
Trigger proposal

Igor Pains
with Rafael Nóbrega

18/07/2024
Analysis & reconstruction meeting

1.
Introduction

2

Introduction

▷ Motivation: reduce data to manageable levels by selecting only
events of interest, saving storage and processing resources.

○ Each run may need up to 2 Gb to be stored after the compression.

■ ~1 Tb per day considering the current frequency.

3

Proposal

▷ Develop algorithms to be tested as online trigger to decide
whether to save or not images taken by the detector.

○ Convolution of the image with several kernels: look for high correlation
points. Link of the last presentation

○ Explore Machine Learning methods (CNN)

4

on going →

https://agenda.infn.it/event/41735/contributions/233423/attachments/119575/173355/Trigger%20Proposal%20Status.pdf

2.
Dataset

5

6

Simulation
▷ We started using Pietro’s simulation, which contains:

○ ER events with 1, 3, 6, 10, 30 and 60 keV (1k each)
○ NR events with 1, 3, 6, 10, 30 and 60 keV (1k each)

▷ The 1 keV simulation was used to create smaller energies simulations
(0.25 and 0.5 keV).

7

Datasets
▷ Datasets

○ Training:
■ Noise dataset: 600 images from pedestal runs (Run 4 underground).
■ ER and NR signal simulation: 600 images each containing 0.25-1 keV signals added to

pedestal runs (different from noise dataset).
○ Validation:

■ Noise dataset: 200 images from pedestal runs.
■ ER and NR signal simulation: 200 images each containing 0.25-1 keV signals.

○ Test:
■ Same configuration as validation.

8

Signal split

▷ The signal split was done in a way to maintain the three distributions as similar
as possible.

9

Noise
▷ A 2304x2304 image is too big for a CNN to

handle, meaning that a size reduction is needed.

▷ A possible approach is to send fractionated
patches from the original image to the CNN.
○ Tensorflow extract patches function was used.

▷ The right images were divided into 63 patches
with 288x288 pixels each with an overlap region
between them.

Reco bottom cut

Reco uppercut

3.
CNN

10

11

Input image

Convolution +
activation function

Pooling

Convolution +
activation function

Pooling

…
..…..

Feature Extraction

Convolution Max-Pooling Convolution Max-Pooling

Flatten

Binary classification

Fully-Connected
Layer

Sigmoid

Output
probability

CNN

● Feature extraction: Looking for features while reducing the size of the
image.

● Binary classification: Combine all the features with neurons in the FCL and
classify the input image.

12

CNN architecture
▷ After some tests, the best CNN had the following

architecture:
○ Feature extraction: Six combinations of

convolutional layers (3x3 kernels) with ReLu
activation, MaxPooling layers (3x3 kernels),
dropout layers.

○ Binary classification: Fully connected layer with
512 neurons with ReLu activation, dropout layer,
batch normalization and output layer with sigmoid
activation.

13

CNN training
Signal image

Noise image

▷ Both ER and NR were used together during the CNN training.
○ The signal was randomly rotated and placed in a position among the

noise.

▷ 4800 images with 288x288 pixels were used on CNN training and
1600 on validation.
○ Every signal from the split was used twice.
○ The noise patch used was always different.

▷ The best result was achieved by using 0.5 keV signals on training.
○ 0.25 keVs signals generally led to overfitting.

14

CNN training

15

CNN test
▷ Since the actual image has 2304x2304 pixels, the

test should be performed in way to use all that
information.
○ The highest prediction of the CNN on each one of the

63 patches from noise images is stored.
○ The highest prediction on the CNN on each one of the

patches that contain an information of the signal is
stored.

▷ This procedure was used on the 400 images
separated for test.
○ ER and NR were tested separately to see the CNN

performance.
○ 0.25 and 0.5 keV signals were used for test.

16

CNN predictions 0.25 keV

17

CNN ROC 0.25 keV

18

CNN predictions 0.5 keV

19

CNN ROC 0.5 keV

20

Reconstruction 0.25 keV

The reconstruction found noise clusters on 66 events (33% false alarm) and detected ~135 signals
(67.5% signal detection).

21

CNN ROC 0.25 keV vs Reco

22

Reconstruction 0.5 keV

The reconstruction could detect almost all of the signal clusters with 0.5 keV

23

Time analysis

▷ Gaussian filter method is slightly faster than
the CNN.
○ The CNN method times also consider the time

needed to split the image into patches.
○ Gaussian Filter uses the scipy function.

▷ These times do not consider the time needed to
load the image.

4.
Conclusion

24

25

Conclusion
▷ The CNN was able to achieve good results comparing to the

reconstruction and correlation methods.

▷ It may be optimized with a GPU to make the training and it’s
prediction faster.

26

Next steps
▷ Train the CNN with different patch sizes and see if the performance in

detection and time is increased.

▷ See how much a GPU may fast up the prediction.

Thanks!

27

