

Current status

- In operation since July 2006 (commissioning phase)
- Stable data taking since November 2007 with final configuration
- The average duty cycle $\sim 85 \%$
- Trigger rate $\sim 3.5 \mathrm{kHz}$ @ 20 pad threshold

O $4 \cdot 10^{11}$ events collected

- Dead time 4%
- $220 \mathrm{~GB} /$ day transferred to IHEP/CNAF data centres

Moon shadow analysis

PRD 84 (2011) 022003

- A natural tool to evaluate the performance of the detector

The energy scale uncertainty is estimated to be smaller than 13% in the range $1-30 \mathrm{TeV} / \mathrm{Z}$.

Upper limits on $\overline{\mathrm{p}} / \mathrm{p}$ by ARGO-YBJ

Sun shadow

Displacement of the Sun shadow correlates with the SMMF

Sun at maximum \rightarrow shadow is washed out
Sun at minimum \rightarrow good shadow \& SMF symmetric between NS

EW shift due to GMF

NS shift due to IMF
The displacement of the Sun shadow is a good measurement of the IMF, especially in a this particular quiet phase between $23^{\text {th }}$ and $24^{\text {th }}$ cycles.

Solar wind e IMF

Figure 6 Sketch showing the warped current sheet in the inner solar system (inside of 6 au). This current sheet divides the interplanetary magnetic field in the heliosphere into two regions with oppositely directed field lines. In one region the field polarity is away from the Sun (at present this region is north of the solar equator), in the other region the field polarity is toward the Sun. The situation is shown for a four-sector structure and we try to depict the shape of a surface in three dimensions. Where this surface-in which the current flows-lies above the solar equatorial plane it is shown by full lines, while dashed lines indicate that the current sheet dips below the equatorial plane. The extent in latiude Svalgaard \& Wilcox 1976).

Computed neutral lines on a source surface at 2.6 solar radii
... so a charge particle that passes through the IMF experiences a B_{y} that changes once or twice from positive to negative (two or four sectors structure). Consenquently the sun shadow will be seen oscillating once or twice along north-south direction in a solar rotation period, or Carrington period.

IMF measurement with ARGO-YBJ

ApJ 729:113 (4pp), 2011 potential forecasting

capability for magnetic
storms due to sø̣lar
events.
near the earth

\rightarrow time lag 1.6 days

Fig.2. Shift of the centre of the sun shadow along the north-south drection during a complete Camington period. The honzontal axus gives the Camington longitude and the vertical axis is the angular displacement of the centre of the shadow. In the upper panel, the observation (tnangles) in the period G_{1} reveals that the shadow walks towards north in nearly half of the Camngton period and towards south in the rest of the penod. The cuave is a fit whth a harmonic functional form Squares represent the displacements of the simulated sum shadows. In the lower panel, a similar shift of the shadow but with different pattem is observed in period G_{2}, i.e. the shadow moves from side to side twice per Canington penod.

Fig.3. Comparison between two measurements of IMF using different methods. The solid curve represents the field component B_{y} near the earth measured by the ARGO-YBJ experiment using cosmic ray deflection. In period G_{1} (upper panel) a clear bisector pattem is observed Positive sign indicates that the field is pointing to the centre of the sun. An uncertainty of one standard deviation data downloaded from [9]. In the lower panel, the results with the 4 -sector structure in period G_{2} are displayed.

Large Scale Anisotropy

LSA: Energy Dependence

LSA: Monthly variation:ok

medium scale: significance map

Map smoothed with the detector P.S.F. for cosmic rays
\rightarrow no correction for trial factor is needed. If the "Top-Hat" smoothing is used and the optimal opening angle is looked for, the pre-trial maximum significance is 23 s.d.
\rightarrow details on finer scales are not washed out by the Top-Hat function.

msa relative intensity map

Anisotropy : joint data

1. All scale analysis is on going. Started a collaboration with people in ICECUBE to perform a joint analysis: anisotropy map on both hemisphere.

Proton-air cross section measurement

Use the shower frequency vs $(\sec \theta-1)$

$$
I(\theta)=I(0) \cdot e^{-\frac{h_{o}}{\Lambda}(\sec \theta-1)}
$$

for fixed energy and shower age.
The lenght Λ is not the p interaction lenght mainly because of collision inelasticity, shower fluctuations and detector resolution.

