

Performance and ageing studies on Eco-Friendly Resistive Plate Chamber detectors

Dayron Ramos Lopez on behalf of RPC EcoGas@GIF++ Collaboration

RPCs in High Energy Physics experiments

Global Warming Potential (GWP) and GHG emissions at LHC

Greenhouse Gases (GHGs) are gases in the earth's atmosphere that trap heat.

Global warming potential (GWP) is an index to measure of how much infrared thermal radiation a GHG would absorb over a given time. It is expressed as a multiple of the radiation that would be absorbed by the same mass of carbon dioxide, which is taken as a reference gas.

Gas	Atmospheric lifetime	GWP 100 years		
CO ₂	50-200 years	1		
R-134a	14 years	1430		
CF ₄	50,000 years	7390		
C ₄ F ₁₀	2600 years	9200		
SF ₆	3200 years	22800		

Gases used at CERN with high GWP

Gaseous mixture for RPC operation at CERN

TFE $(C_2H_2F_4) \sim 95\% + iC_4H_{10} \sim 4-5\% + SF_6 < 1\%$

- High density of primary ion-electrons pairs \rightarrow high RPC efficiency
- Good quenching properties and electronegativity \rightarrow very low streamer probability
- High rate capability

Nowadays increased attention on GHGs emissions: F-gas regulation aims in limiting emissions, GHGs availability, price, **GHGs are used because needed to achieve specific detector performance and/or long-term stability**

Greenhouse gas usage at CERN (1)

- CERN Environment Report 2019-2020 •
- 2021: CERN's Year of Environmental Awareness.
- CERN Environment workshop: 12 and 13 October 2022 •
- CERN Environment Report 2021-2022 •

19/07/2024

200000 $CF_4 \rightarrow$ due to operation of CSC and RICH systems **Emissions from** 180000 $SF_6 \rightarrow$ Related to RPCs as R-134a particle detection 160000 tCO2e Gas consumed for all LHC experiments 100000 100000 80000 kg] 80000 CO2_e [10³ 60000 60000 LHC experiments - Particle detection LHC experiments - Detector cooling 40000 Other experiments 40000 Heating (gas + fuel) Other 20000 20000 Electricity consumption (EDF) Electricity consumption (Hungary) Scope 1 Scope 2 Scope 1 2017 2018 2019 2020 R-134a SF6 LS2 Run2

ICHEP 2024 - Dayron Ramos

Run 1

Run 2

LS1

CF4

Total CERN emissions during 1 year of Run 2 ~ 200 000 tCO2e

used for ALICE, ATLAS and CMS systems

 $C_2H_2F_4/R-134a$ biggest contributor \rightarrow leaks from RPC detector,

~ 50% from particle detectors

Greenhouse gas usage at CERN (2)

Limiting the total amount of the most important F-gases that can be sold in the EU from 2015 onwards and phasing them down in steps to one-fifth of 2014 sales in 2030.
Banning the use of F-gases where less harmful alternatives are widely available.

Preventing emissions of F-gases from existing equipment by requiring checks, proper servicing and recovery

New gaseous mixtures candidates

 Requirements: low GWP, low toxicity, not flammable and detector performance comparable with standard one

In industrial applications $C_2H_2F_4$ is being replaced with HydroFluoro-Olefins (HFOs)

- the replacement of C2H2F4 with HFO moves the operating voltage at much higher values (es. >13kV for 2mm gap)
- the addition of CO2 helps in decreasing the WP

lydro-Fluoro-Olefin (HFO)					
				C=C double bond	
			fluorir	ne-containing	
hydrogen-containing					

	TFE (%)	HFO-1234ze (%)	CO ₂ (%)	iC ₄ H ₁₀ (%)	SF6 (%)	GWP	CO ₂ e (g/l)
STD	95.2	-	-	4.5	0.3	1485	6824
ECO2	-	35	60	4	1	476	1522
ECO3	-	25	69	5	1	527	1519
Density (g/l)	4.68	5.26	1.98	2.69	6.61	-	-
GWP	1430	7	1	3	22800	-	-

GWP with respect to CO2, and their CO2e, in grams, for one litre of mixture **Values mainly driven by SF6**

ECOGas at GIF++ collaboration timeline

- ->

Setup at GIF++

- 12.2 TBq ¹³⁷Cs + H4 SPS beam line
- Radiation intensity attenuated by combination of filters

Gas mixer unit to provide up to 4 component gas mixture (humidified)

• C2H2F4, iC4H10, SF6, CO2, Ar, HFO

RPCs: Alice (2 mm), EP-DT (2 mm), CMS (2mm), CMS_KODEL (1.4 mm), LHCb/SHIP (1.6 mm), ATLAS (2 mm)

Aging studies

Monitoring of currents

Detector performance (test-beam)

CMS FEB for CMS RPC

ALICE FEB FEERIC for ALICE and LHCb/SHIP RPCs Dedicated digitizer for EP-DT and ATLAS RPCs

ICHEP 2024 - Dayron Ramos

Aging studies

How our aging program works?

- Detector HV switched ON at fixed value for hole week → Stability monitoring
- HV is corrected every minute

$$HV_{app} = HV_{eff} \left[(1 - \alpha) + \alpha \frac{P}{P_0} \frac{T_0}{T} \right]$$

 Detectors are exposed to the γ flux from the ¹³⁷Cs source → current and voltages are monitored by shifts

How our aging program works?

