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Introduction

▷ Motivation: reduce data to manageable levels by selecting only 
events of interest, saving storage and processing resources.

○ Each run may need up to 2 Gb to be stored after the compression.

■ ~1 Tb per day considering the current frequency.
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Proposal

▷ Develop algorithms to be tested as online trigger to decide 
whether to save or not images taken by the detector.

○ Convolution of the image with several kernels: look for high correlation  
points. Link of the last presentation

○ Explore Machine Learning methods (CNN)
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on going →

https://agenda.infn.it/event/41735/contributions/233423/attachments/119575/173355/Trigger%20Proposal%20Status.pdf
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Simulation
▷ We started using Pietro’s simulation, which contains:

○ ER events with 1, 3, 6, 10, 30 and 60 keV (1k each)
○ NR events with 1, 3, 6, 10, 30 and 60 keV (1k each)

▷ The 1 keV simulation was used to create smaller energies simulations 
(0.25 and 0.5 keV).
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Datasets
▷ Datasets

○ Training:
■ Noise dataset: 600 images from pedestal runs (Run 4 underground).
■ ER and NR signal simulation: 600 images each containing 0.25-1 keV signals added to 

pedestal runs (different from noise dataset).
○ Validation:

■ Noise dataset: 200 images from pedestal runs.
■ ER and NR signal simulation: 200 images each containing 0.25-1 keV signals.

○ Test:
■ Same configuration as validation.
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Signal split

▷ The signal split was done in a way to maintain the three distributions as similar 
as possible.
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Noise
▷ A 2304x2304 image is too big for a CNN to 

handle, meaning that a size reduction is needed.

▷ A possible approach is to send fractionated 
patches from the original image to the CNN.
○ Tensorflow extract patches function was used.

▷ The right images were divided into 63 patches 
with 288x288 pixels each with an overlap region 
between them.

Reco bottom cut

Reco uppercut
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CNN

● Feature extraction: Looking for features while reducing the size of the 
image.

● Binary classification: Combine all the features with neurons in the FCL and 
classify the input image.
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CNN architecture
▷ After some tests, the best CNN had the following 

architecture:
○ Feature extraction: Six combinations of 

convolutional layers (3x3 kernels) with ReLu 
activation, MaxPooling layers (3x3 kernels), 
dropout layers.

○ Binary classification: Fully connected layer with 
512 neurons with ReLu activation, dropout layer, 
batch normalization and output layer with sigmoid 
activation. 
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CNN training
Signal image

Noise image

▷ Both ER and NR were used together during the CNN training.
○ The signal was randomly rotated and placed in a position among the 

noise.

▷ 4800 images with 288x288 pixels were used on CNN training and 
1600 on validation.
○ Every signal from the split was used twice.
○ The noise patch used was always different.

▷ The best result was achieved by using 0.5 keV signals on training.
○ 0.25 keVs signals generally led to overfitting.
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CNN training
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CNN test
▷ Since the actual image has 2304x2304 pixels, the 

test should be performed in way to use all that 
information.
○ The highest prediction of the CNN on each one of the 

63 patches from noise images is stored.
○ The highest prediction on the CNN on each one of the 

patches that contain an information of the signal is 
stored.

▷ This procedure was used on the 400 images 
separated for test.
○ ER and NR were tested separately to see the CNN 

performance.
○ 0.25 and 0.5 keV signals were used for test.
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CNN predictions 0.25 keV
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CNN ROC 0.25 keV
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CNN predictions 0.5 keV
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CNN ROC 0.5 keV
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Reconstruction 0.25 keV

The reconstruction found noise clusters on 66 events (33% false alarm) and detected ~135 signals 
(67.5% signal detection).
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CNN ROC 0.25 keV vs Reco
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Reconstruction 0.5 keV

The reconstruction could detect almost all of the signal clusters with 0.5 keV
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Time analysis

▷ Gaussian filter method is slightly faster than 
the CNN.
○ The CNN method times also consider the time 

needed to split the image into patches.
○ Gaussian Filter uses the scipy function.

▷ These times do not consider the time needed to 
load the image.
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Conclusion 
▷ The CNN was able to achieve good results comparing to the 

reconstruction and correlation methods.

▷ It may be optimized with a GPU to make the training and it’s 
prediction faster.
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Next steps
▷ Train the CNN with different patch sizes and see if the performance in 

detection and time is increased.

▷ See how much a GPU may fast up the prediction.



Thanks!
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