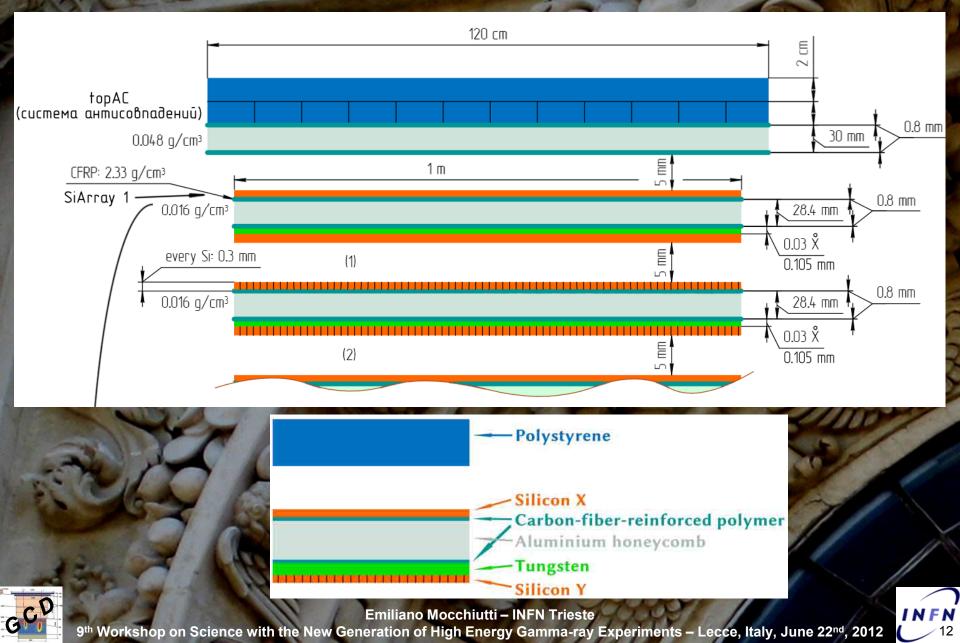
GAMMA-400 – baseline

Russian requirements (@2010)

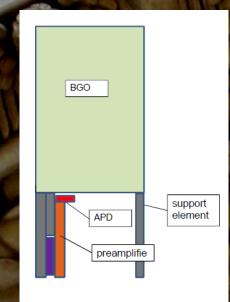
Gamma-ray energy range	0.1 - 3000 GeV
Multilayer converter	100 x 100 cm ²
	0.84 Xo
Calorimeter	80 x 80 cm ²
	$\sim 30 \text{ Xo}$
Angular resolution	$\sim 0.01^{\circ}$
(100 GeV)	
Energy resolution	1%
(100 GeV)	1 70
Proton rejection	106

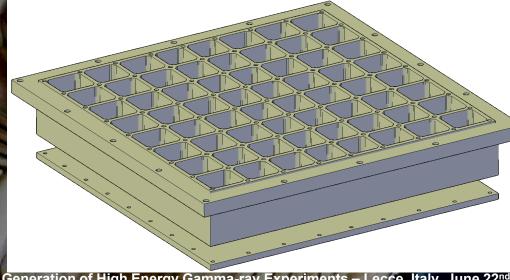

Russian GAMMA-400 Scientific Goals (@2012)

Main scientific investigations To study the nature and features of weakly interacting massive particles, from which the dark matter consists; To study the nature and features of variable gamma-ray activity of astrophysical objects from stars to galactic clusters; To study the mechanisms of generation, acceleration, propagation, and interaction of cosmic rays in galactic and intergalactic spaces.


Russian design (@2012)

9th Workshop on Science with the New Generation of High Energy Gamma-ray Experiments – Lecce, Italy, June 22nd, 2012


INFN


Tracking system

Homogeneous calorimeter

Sensitive volume 800x800x25 cm³ 1024 BGO crystals 25x25x250 mm³ 22 r.l. normal particle direction 70 r.l. lateral particle direction Total mass 1150 kg Power consumption 200 W

9th Workshop on Science with the New Generation of High Energy Gamma-ray Experiments – Lecce, Italy, June 22nd, 2012

GAMMA-400 – Italian proposal

GAMMA-400: unique instrument and opportunity

- First time double instrument: photon and particle (electrons and nuclei)
 - **Excellent Silicon Tracker**
 - breakthrough angular resolution 4-5 times better than Fermi-LAT at 1 GeV
 - improved sensitivity compared with Fermi-LAT by a factor of 5-10 in the energy range 30 MeV – 10 GeV
 - Heavy Calorimeter with optimal energy resolution and particle discrimination
 - Electron/positron detection beyond TeV energies
 Nuclei detection up to 10¹⁵ eV energies
 Trigger with ToF capabilities ("smart" AC)

GAMMA-400 "the Cosmic Accelerator Hunter"

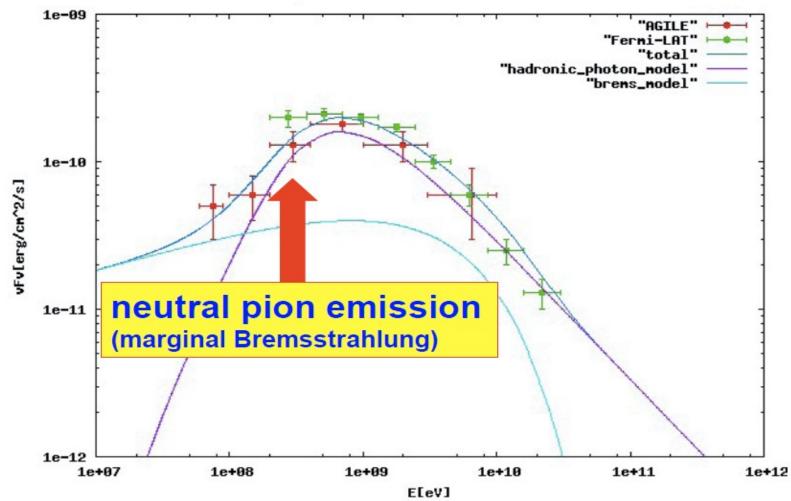
Three main components of cosmic radiation:

- 1. <u>gamma-rays</u> from 30 MeV up to TeV energies, to be studied with substantial improvements concerning the angular resolution, the broad-band sensitivity, and the continuous exposure of sources without Earth occultations
- 2. <u>electrons+positrons</u> in the TeV energy range and beyond, to be measured with much improved sensitivity compared with current space, balloon-borne, and ground measurements
- 3. <u>proton/nuclei</u> cosmic-rays up to the "knee", whose spectrum and composition is to be studied with unprecedent details up to 1 PeV/nucleon

Scientific goals

Cosmic-Ray acceleration in Supernova Remnants and Galactic diffusion resolved with the greatest detail both in space and spectra. Large sensitivity to neutral pion emission below 200 MeV.

