Hunting for cosmic neutrinos deep under the sea: The ANTARES experiment

Vincenzo Flaminio for the ANTARES Collaboration (Physics Dept. & INFN-Pisa)

Huge progress in γ -ray experiments over last decades

Atmospheric Cerenkov Experiments (Cangaroo, Hess, Magic, HEGRA, VERITAS...)

Satellite-based γ-ray experiments (SAS-2, COS-B, EGRET, FERMI...)

Ground-based shower detectors (MILAGRO, TIBET, ARGO-YBJ...)

Against only three astrophysical neutrino experiments !!

(AMANDA-ICECUBE, Baikal, ANTARES)

Interest of high energy cosmic neutrino detectors

- Understand production mechanism of HE cosmic rays
- Disentangle Synchrotron-Inverse Compton from Hadronic production in SNRs
- Study Binary systems, μQuasars.....
- Investigate the very high energy processes occurring in GRBs
- Search for Dark matter
- New probe \rightarrow new observations
- Should it be successful, it would extend our view of the Universe to much bigger distances (moderate attenuation in interstellar material)

Neutrino Telescopes

- Neutral particle
- Weak interaction
- \rightarrow points back to source (undeflected by B fields)
 - \rightarrow negligible absorption

Tiny cross section

need huge detector

 ν_{μ} + N \rightarrow μ + hadrons μ measures ν direction

A little bit of history

Bruno Pontecorvo

M.Markov, **1960**:

Moisej Markov

We propose to install detectors deep in a lake or in the sea and to determine the direction of charged particles with the help of Cherenkov radiation

Atmospheric muon background at 2500 m

 $D_{Earth} = 12.8 \times 10^6 \text{ m} \rightarrow \lambda = D_{Earth}$ at $E_v = 190 \text{ TeV}$

8

Neutrino detection principle

interaction

3D PMT array

Cherenkov light from μ

2500 m 43° depth

Measurement : Time & position of hits μ (~ v) trajectory

Pioneering developments Dumand experiment (Hawaii 1978-1992), depth 4500 m phased out Roberts, RMP 64, 1, 1992									
Later experiments in lakes or sea									
Baikal (Baikal lake, Russia, 1983 → present) depth 1100 m I.A. Belolaptikov et al., Astr. Ph. 7, 263, 1997	running								
Nestor (Pylos, Greece → 1996 - 2003) depth 4000 m G. Aggouras et al., Astr. Ph. 23, 377, 2005	prototype operated in 2003								
NEMO (Capo Passero, Sicily 2001→ present) depth 3500 m Capone et al., N.I.M. A 602, 47, 2009	prototype operated in 2007 new one under construction								
ANTARES (Toulon, France → 2001 → present) depth 2500 m M. Ageron et al., NIM A 656, 11, 2011	running since 2008								
KM3NET (European Project: Antares+Nemo+Nestor) http://www.km3net.org	FP6 → Design Study FP7 → Prep. Phase								

The ANTARES detector

The ANTARES detector

Detector footprint

Detector as seen by atmospheric muons: reconstructed position of the muon at the time of the first triggered hit

ANTARES Neutrino Telescope

ANTARES already biggest NT in Northern Hemisphere Chance of major discoveries

14

Angular Resolution for Upgoing Neutrinos

cumulative distribution of the angle between the true neutrino track and the reconstructed muon event that passes the selection criteria (assuming E^{-2} spectrum).