→ Subtracted from the current absorbed under irradiation to calculate the integrated charge density

Current density monitoring over time as function of integrated charge density

ICHEP 2024 - Dayron Ramos

Integrated charge on time

BY flushing all detectors with ECO2

Different maximum values of integrated charge reached by the different RPCs

→ Efficiency corresponding to irradiation voltage is not the same on all detectors + different distances from the Cs source ICHEP 2024 - Dayron Ramos 14

Aging studies results (1)

Total and Ohmic dark currents at working point

• After initial increase followed by some stability for TN and TW gap, while less stable and increase trend BOT gap.

19/07/2024

Aging studies results (2)

Total and Ohmic dark currents at working point

Effective high voltage of SHiP RPC moved in steps up to 9.8 kV

- \rightarrow Only RPC of the collaboration to reach full efficiency
- For lower HVs
- \rightarrow Current trend stable over time
- When HV increased
- → Current increase + appearance of instabilities (under investigation)

Similar trend for dark current HV: 8.8 kV HV: 9 kV HV: 9.8 kV HV: 8.8 kV (3 m from source)

Resistivity trend

- Resistivity monitoring by Ar scan (see backup slides)
- Slightly increase trend for CMS top RPCs while more constant behavior for the others
- Possible not uniform response in all detectors (under discussion, electrodes materials??)

Performance verification

Some definitions

Example of high voltage scan with CMS_KODEL chamber in absence of gamma background

- It was not observed a drop in the plateau efficiency at source OFF and lower rates
- The **working point is increased** for all the mixture after irradiation
- ECO2 shows a higher increase in working point than ECO3
- Measurements at ABS 3.3 still to be analysed to understand efficiency drops

20

Performance verification (2) 2021 – 2023 CMS RPC

Muon Cluster Size (# of strips)

Current Density, gamma rates and muon cluster size

- The current density rises to 2 to 3 nA • for all gas mixtures at their working points, nearly 10 times of the values before
- Increase values observed in agreement with increased irradiation as well as when employing ECO2 or ECO3 with respect to the STD gas mixture.

12.0

HV_{eff}(kV)

- The muon cluster size decreased as the irradiation cluster rate increased
- Slightly increase rise in cluster size between the data from 2021 and 2023 at their working points for all gas mixtures.

Performance verification (3) 2022 – 2023 LHCb/SHIP RPC

Efficiency and Working Point

- Increase of WP voltages after 1 year of irradiation. In average higher increase when the operation was with ECO3, around 700 V, while with ECO2 around 500 V
- The **2D efficiency** shows similar trend for the ecological candidates and **not** significant drop is observed

19/07/2024

Performance verification (4) 2023 – 2024 EP-DT RPC

Efficiency and Streamer Probability

- Between the three mixtures, the efficiency drops at maximum ~2% (depending on the mixture and ABS filter) - which could result from the alignment
- The **streamer probability is reduced** for all runs for all the mixtures taken; the ECO3 shows more streamers than ECO2
- The **working point is increased**, yet the rate for all runs is consistently lower
- ECO2 shows a higher increase in working point than ECO3
- The **maximum efficiency has dropped** compared to the last test beam for all mixtures

Performance verification (5) 2023 – 2024 EP-DT RPC

Currents and total charge

- The **currents** with respect to the rate are a ٠ little higher than in July 2023, ranging between ~10-25 μ A for the fixed rate of 300Hz/cm2 → meaning a **10% increase** irrespective of the gas mixture
- The slopes for the STD and ECO2 are similar to the last year, only for the ECO3 mixture, the currents are slightly decreasing at higher rates.
- In terms of charge per ABS filter, it seems higher than in 2023, consistent with the higher currents and lower rate observed.
- Between the mixtures, for the STD, the charge is lower, but for ECO2 and ECO3 they are similar except for ABS 69.

Performance verification (6)

2023 - 2024 CMS_KODEL RPC Efficiency, Working Point, Current densities and rates

- The efficiency do not suffer drop after 1 year of irradiation
- Slightly increase of the working point -• still to control resistivity. Increase more pronounce at higher gamma rates and when the RPC is operated with ECO2
- Not major variations on the current densities at WP values with respect to gamma rates
- Gamma rates consistent while small increase of noise was observed (under investigation)

Noise / Gamma clus. rate at WP (Hz/cm²)

19/07/2024

Summary

- Involved in the CERN phase-down of fluorinated GHG emissions, the RPC EcoGas@GIF++ collaboration has joined efforts to find a solution for the environmentally friendly operation of RPCs
- In August 2022, a systematic **irradiation campaign** started, and the performance of the detectors is annually verified during **beam tests**
- From aging studies, a smooth increase trend of the total dark current has been observed (also increases in ohmic contribution) → further discussion needed
- No major degradation of the detector performance has been verified from the beam test campaign at GIF++. Increases in Working Point values were observed in all RPCs after irradiation.

THANKS!

dayron.ramos.lopez@cern.ch

Backup slides

Resistivity monitoring by Ar scan

Procedure

- 1. Linear fit to the ohmic part of the I(V) curve
- 2. Starting point of the fit is decided by the fit with the minimum chi square adding one point at a time
- 3. Function used y = a + bx, b = 1/R (R = resistance of the electrodes)

p(resistivity) = R*S(surface)/2d(electrode thickness) = 1/b*S/2d

Resistivity values shown in the following are normalized to $T_0 = 20^{\circ}$ C using the following formula:

$$\rho(T) = \rho(T_0) * 4.4^{\frac{T_0 - T}{12 \circ C}}$$