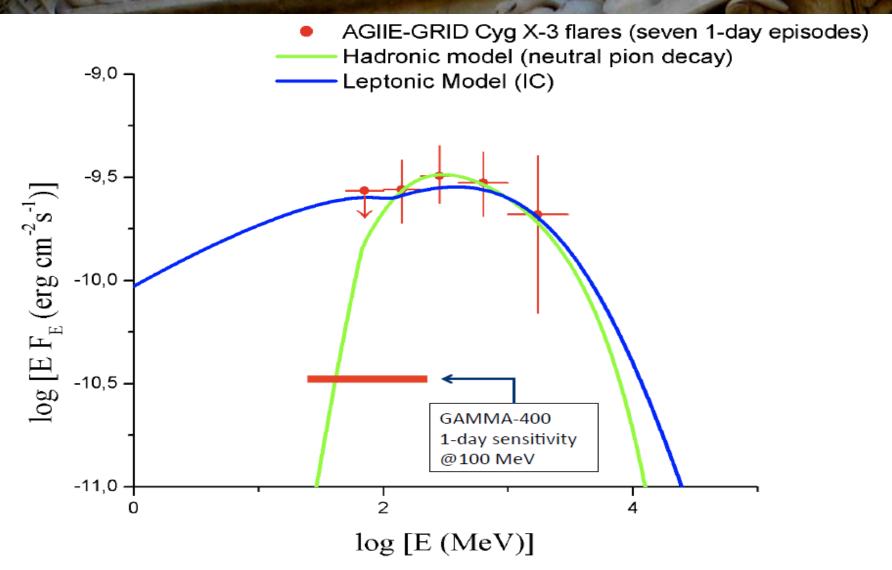
Dark Matter studies at GeV energies, resolving the Galactic Center and excellent sensitivity for searches in spheroidal galaxies (10 times better than Fermi-LAT).


Scientific goals – low energy ys

(Giuliani, Cardillo et al. 2011)

INFN

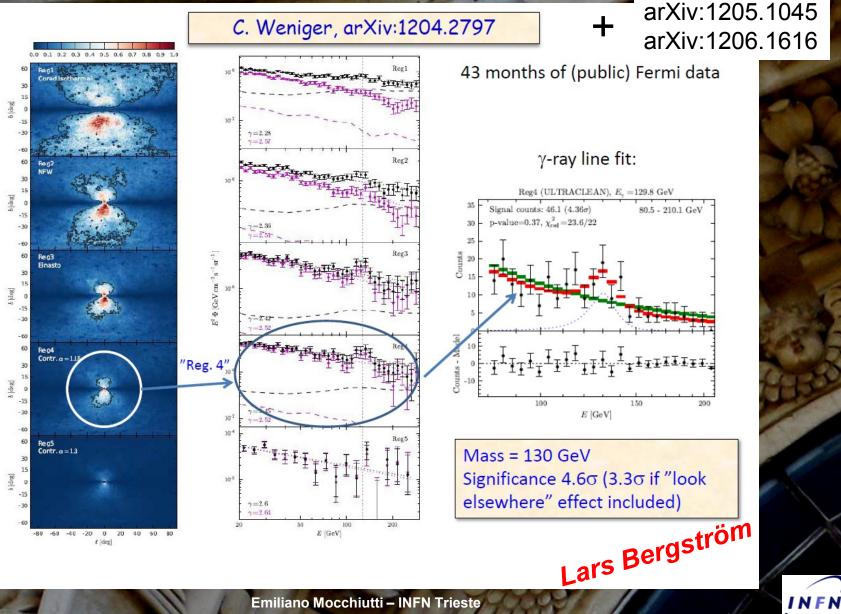
18


H44: AGILE and Fermi-LAT data + model

Emiliano Mocchiutti – INFN Trieste

9th Workshop on Science with the New Generation of High Energy Gamma-ray Experiments – Lecce, Italy, June 22nd, 2012