The median is 0.46° 83% of the events within 1°

Detector operations

Neutrino-induced muon

Example of a reconstructed up-going muon (i.e. a neutrino candidate) detected in 6/12 detector lines:

Absolute Pointing: Moon Shadow

884 livetime days (2007-2010) 2.7 sigma significance

Agrees with Monte Carlo expectations

Encouraging, but due to lack of statistics, can not put useful constraints on ANTARES pointing capabilities

Absolute Pointing: Surface Array

X (m)

Results obtained so far

Search for neutrino point sources \leftarrow (update of results published on Astrophys. J. Lett. 743, 1,2011) Search for neutrino diffuse flux (Phys. Lett. B696, 16, 2011) Magnetic monopoles (Astrop. Phys. 35, 634, 2012) Atmospheric neutrino oscillations \leftarrow Acoustic neutrino detection (NIM A 626-627, 128, 2011) Atmospheric muon flux (Astrop. Phys. 33, 86, 2010) Multimessanger (Tatoo, AUGER, LIGO-VIRGO..) arXiv:1202.6661v1 [Astro-ph.HE] 29 Feb 2012

Muon angular distribution

Point Source Search

- a) good track fit quality
- b) estimated angular error <1 degree
- c) upgoing muons only

d) Use energy estimator (number of hits used by track fit as discriminator of μ (~v) energy)

e) Assume spectrum proportional to $(E_v)^{-2}$

f) Build likelihood ratio and use as test statistic:

$$\mathcal{Q} = \log \mathcal{L}_{s+b}^{\max} - \log \mathcal{L}_{b}$$

-Full sky search -Candidate list search

p-value = fraction of background data sets with higher Q value than data -> small p-value = high significance

Skymap in galactic coordinates of the 3058 selected ν events.

Full-Sky Search (2007-2010)

Sky map in equatorial coordinates (pre-trial p values)

Results compatible with the background hypothesis

Source Candidate List Search

Look in the direction of a list of 51 predefined candidate sources (selection of sources mostly based on γ -ray flux and visibility)

First eleven sources sorted by Q-value. Last column shows the 90% CL upper limit on the flux (E / GeV)⁻² GeV⁻¹ cm⁻² s⁻¹

name	ra	decl	Nsigfit	Q	p-value	nsigma	lim_Nsig	lim_flux
HESS J1023-575	155.83	-57.76	1.97	2.35	0.41	0.82	5.62	6.6e-08
3C 279	-165.95	-5.79	1.11	2.15	0.48	0.71	5.35	1.0e-07
GX 339-4	-104.30	-48.79	1.26	1.49	0.72	0.36	5.10	5.8e-08
Cir X-1	-129.83	-57.17	1.52	1.31	0.79	0.27	5.00	5.8e-08
MGRO J1908+06	-73.01	6.27	0.90	1.22	0.82	0.23	4.59	1.1e-07
ESO 139-G12	-95.59	-59.94	0.98	0.76	0.94	0.08	4.63	5.4e-08
HESS J1356-645	-151.00	-64.50	0.76	0.49	0.98	0.03	4.37	5.1e-08
PKS 0548-322	87.67	-32.27	0.77	0.39	0.99	0.02	4.23	7.1e-08
HESS J1837-069	-80.59	-6.95	0.59	0.26	0.99	0.01	4.12	8.0e-08
PKS 0454-234	74.27	-23.43	0.39	0.09	1.00	0.00	3.83	7.0e-08
ICECUBE	75.45	-18.15	0.34	0.07	1.00	0.00	3.83	7.0e-08

HESS J1023-575 most signal-like, p-value 40% (post trial)

Compatible with the background hypothesis

3C279, GX339-4, Cir X-1 are flaring sources....

Oscillations with Atmospheric Neutrinos

$$P(\nu_{\mu} \to \nu_{\mu}) = 1 - \sin^2 2\theta_{32} \sin^2 \left(\frac{1.27\Delta m_{32}^2 L}{E_{\nu}}\right) = 1 - \sin^2 2\theta_{32} \sin^2 \left(\frac{16200 \,\Delta m_{32}^2 \cos\Theta}{E_{\nu}}\right)$$

Oscillations maximal at 24 GeV for vertical neutrinos (muon range~120m)

Larger effect on single-line (low energy) than multi-line (higher energy) events

Ev from muon range

Neutrino Oscillations: Track Selection

Special low energy fit for single-line events (>7storeys, do not fit azimuth)