It has been shown that $\Lambda=\mathbf{k} \lambda_{\text {int }}$, where k is determined by simulations and depends on:

- hadronic interactions
- detector features and location (atm. depth)
- actual set of experimental observables
- analysis cuts
- energy, ...

Then: $\quad \sigma_{\text {p-Air }}(\mathrm{mb})=2.410^{4} / \lambda_{\text {int }}\left(\mathrm{g} / \mathrm{cm}^{2}\right)$

Take care of shower fluctuations

- Constrain $X_{D O}=X_{\text {det }}-X_{0}$ or

$$
X_{D M}=X_{\text {det }}-X_{\max }
$$

- Select deep showers (large $X_{\text {max }}$,
i.e. small $X_{D M}$)
- Exploit detector features (spacetime pattern) and location (depth).

The proton-air cross section

The total p-p cross section

- No p-p (and pbar-p) accelerator data available at these energies
- The $\log ^{2}(\mathrm{~s})$ asymptotic behaviour is favoured

The CR light component energy spectrum

Unfolding the energy spectrum by a Bayesian approach PRD 85, 092005 (2012)

MACRO + EAS-TOP ARGO-YBJ

For the first time direct-indirect measurements of the CR spectrum overlaps for more than one energy decade, thus providing a solid anchorage to the CR spectrum measurements at higher energies.

The CR light component energy spectrum (1)

The CR light component energy spectrum(2)

RUN_98177_ev_20_PMax_4998

20 V fs

20 V fs

PMax : Shower Maximum

$\checkmark 30 \%$ spread of the gain distribution (amplitude/particle)
\checkmark homogeneity $\approx 4 \%$ (after calibration)

ARGO-YBJ data: PMax differential distribution

Theta<15dg. PMax in the shower

Tibet Array (4300 m asl)

(a)

(b)

Fig 2. Energy spectra of primary cosmic-ray protons obtained by the present experiment (a) and they are compared with other experimeats (b): Tibet-B D [9] KASCADE [16], JACEE [17] and RUNJOB [18]. The all-particle spectra are from the experiments: PROTON satellite [19], Tibet-II [20] and AKENO [21]. For the solid line with the power index -2.74 , see the text

Lateral distribution

The core region is measured with unprecedented detail \rightarrow Sensitivity to hadronization models/composition

LDF per Npart_peak=(1-3) 10^3

LDF per Npart_peak=(3-8) 10^3

Composition studies (1)

Composition studies (2)

Composition studies (3)

Composition studies (4)

Composition studies (5)

Composition studies (6)

Composition studies (7)

Composition studies (8)

Event Asymmetry

Events are selected by requiring:

- The reconstructed zenith angle is less than $15^{\circ} ;$.
- core inside the internal detector (the $6 \times$

9 clusters in the center)

- log of the maximum density in 2.5 to 3
- data from Dec. 2010 to Mar. 2011 is used.
- comparison with MC events generated according to Horandel model

Asymmetry distribution :
comaparison of data and MC events
M. ZHA-ARGO-YBJ Coll., HE1. 1 n. 242

Multicore events
Those events are typically explained within the framework of jet production, which is essentially provided by the leading particle interaction with the Air target nuclei; the separation between the cores is related to the $p T$ of the leading particle. Events at high $p T$ are a perfect tool to investigate hadronic interaction models or even new physics.

- Multicore event selection:
$>$ significance $>5 \sigma$ $>r_{12} \sim 3.5-10 \mathrm{~m}$.

J. Zhao, X. Ma -ARGO-YBJ coll. ICRC2011-HE3.1 n. 814

Conclusions

1. Antip/p upper limits have been set @ TeV energies
2. IMF has been measured (and the capability of the method for forecasting solar magnetic storms has been demonstrated).
3. Anisotropy has been measured both at large and medium scale
4. \quad pp cross section has been measured up to 100 TeV in the lab frame.
5. light component of $\mathrm{CR}(\mathrm{p}+\mathrm{He})$ has been measured below 100 TeV.

- The analog readout extends the energy range up to PeV .
- The core region is measured with unprecedented detail.
- Many physics items have been made accessible, namely p-p cross section at PeV energies, primary mass identification and composition around the knee, test of interaction models and shower core study .