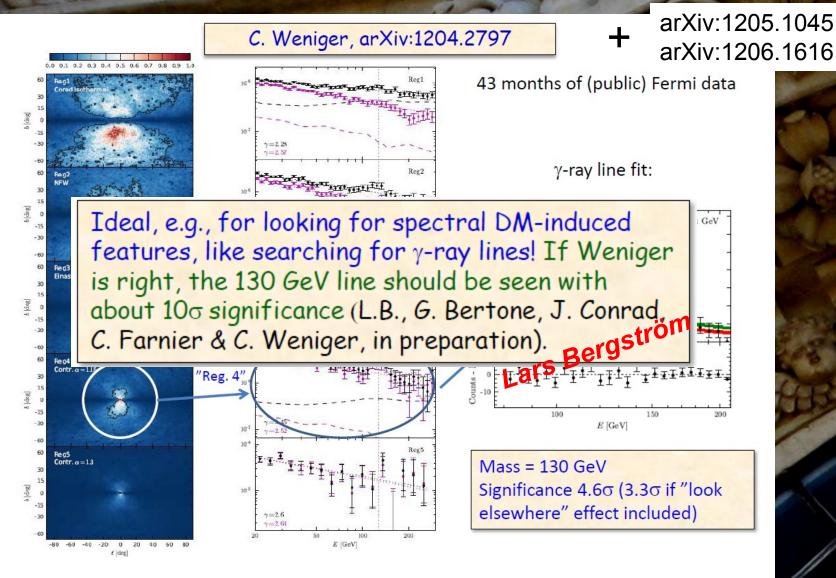
Scientific goals – low energy ys


Emiliano Mocchiutti – INFN Trieste

INFN

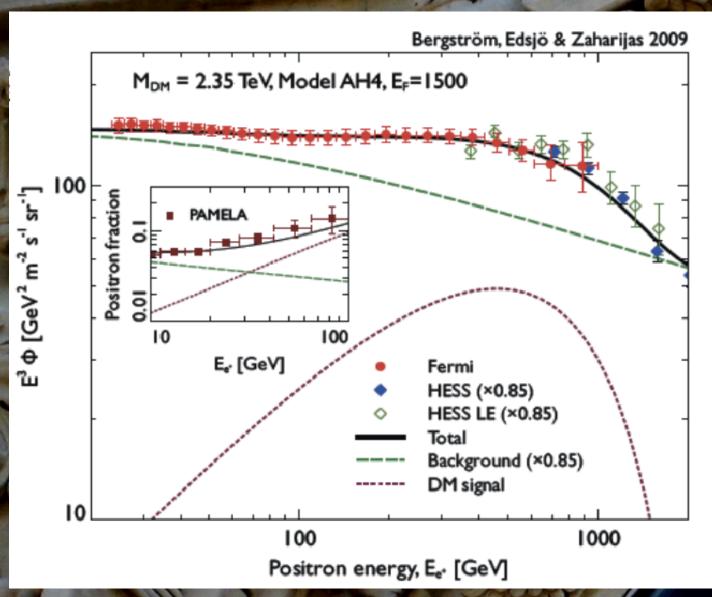
19

9th Workshop on Science with the New Generation of High Energy Gamma-ray Experiments – Lecce, Italy, June 22nd, 2012


Scientific goals – high energy γs

9th Workshop on Science with the New Generation of High Energy Gamma-ray Experiments – Lecce, Italy, June 22nd, 2012

20

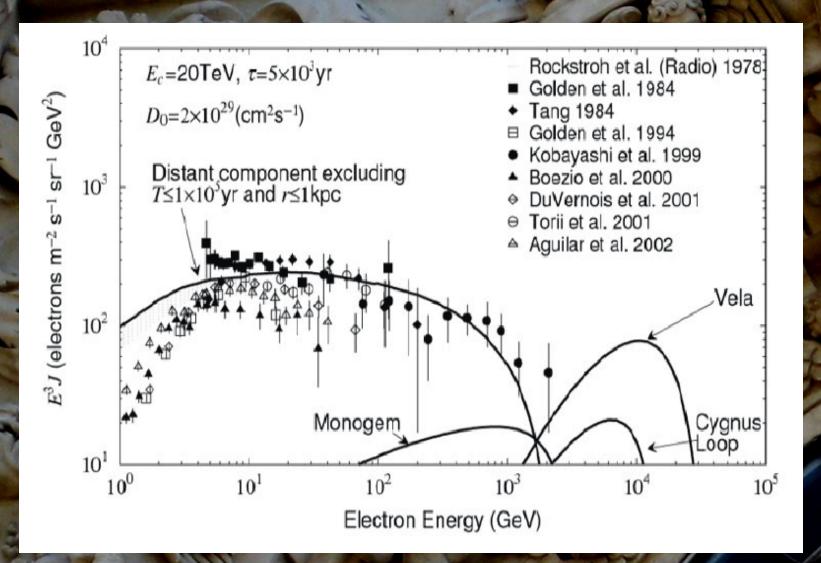

Scientific goals – high energy γs

Emiliano Mocchiutti – INFN Trieste

9th Workshop on Science with the New Generation of High Energy Gamma-ray Experiments – Lecce, Italy, June 22nd, 2012

Scientific goals – electrons

Emiliano Mocchiutti – INFN Trieste

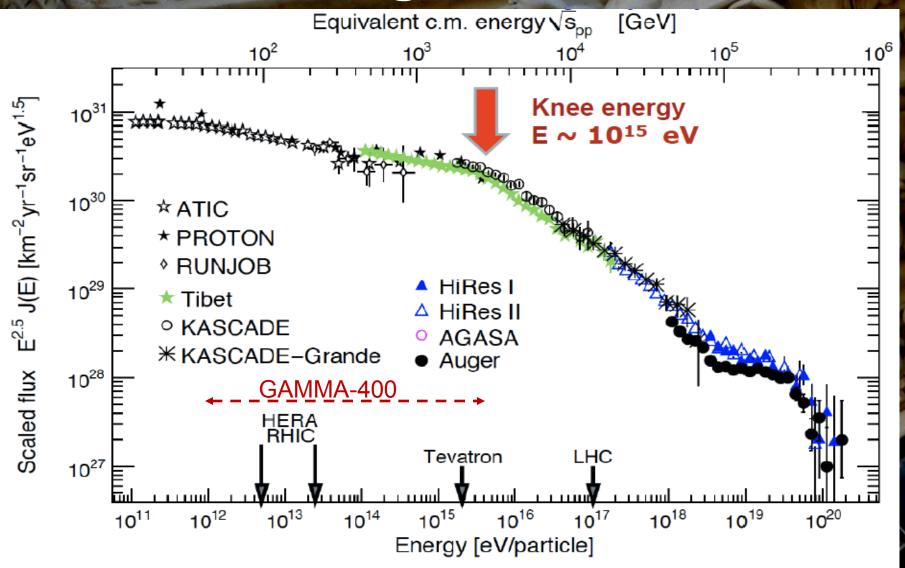

INFN

22

9th Workshop on Science with the New Generation of High Energy Gamma-ray Experiments – Lecce, Italy, June 22nd, 2012

GCD

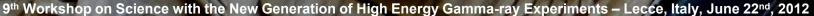
Scientific goals – electrons

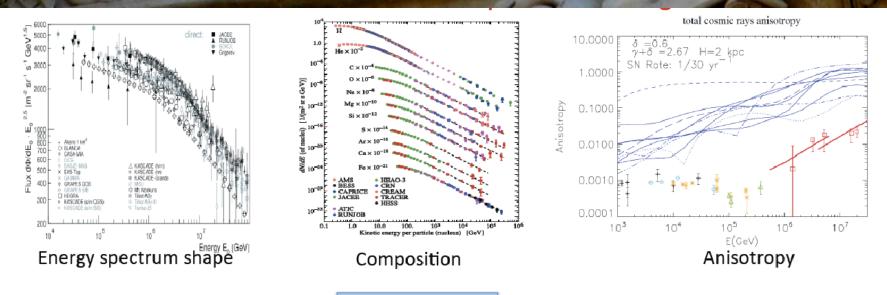

Emiliano Mocchiutti – INFN Trieste

INFN

23

9th Workshop on Science with the New Generation of High Energy Gamma-ray Experiments – Lecce, Italy, June 22nd, 2012

