Towards a neutrino analysis in the ICARUS detector

Fermilab 2024 Summer Students School

Maria Artero Pons 24th July 2024

ROUND

IGNALS

MAGING

COSMIC

AND

Dipartimento di Fisica e Astronomia Galileo Galilei

H2020-MSCA-RISE-2 G.A. 822185

- 1. Introduction
- 2. ICARUS
- 3. From images to physics
- 4. Neutrino event selection
- 5. Data MC comparisons
- 6. Conclusions

1. Introduction

2. ICARUS

- 3. From images to physics
- 4. Neutrino event selection
- 5. Data MC comparisons

6. Conclusions

I also finished

my PhD!

Neutrino oscillations

- Neutrinos are produced and detected as well-defined flavour eigenstate, however they propagate via mass eigenstates
- Despite the well-established 3 flavour v mixing picture, several anomalies from accelerator experiments (LSND and MiniBooNE), reactor and radioactive sources have been reported in the last 20 years, unable to fit inside the scheme
- Results suggest a new *sterile* v flavour at $\Delta m^2 \sim eV^2$ and small mixing angle, thus driving short distance oscillations

The sterile neutrino puzzle

- The Neutrino-4 collaboration reported a hint of oscillation signature at higher mass splitting <u>arXiv:2005.05301</u>
 - Reactor $\overline{v_e}$ disappearance with $\Delta m^2 \sim 7 \ eV^2$ and $\sin^2 2\theta \sim 0.26$
 - Combining Neutrino-4 results with data from GALLEX, SAGE, and BEST experiments the confidence in previously claimed results has increased to 5.8σ CL <u>arXiv:2302.09958</u>
- Clear tension between appearance and disappearance results is observed in global constraint plots

Measuring both channels with the same experiment will help clarify the scenario

Short-Baseline Neutrino Program at Fermilab

- Short Baseline Neutrino (SBN) Program main goal is to search for sterile neutrino oscillations both in appearance and disappearance channels (at ~ eV² mass scale)
- 3 Liquid Argon Time Projection Chambers (LArTPC) sampling the same Booster Neutrino Beam (BNB) at different distances

- Short Baseline Neutrino (SBN) Program main goal is to search for sterile neutrino oscillations both in appearance and disappearance channels (at ~ eV² mass scale)
- 3 Liquid Argon Time Projection Chambers (LArTPC) sampling the same Booster Neutrino Beam (BNB) at different distances

From images to physics

• LArTPC detectors produce high resolution images of particle interactions

Need to reconstruct these interactions from raw images to perform high level analysis

- An important piece in the reconstruction process is the pattern recognition algorithm which must:
 - Identify the individual particles and their relationship to each other
 - Arrange these particles into production hierarchies
 - Determine their 3D trajectories

 $v_e + n \rightarrow p + e$

Electron neutrino interaction that produced a proton (1) and an electron. The later produced an EM shower with photons and electrons (2)

From images to physics

• LArTPC detectors produce high resolution images of particle interactions

Need to reconstruct these interactions from raw images to perform high level analysis

- An important piece in the reconstruction process is the pattern recognition algorithm which must:
 - Identify the individual particles and their relationship to each other
 - Arrange these particles into production hierarchies
 - Determine their 3D trajectories

Electron neutrino interaction that produced a proton (1) and an electron. The later produced an EM shower with photons and electrons (2)

From images to physics

• LArTPC detectors produce high resolution images of particle interactions

- Arrange these particles into production hierarchies
- Determine their 3D trajectories

Electron neutrino interaction that produced a proton (1) and an electron. The later produced an EM shower with photons and electrons (2)

The reconstruction pipeline

Ongoing physics analysis

- While the near detector is getting ready to join the SBN program, ICARUS-standalone phase is addressed to test the Neutrino-4 oscillation hypothesis in the same L/E range (~ 1-3 m/MeV), but collecting ~ ×100 more energetic events
 - v_e disappearance channel from NuMI: selecting contained EM showers from quasi-elastic v_e CC interactions
 - v_{μ} disappearance channel from BNB: focusing on contained quasi-elastic v_{μ} CC interactions
- BNB studies are performed on v_{μ} CC fully contained events with a single muon and at least a proton in the final state