Select pure sample of atmospheric neutrinos (<5% muon contamination)

zenith angle resolution: 0.8 degrees for multi-line events 3 degrees for single-line events Events selected: 1632 Multi line 494 Single line

Neutrino Oscillations: Result

2008-2010 data (863 days):No oscillation: χ^2 /NDF = 40/24 (2.1%)Best fit: χ^2 /NDF = 17.1/21 $\Delta m^2 = 3.1 \ 10^{-3} \ eV^2$

 $sin^22\theta = 1.00$

Systematics:

(Absolute normalisation free) Absorption length: ±10% Detector efficiency: ±10% Spectral index of v flux: ±0.03 OM angular acceptance

5% error on slope vs E_R/cosϑ_R

Assuming maximal mixing: Δm²=(3.1±0.9) 10⁻³ eV² Submitted to PLB: arXiv:1206.0645

The ANTARES Collaboration

Conclusions

- Long march towards underwater cosmic neutrino detection has lately undergone an acceleration (50 years after Gribov's proposal !)
- ANTARES made a major step forward during 2006-2007 and the 12lines detector with 900 OMs was completed in 2008. Data taking going on steadily since then.
- Over 4000 v events collected so far. Results available on the search for cosmic neutrinos, both in the full sky and in the direction of known gamma ray sources. Results on data taken up to 2010 being published.
- Results available on atmospheric neutrino oscillations, for the first time using a neutrino telescope. Paper submitted for publication.
- > Antares expected to continue data taking until 2016.

The End

Background Material

Search for Neutrinos from Micro-Quasars

Micro-quasars: galactic sources binary systems Many are flaring hadronic models jet companion star accretion disk accretion stream X-Ray Binary Echematic

Identified six microquasars with x-ray or γ -ray outbursts in the 2007-2010 FERMI/LAT data:

Circinus X-1, GX339-4, H 1743-322, IGRJ17091-3624, Cygnus X-1, Cygnus X-3

Compare with model of Distefano & Waxman. Introduce an energy cut-off at 100 TeV on the E⁻² flux.

More data and including energy information→ sensitivity will improve by at least factor 2: models for GX339-4 and CygX-3 can be excluded

Detector positioning

Acoustic system:

- + One emitter-receiver at the bottom of each line
- + Five receivers along each line
- + Four autonomous transponders on pyramidal basis

Additional devices provide independent sound velocity measurements

Deployment

Data taking periods:

Detector layout

Acoustic storey

... and several instruments for environment studies with the ANTARES infrastructure

Absolute Pointing: Surface Array II

Local coincidences from ⁴⁰K decay

Storey coincidences

derive depth dependence of muon flux from coincidence-time distributions of (next-to) adjacent storeys, each with a local coincidence (± 20 ns):

low threshold of 4 GeV

(minimum track length between adjacent storeys)

mostly down-going muons: delay ~ + 20 ns)

The ANTARES Infrastructure

Loglikelihood

$$\log \mathcal{L}_{s+b} = \sum_{i} \log[\mu_s \times \mathcal{F}(\psi_i(\alpha_s, \delta_s)) \times \mathcal{N}^s(N_{hits}^i) + \mathcal{B}(\delta_i) \times \mathcal{N}^{bg}(N_{hits}^i)] - \mu_{tot},$$

2006 – 2008: Building phase of the Detector

~70 m

- Junction box
- Main cable
- Line 1, 2
- Line 3, 4, 5 01 / 2007
- Line 6, 7, 8, 9, 10 12 / 2007
- Line 11, 12

Secondary Junction Box

Connected 30 Oct 2010

Secondary Junction Box

Japan earthquake 2011 March 11 at Antares site

Time in minutes (from 00:00)

Galactic Sources: ANTARES vs IceCube

IceCube energy threshold >1 PeV for Southern Sky sources