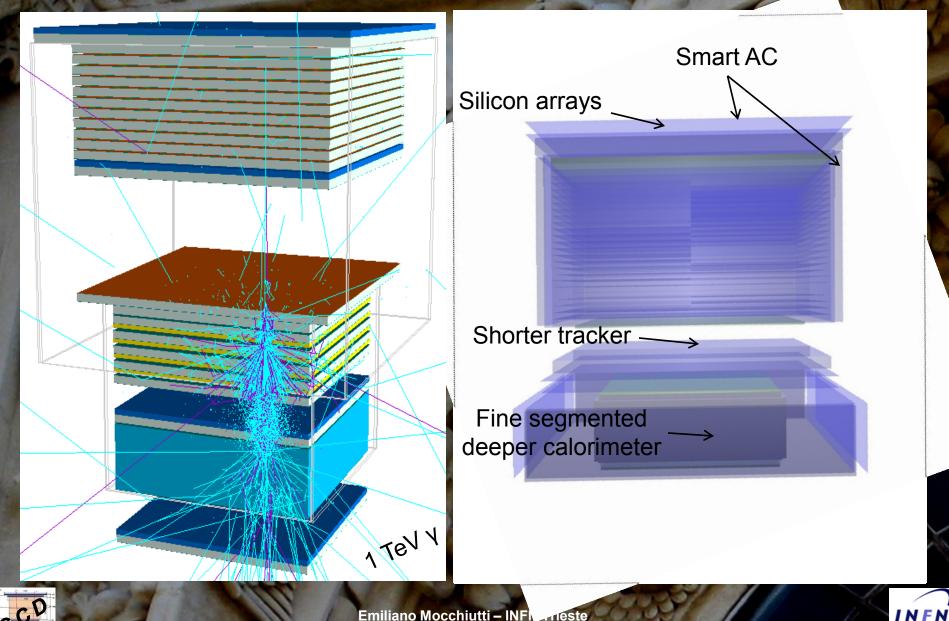

Scientific goals – Nuclei


Emiliano Mocchiutti – INFN Trieste

NFN

24

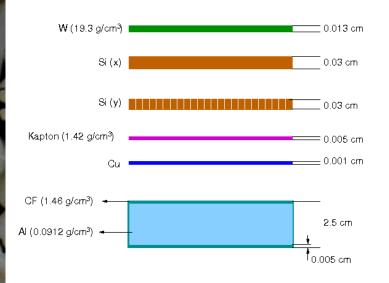
Scientific goals – Nuclei


- Study the acceleration mechanism (or mechanisms)
- Study the limit of the acceleration phenomena
- Understand the kind of sources in the Galaxy
- > Answer the question: is there the same mechanism (or source) for different nuclei?
- Study the distribution of the sources
- Study the propagation process in the Galaxy

Emiliano Mocchiutti – INFN Trieste

NFN

Russian vs. Italian design

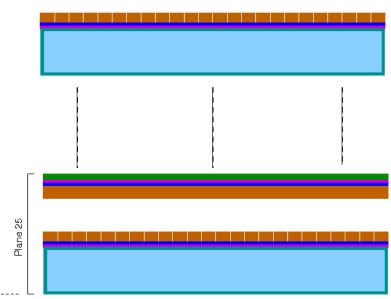

Emiliano Mocchiutti – INFluenceste

9th Workshop on Science with the New Generation of High Energy Gamma-ray Experiments – Lecce, Italy, June 22nd, 2012

26

Tracker geometry

72.125


Plane height = 2.785 cm Tower height = TRK height = 72.125 cm Tower width = 59.875 cm

TRK width = 119.75 cm

Total $X_0(Si+W) = 1.088$

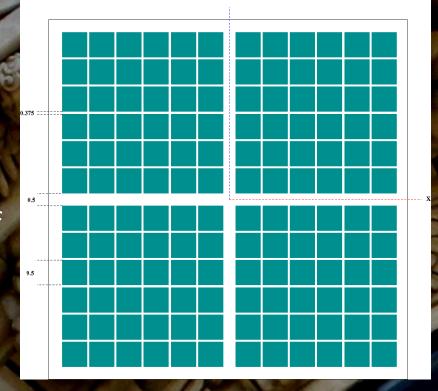
Gap 0.2 cm

INFN

27

Emiliano Mocchiutti – INFN Trieste

9th Workshop on Science with the New Generation of High Energy Gamma-ray Experiments – Lecce, Italy, June 22nd, 2012

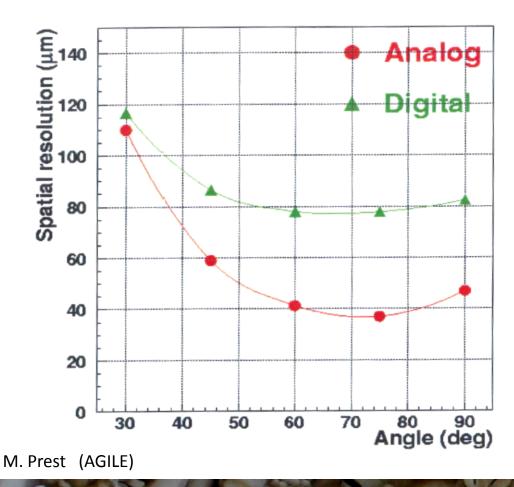

32.472 -----

Tracker geometry

4 towers tower dimension = 59.875 x 59.875 x 72.125 cm³ tracker dimension = 119.75 x 119.75 x 72.125 cm³

W thickness = 3% 25 planes - each plane 2 array (view) of the silicon tiles

Each array contains **6x6 silicon tiles** tile dimension = 9.5 x 9.5 x 0.03 cm³ each tile contain 900 strips of pitch 0.01 cm.



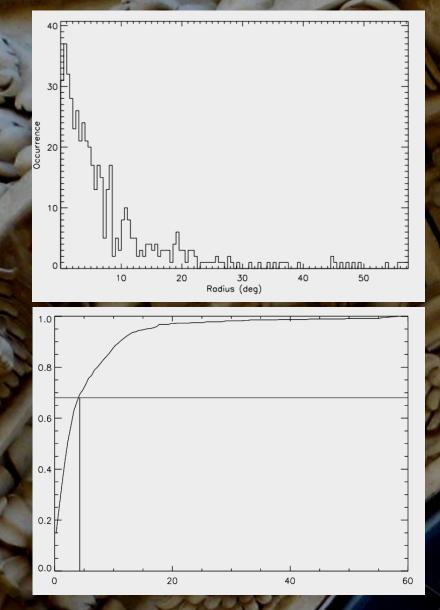
NB: schematic view, dead areas and Si sensors not to scale!