Neutrino event selection

- A first step towards this goal is to select events which:
 - v vertex should be inside the fiducial volume i.e., 25 cm apart from the lateral TPC walls and 30/50 cm from the upstream/downstream walls
 - 2. **Fully contained** interactions i.e., no signal in the last 5 cm of the LAr **active volume**
 - 3. Stopping muon of $L_{\mu} > 50$ cm
- To further simplify, consider $1\mu 1p$ candidates
 - 4. Only 1 proton $L_p > 1$ cm produced at the primary vertex

$1\mu 1p$ visually selected events

- Performance validation of the available automatic reconstruction tools
 - Sample of 520 1μ 1p visually selected data events
- For each event, the 3D position of the vertex, end muon and end proton were saved
 - Comparison between manually and automatically reconstructed variables
- Stringent quality requirements were defined to
 - assess Pandora's reconstruction algorithm
 - identify a set of well reconstructed $1\mu 1p$ events

Quality cuts	Selected events
Total events	520 - 100%
1. Well reconstructed vertex	405 - 78%
2. Primary muon track and of $L_{\mu}>\!\!50~{\rm cm}$	400 - 77%
3. Well reconstructed start muon	353 - 68%
4. Well reconstructed end muon	247 - 48%
5. Correct identification of muon	246 - 47%
6. Proton track candidate	183 - 35%
7. Correct identification of proton	120 - 23%

$1\mu 1p$ visually selected events

- Performance validation of the available automatic reconstruction tools
 - Sample of 520 1μ 1p visually selected data events
- For each event, the 3D position of the vertex, end muon and end proton were saved
 - Comparison between manually and automatically reconstructed variables
- Stringent quality requirements were defined to
 - assess Pandora's reconstruction algorithm
 - identify a set of well reconstructed $1\mu 1p$ events

Quality cuts	Selected events
Total events	520 - 100%
1. Well reconstructed vertex	405 - $78%$
2. Primary muon track and of $L_{\mu} > 50$ cm	400 - 77%
3. Well reconstructed start muon	353 - 68%
4. Well reconstructed end muon	247 - 48%
5. Correct identification of muon	246 - 47%
6. Proton track candidate	183 - 35%
7. Correct identification of proton	120 - 23%

Automatically selected and well reconstructed events

$1\mu 1p$ visually selected events

- Performance validation of the available automatic reconstruction tools
 - Sample of 520 1μ 1p visually selected data events
- For each event, the 3D position of the vertex, end muon and end proton were saved
 - Comparison between manually and automatically reconstructed variables
- Stringent quality requirements were defined to
 - assess Pandora's reconstruction algorithm
 - identify a set of well reconstructed $1\mu 1p$ events

Quality cuts	Selected events
Total events	520 - 100%
1. Well reconstructed vertex	405 - 78%
2. Primary muon track and of $L_{\mu} > 50$ cm	400 - 77%
3. Well reconstructed start muon	353 - 68%
4. Well reconstructed end muon	247 - 48%
5. Correct identification of muon	246 - 47%
6. Proton track candidate	183 - 35%
7. Correct identification of proton	120 - 23%

Particle identification

- The identification of $1\mu 1p \nu$ interactions requires a Particle Identification (PID) tool to unambiguously recognize stopping muons and protons
- The current algorithm relies on the comparison between the measured dE/dx vs residual range along the track and the mean theoretical profiles from different particles (μ , p, K, π)
- The PID defines $\chi_k^2(j)$ score computed in the last **25 cm** of each track for all wire planes

 $\chi_k^2(j)$: χ^2 score for particle j under the hypothesis of being a k-particle

End. rr = 0 cm

Particle identification

p rr = y cm μ Fr = 0 cm

• Sample of **well reconstructed data** events together with their theoretical predictions

- Well reconstructed events are selected and the μ and p momenta computed from their range
- Kinematic event reconstruction is validated through the total transverse momentum
- The transverse momentum of genuine $v_{\mu}CCQE$ events \rightarrow dominated by the Fermi momentum in Ar nuclei

 $(p_F \leq 250 \text{ MeV/c})$

Transverse kinematic variables encode information of initial nuclear state and final state interactions Can be used as a proxy for the event interpretation and energy resolution

- Well reconstructed events are selected and the μ and p momenta computed from their range
- Kinematic event reconstruction is validated through the total transverse momentum
- The transverse momentum of genuine $v_{\mu}CCQE$ events \rightarrow dominated by the Fermi momentum in Ar nuclei