Analog vs. digital read-out

Digitization + Kalman reconstruction take into account analog readout!

INFN

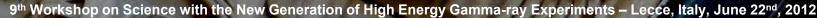
Emiliano Mocchiutti – INFN Trieste


9th Workshop on Science with the New Generation of High Energy Gamma-ray Experiments – Lecce, Italy, June 22nd, 2012

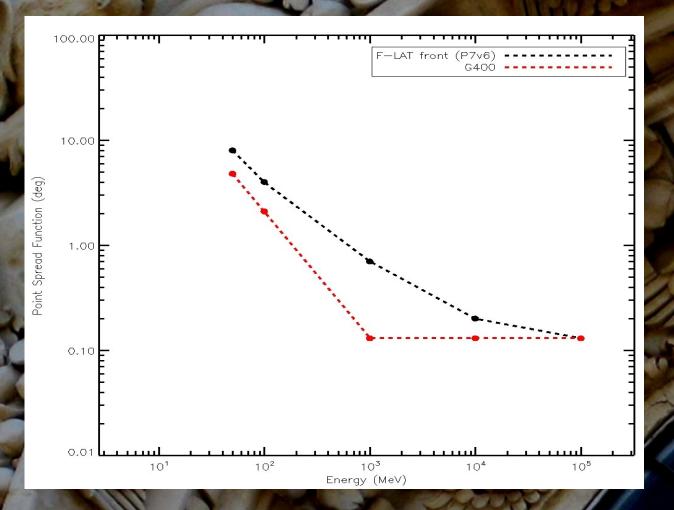
50 MeV – θ reconstruction

PSF_theta (68%) = 3.9°

theta=30° phi=225° PARALLEL FRONT


GCD

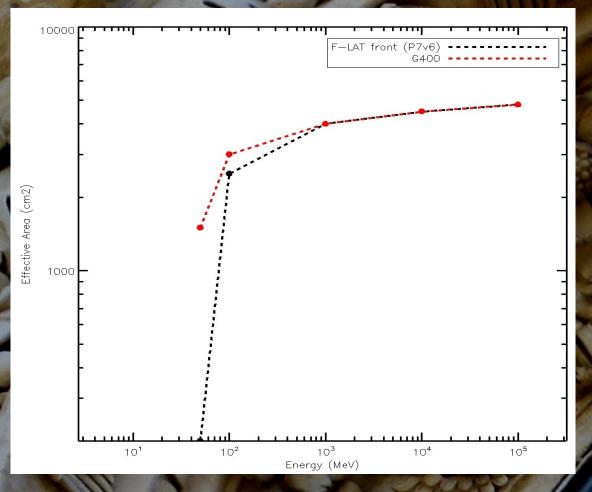
INFN


30

Emiliano Mocchiutti – INFN Trieste

G-400 vs. Fermi PSF (68% containment radius) (Fermi: 0°; G-400: 30°)

G-400 set-up: 25 planes, 0.03 X_0 tungsten, 2.8 cm spacing, Si pitch 120 micron, analog (alternate) readout, Kalman reconstruction, assumed bkg rejection eff. 10⁻⁴

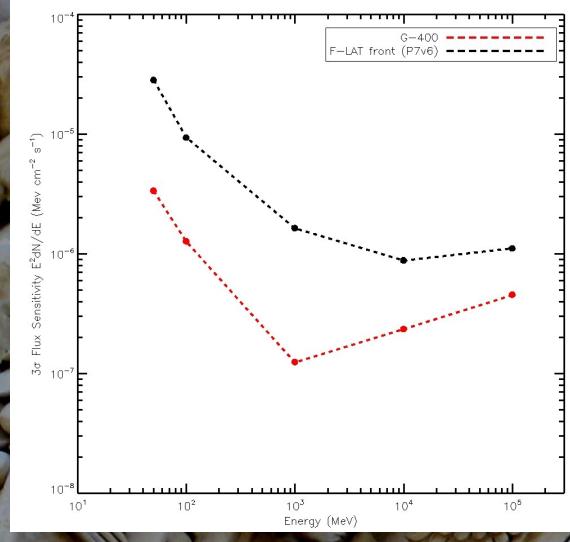


Emiliano Mocchiutti – INFN Trieste

9th Workshop on Science with the New Generation of High Energy Gamma-ray Experiments – Lecce, Italy, June 22nd, 2012

G-400 vs. Fermi effective area (0-30 degrees)

G-400 set-up: 25 planes, 0.03 X_0 tungsten, 2.8 cm spacing, Si pitch 120 micron, analog (alternate) readout, Kalman reconstruction, assumed bkg rejection eff. 10⁻⁴


Emiliano Mocchiutti – INFN Trieste

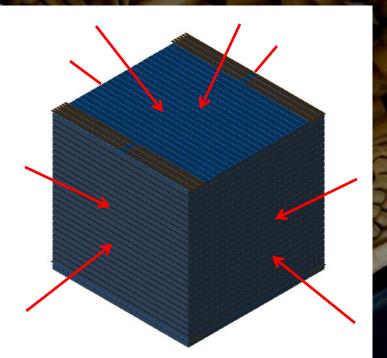
I F N

9th Workshop on Science with the New Generation of High Energy Gamma-ray Experiments – Lecce, Italy, June 22nd, 2012

G-400 vs. Fermi 3_o flux sensitivity (2-week observing time)

Fermi-LAT in sky scanning mode, G-400 in pointing mode with no Earth occultation

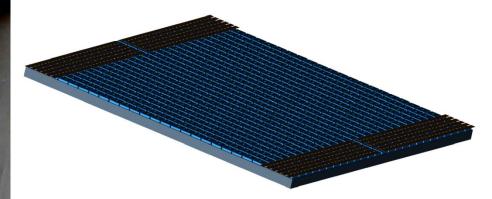
Emiliano Mocchiutti – INFN Trieste

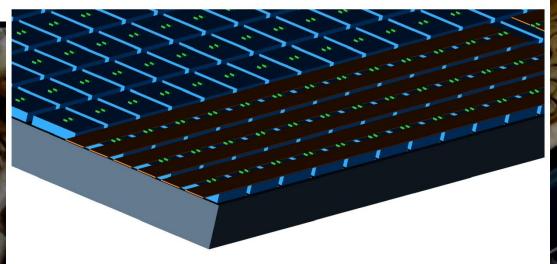

INFN

9th Workshop on Science with the New Generation of High Energy Gamma-ray Experiments – Lecce, Italy, June 22nd, 2012

Calorimeter geometry

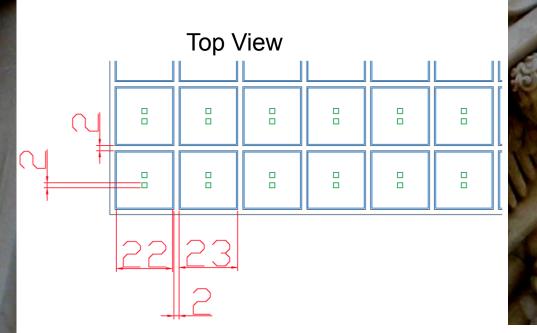
Homogeneous calorimeter

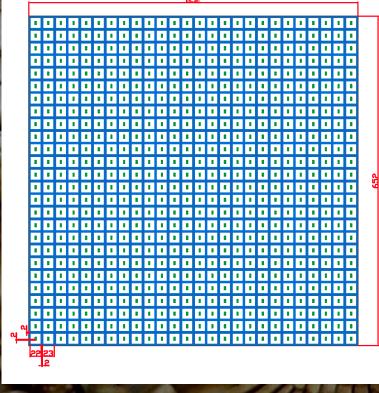

- Symmetric, to maximize the Geometric Factor
- Total weight < 1600 kg
- Very high dynamic range Finely segmented in every direction $1 R_M \times 1 R_M \times 1 R_M$ small BGO or CsI crystals, cubic shape Few mm gap between crystals



The calorimeter plane

Blue: Crystals Grey: Aluminium support Green: Light detectors Brown: Readout cables


Readout is foreseen on 2 opposite sides



The calorimeter plane

9th Workshop on Science with the New Generation of High Energy Gamma-ray Experiments – Lecce, Italy, June 22nd, 2012

BGO ~1600 kg

	Cubes	Cubes	Cubes	Cubes
N×N×N	28×28×28	28×28×27	29×29×25	32×32×20
L (cm)	2.2*	2.2*	2.2*	2.2*
Crystal volume (cm ³)	10.6	10.6	10.6	10.6
Gap (cm)	0.3	0.3	0.5	0.3
Mass (Kg)	1667	1607	1596	1555
N.Crystals	21952	21268	21025	20480
Size (cm ³)	70.0×70.0×70.0	70.0×70.0×67.5	<u>78.3×78.3×67.5</u>	80.0×80.0×50.0
Depth (R.L.) " (I.L.)	55×55×55 2.7×2.7×2.7	55×55×53 2.7×2.7×2.6	57×57×49 2.8×2.8×2.4	63×63×39 3.1×3.1×1.9
Planar GF (m ² sr) (fiducial**)	1.43×1.43×1.43	1.43×1.43×1.38	1.80×1.54×1.54	1.89×1.16×1.16

(* one Moliere radius)

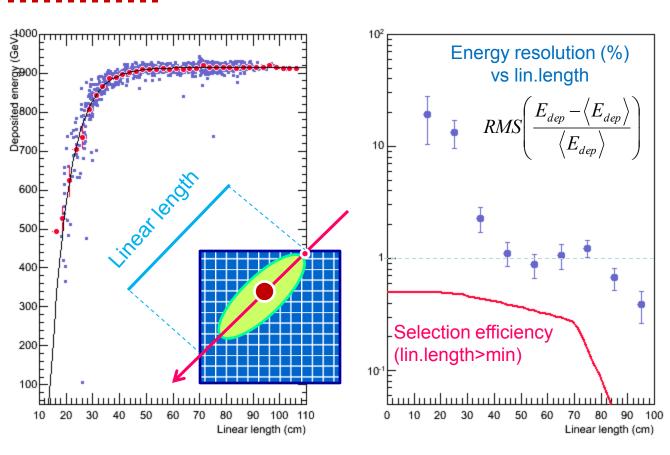
(** within a reduced perimeter of size (N-1)*L)

Emiliano Mocchiutti – INFN Trieste

Csl(Tl) ~1600 kg

	Cubes	Cubes	Cubes	Cubes
N×N×N	20×20×20	20×20×19	21×21×18	32×32×32
L (cm)	3.6*	3.6*	3.6*	2.2
Crystal volume (cm ³)	46.7	46.7	46.7	10.6
Gap (cm)	0.3	0.4	0.3	0.3
Mass (Kg)	1683	1599	1578	1574
N.Crystals	8000	7600	7497	32768
Size (cm ³)	78.0×78.0×78.0	80.0×80.0×76.0	<u>81.9×81.9×81.9</u>	80.0×80.0×80.0
Depth (R.L.) " (I.L.)	39×39×39 1.8×1.8×1.8	39×39×37 1.8×1.8×1.7	41×41×33 1.9×1.9×1.6	38×38×38 1.8×1.8×1.8
Planar GF (m ² sr) (fiducial**)	1.72×1.72×1.72	1.81×1.72×1.72	1.91×1.53×1.53	1.89×1.89×1.89

(* one Moliere radius)


(** within a reduced perimeter of size (N-1)*L)

Emiliano Mocchiutti – INFN Trieste

Geometry: BGO 28×28×28 L = 22mmG = 3mm


Selection:

 Extrapolated trajectory crossing top surface

- •Maximum energy deposit within 2 crystals from lateral borders
- 1σ upper cut on maximum shower depth
- 1σ lower cut on maximum-to-total energy deposit

Emiliano Mocchiutti – INFN Trieste

Electrons

Geometry: Csl 20×20×20 L = 36mm G = 3mm

700

600

500

400

300

20

Energy resolution (%) vs lin.length $RMS\left(\frac{E_{dep} - \left\langle E_{dep} \right\rangle}{\left\langle E_{dep} \right\rangle}\right)$ 10 **Selection efficiency** (lin.length>min) 101 80 90 100 60 80 100 120 60 70 Linear length (cm) Linear length (cm)