- Well reconstructed events are selected and the μ and p momenta computed from their range
- Kinematic event reconstruction is validated through the total transverse momentum
- The transverse momentum of genuine $v_{\mu}CCQE$ events \rightarrow dominated by the Fermi momentum in Ar nuclei p_F dominated

- Well reconstructed events are selected and the μ and p momenta computed from their range
- Kinematic event reconstruction is validated through the total transverse momentum
- The transverse momentum of genuine $v_{\mu}CCQE$ events \rightarrow dominated by the Fermi momentum in Ar nuclei p_F dominated

Events with large reconstructed p_T

Wire planes

- In the visual scanning ...
 - Different hadrons might be wrongly classified as protons
 - Very short protons are not visible \rightarrow mis identified as $1\mu 1p$ candidates
 - Neutrons and \sim MeV photons are very difficult to recognize, unless they do some interaction

Beam direction

From scanning to automatic selection

- Due to the large number of collected events an automatic procedure to select $1\mu 1p$ or $1\mu Np$ candidates is mandatory
- Using the experience gained with previous analysis, a first test was performed on simulated events

 ν + cosmics MC production with ~ 3.2 ×10²⁰ POT

- **Truth** level definition of 1μ Np events
 - $v_{\mu}CC$ events with the interaction vertex inside the fiducial volume
 - 1 muon of at least 50 cm length
 - \geq 1 proton with deposited energy E_{dep} > 50 MeV
 - All particles contained within 5 cm from the active TPC borders
 - No other particles with $E_{dep} > 25$ MeV

*50 MeV proton \approx 2.3 cm length

MC Signal definition

• Using the previous definition and considering a MC exposure of 2.5×10^{20} POT (~ total data collected POT Run 1+2), ~32.3k 1µNp signal events are expected with the following true energy spectrum

- To select this 1μ Np signal the following automatic procedure was implemented
- 1. CRT Veto: no CRT-PMT in-time matching inside the 1.6 μ s beam spill

To strongly reduce events whose trigger is produced by in-spill cosmics or not contained ν interactions

- No signal before the trigger: to reject external particles (cosmics)
- No signal after the trigger: to reject exiting particles

- To select this 1μ Np signal the following automatic procedure was implemented
 - 1. CRT Veto: no CRT-PMT in-time matching inside the 1.6 μ s beam spill
 - 2. Events with reconstructed vertex inside **fiducial volume**

To have a better control of the event reconstruction

- To select this 1μ Np signal the following automatic procedure was implemented
 - 1. CRT Veto: no CRT-PMT in-time matching inside the 1.6 μ s beam spill
 - 2. Events with reconstructed vertex inside fiducial volume
 - 3. TPC-PMT matching: require charge z-barycenter of interaction in the TPC to be within 1 m from the light zbarycenter of the triggering flash

To define the region of interest where the event is located, effectively rejecting out of spill cosmic events

- To select this 1μ Np signal the following automatic procedure was implemented
 - 1. CRT Veto: no CRT-PMT in-time matching inside the 1.6 μ s beam spill
 - 2. Events with reconstructed vertex inside fiducial volume
 - 3. TPC-PMT matching: require charge z-barycenter of interaction in the TPC to be within 1 m from the light zbarycenter of the triggering flash
 - 4. All reconstructed objects inside the slice need to be contained within 5 cm from the active TPC borders

To select contained events and avoid space charge effect distortions

*Slice = Reconstructed object that encapsulates each interaction

- To select this 1μ Np signal the following automatic procedure was implemented
 - 1. CRT Veto: no CRT-PMT in-time matching inside the 1.6 μ s beam spill
 - 2. Events with reconstructed vertex inside fiducial volume
 - 3. TPC-PMT matching: require charge z-barycenter of interaction in the TPC to be within 1 m from the light zbarycenter of the triggering flash
 - 4. **All reconstructed** objects inside the slice need to be contained within 5 cm from the active TPC borders
 - 5. Muon identification corresponding to the longest track in the slice satisfying
 - Start point within 10 cm from the reconstructed vertex
 - Length of at least 50 cm
 - Tagged as a muon by the Particle identification tool

6. 0 reconstructed showers and pions (no other reconstructed primary tracks compatible with a muon)