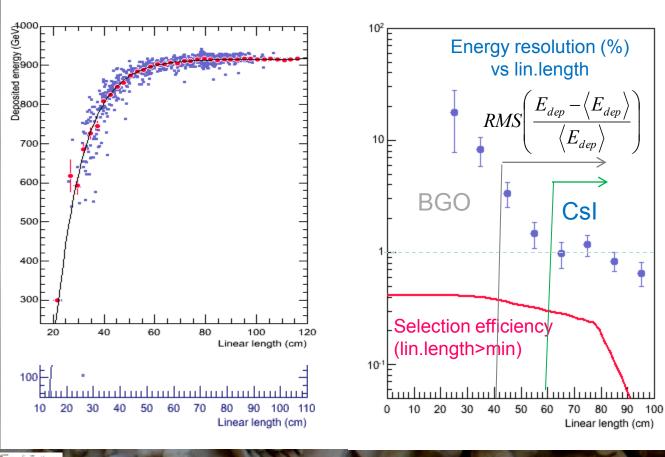
Selection:

•Extrapolated trajectory crossing top surface

- •Maximum energy deposit within 2 crystals from lateral borders
- 1σ upper cut on maximum shower depth
- 1σ lower cut on maximum-to-total energy deposit

9th Workshop on

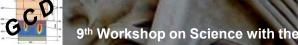
40


Emiliano Mocchiutti – INFN Trieste 9th Workshop on Science with the New Generation of High Energy Gamma-ray Experiments – Lecce, Italy, June 22nd, 2012

Electrons

Electrons

BGO vs. Csl(Tl)

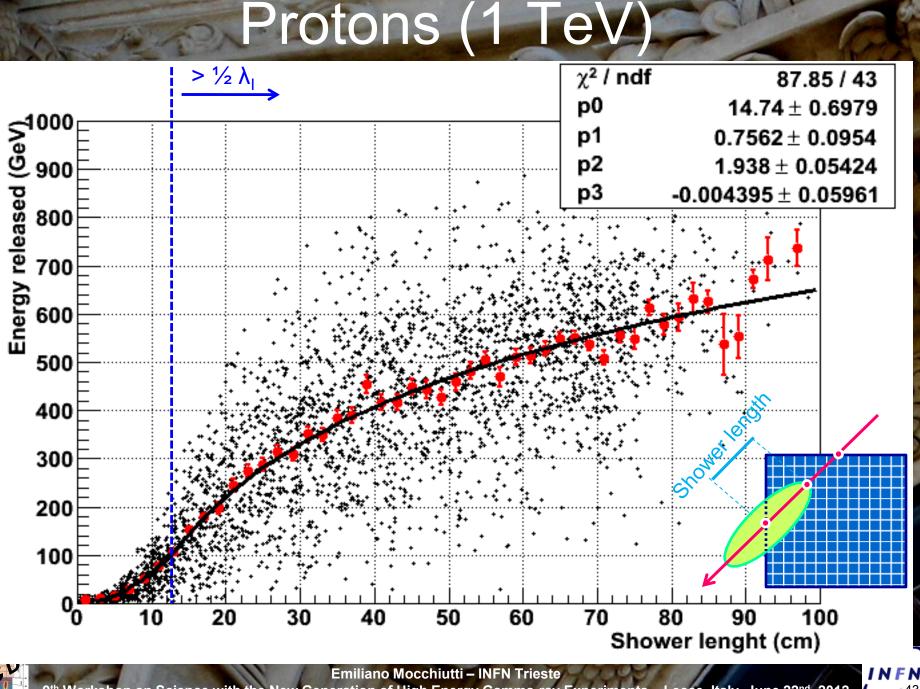


Selection:

•Extrapolated trajectory crossing top surface

- •Maximum energy deposit within 2 crystals from lateral borders
- 1σ upper cut on maximum shower depth
- 1σ lower cut on maximum-to-total energy deposit