Considering only reconstructed objects with $E_k \ge 25 \text{ MeV}$

*25 MeV pion \approx 2.5 cm length

- 6. 0 reconstructed showers and pions (no other reconstructed primary tracks compatible with a muon)
- 7. Proton identification: the remaining reconstructed tracks needs to be tagged as a proton candidates
 - Start point within 10 cm from the reconstructed vertex
 - At least 50 MeV of kinetic energy, range-based measurement
 - Tagged as a proton by the Particle identification tool

*50 MeV proton \approx 2.3 cm length

- 6. 0 reconstructed showers and pions (no other reconstructed primary tracks compatible with a muon)
- 7. Proton identification: the remaining reconstructed tracks needs to be tagged as a proton candidates
 - Start point within 10 cm from the reconstructed vertex
 - At least 50 MeV of kinetic energy, range-based measurement
 - Tagged as a proton by the Particle identification tool

*50 MeV proton \approx 2.3 cm length

Oscillation hypothesis

- The ultimate goal of the event selection is to provide an oscillation measurement
- Example of a hypothetical v_{μ} disappearance assuming $\sin^2 2\theta_{\mu\mu} = 0.36$, $\Delta m_{41}^2 = 7.3 \text{ eV}^2$ (Neutrino-4 results)

$$P(\nu_{\mu} \rightarrow \nu_{\mu})_{SBL} \simeq 1 - \sin^2 2\theta_{\mu\mu} \sin^2 1.27 \frac{\Delta m_{41}^2 L}{E_{\nu_{\mu},true}}$$

with $E_{\nu_{\mu},true}$ and L the true baseline

Oscillation hypothesis

• The survival probability is obtained dividing the oscillated energy spectrum with respect to the unoscillated one

*Only statistical errors are shown

Oscillation hypothesis

• The transverse momenta was also studied showing that it is **not** affected by the mixing of sterile-active neutrino

Can be exploited without inferring any neutrino oscillation property

*Only statistical errors are shown

Cross checks with data

- Data efficiency and purity were evaluated with Run 9435 ($\sim 2 \times 10^{18}$ POT)
- All candidates automatically selected were visually scanned to obtain the purity of the selection ~ 84%

- The selection efficiency was evaluated with an unbiased scanned sample using half of the entire Run 9435
 - 100 1μ Np were chosen as a reference

The developed automatic selection identified 48 of them, reporting an Efficiency of 48%

• MC study: ~ 48% Efficiency and ~ 81% Purity

Data – MC comparison

- The automatic selection was applied to the whole MC sample and ~ 10% of total collected data To perform Data – MC comparison in accordance with the blinding policy
- Shape only analysis with systematic uncertainties

Data – MC comparison

- The automatic selection was applied to the whole MC sample and ~ 10% of total collected data To perform Data – MC comparison in accordance with the blinding policy
- Shape only analysis with systematic uncertainties

Conclusion and perspectives

• My thesis was intended to pave the way towards a BNB v_{μ} disappearance analysis

A first step to test the Neutrino-4 $\overline{v_e}$ oscillation hypothesis

1. ICARUS detector and reconstruction algorithms' performance validation

Visual scanning campaign proving ICARUS capability to perform calorimetric studies, particle identification and kinematic reconstruction of contained $1\mu 1p$ events

2. Development of an automatic selection to identify 1μ Np events

Simulation studies were performed leveraging all 3 detector subsystems \Rightarrow achieving 81% purity and 48% efficiency

- Small **data** sample was used to estimate the sample purity (~ 84%) and selection efficiency (~48%)
- Data simulation comparison showing reasonable agreement

More statistics are needed together with a quantitative comparison

 1μ Np automatic selection ready to be used !

Conclusion and perspectives

• My thesis was intended to pave the way towards a BNB v_{μ} disappearance analysis

A first step to test the Neutrino-4 $\overline{\nu_e}$ oscillation hypothesis

1. ICARUS detector and reconstruction algorithms' performance validation

Visual scanning campaign proving ICARUS capability to perform kinematic reconstruction of contained $1\mu 1p$ events

2. Development of an automat hankdey ou events

Simulation studies were performed leveraging all 3 detector subsystems — achieving 81% purity and 48% efficiency

- Small data sample was used to estimate the sample purity (~ 84%) and selection efficiency (~48%)
- Data simulation comparison showing reasonable agreement

More statistics are needed together with a quantitative comparison

 $1\mu Np$ automatic selection ready to be used !