Emiliano Mocchiutti – INFN Trieste

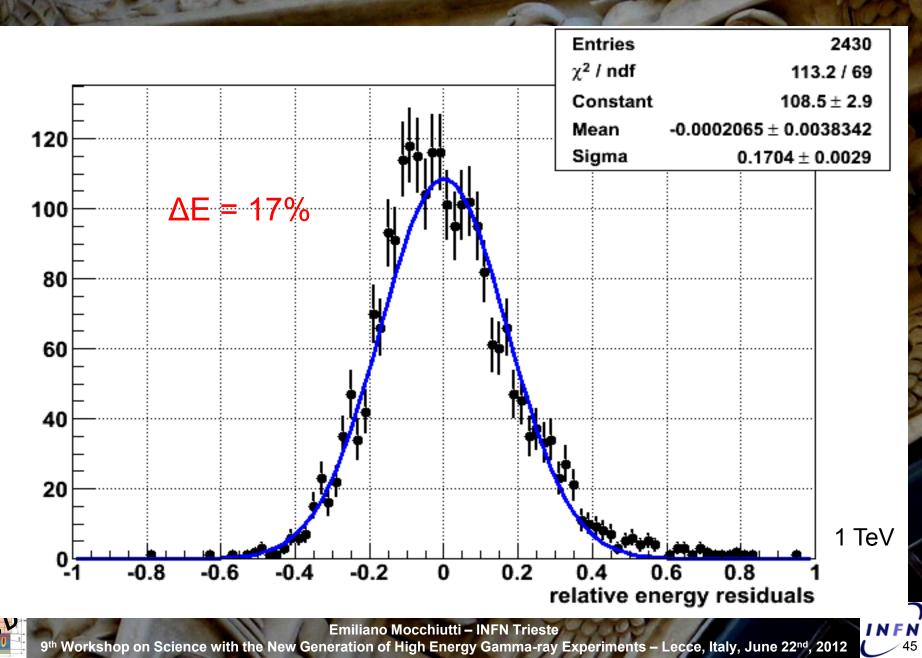


Electrons, summary

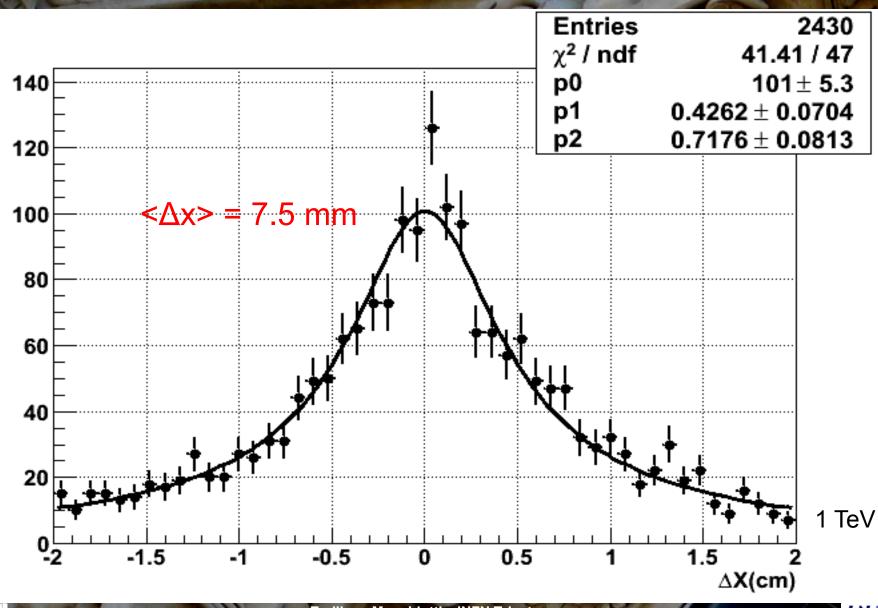
	Geometry	Planar GF (top)	Energy	σ(E)/E * (68.7%)
1	BGO 28×28×28 cube (2.2+0.3)cm	1.53 m ² sr	100GeV	~0.96%
2	BGO 29×29×25 cube (2.2+0.5)cm	1.92 m ² sr	100GeV	~1.39%
4	Csl 20×20×20 cube (3.6+0.5)cm	1.91 m ² sr	100GeV	~0.87%
5	Csl 32×32×32 cube (2.2+0.5)cm	2.01 m ² sr	100GeV	~0.99%

* shower-maximum fiducial containment+shower length > 40cm (BGO) 60cm(CsI)
** top and bottom fiducial containment

Protons, shower starting point resolution


Emiliano Mocchiutti – INFN Trieste

9th Workshop on Science with the New Generation of High Energy Gamma-ray Experiments – Lecce, Italy, June 22nd, 2012


INFN 44

1 TeV

Protons, energy resolution

Protons, pointing resolution at calorimeter top

Emiliano Mocchiutti – INFN Trieste

9th Workshop on Science with the New Generation of High Energy Gamma-ray Experiments – Lecce, Italy, June 22nd, 2012

_ 40

Protons, summary per geometry model (BGO)

BGO	Cubes	Cubes	Cubes
N×N×N	28×28×28	29×29×25	32×32×20
L (cm)	2.2*	2.2*	2.2*
G (cm)	0.3	0.5	0.3
Mass (Kg)	1667	1596	1555
N.Crystals	21952	21025	20480
Size (cm ³)	70.0×70.0×70.0	78.3×78.3×67.5	80.0×80.0×50.0
Depth(R.L.) "(I.L.)	55×55×55 2.7×2.7×2.7	57×57×49 2.8×2.8×2.4	63×63×39 3.1×3.1×1.9
Planar GF (m²sr) (fiducial**)	1.43×1.43×1.43	1.80×1.54×1.54	1.89×1.16×1.16
σ(x)	0.75 cm	0.79 cm	0.85 cm
Efficiency	54%	53% (top) 41% (side)	55% (top) 43% (side)
Effective G.F.	5 x 0.77 = 3.86 m^2 sr	1 x 0.923 + 4 x 0.634 = 3.46 m^2 sr	1 x 1.04 + 4 x 0.504 - 3.05 m^2 sr
σ(E)/E	17%	20%	23%

Emiliano Mocchiutti – INFN Trieste

Protons, summary per geometry model (Csl)

Csl(Tl)	Cubes	Cubes
N×N×N	20×20×20	32×32×32
L (cm)	3.6*	2.2
G (cm)	0.3	0.3
Mass (Kg)	1683	1574
N.Crystals	8000	32768
Size (cm ³)	78.0×78.0×78.0	80.0×80.0×80.0
Depth (R.L.) " (I.L.)	39×39×39 1.8×1.8×1.8	38×38×38 1.8×1.8×1.8
Planar GF (m²sr) (fiducial**)	1.72×1.72×1.72	1.89×1.89×1.89
σ(x)	0.91 cm	0.78 cm
Efficiency	44%	41%
Effective G.F.	5 x 0.75 = 3.75 m^2 sr	5 x 0.77 = 3.86 m^2 sr
σ(E)/ E	16%	16%

Emiliano Mocchiutti – INFN Trieste

N.	RE DE	PA	lectrons	5	Gamn	na rays		Protons	6
	Geometry	E (TeV)	GF_{eff} (m²sr) (top)	<u>σ(E)</u> Ε	E (TeV)	<u>σ(E)</u> Ε	E (TeV)	GF _{eff} (m²sr) (tot)	<u>σ(E)</u> Ε (top)
1	BGO 28×28×28 (2.2+0.3)cm	0.1 0.5 1	0.627 0.658 0.643	0.81% 0.60% 0.63%	0.1	0.96%	1	3.86	17%
2	BGO 29×29×25 (2.2+0.5)cm	1	0.827	1.09%	0.1	1.39%	1	3.46	20%
3	BGO 32×32×20 (2.2+0.3)cm						1	3.05	23%
4	Csl 20×20×20 (3.6+0.5)cm	1	0.573	0.69%	0.1	0.87%	1	3.75	16%
5	Csl 32×32×32 (2.2+0.5)cm	1	0.683	0.75%	0.1	0.99%	1	3.86	16%

Emiliano Mocchiutti – INFN Trieste

1000

INFN

49

Summary

- GAMMA-400 great opportunity as a new space experiment
- 30 MeV 1 GeV energy range crucial for gamma rays physics
- unique features to make simultaneous measurements of gammas, electrons and nuclei
- many discoveries to be made by GAMMA-400, dark matter searches, CR origin, production, acceleration to the largest energies, etc. target: deliver technical sample in 2017

Emiliano Mocchiutti – INFN Trieste 9th Workshop on Science with the New Generation of High Energy Gamma-ray Experiments – Lecce, Italy, June 22nd, 2012

GCD

