

Simulation of CNAO23 run with Al target

FOOT INFN Milano

Introduction

During CNAO2023 run we took some data using an Al target 2 cm thick (run 6064. Magnet up)

The purpose was to widen as much as possible the primary beam by means of multiple scattering so to allow a better study of IT (and also VT)

A dedicated simulation was requested

Additional Simulation

In the CNAO23PS_MC campaign a new run for the 2 cm Al target was created: run 203

In order to avoid complications and create a new campaign, in this run we left the magnet in place, but the field was "switched off"

Availability

A first batch of 10⁶ events is available on Tier1 at:

/storage/gpfs_data/foot/shared/SimulatedData/CNAO23PS_MC The file is 12C_Al_200_1.root

(remind: to be processed using -exp CNAO23PS_MC -run 203)

Some checks at the level of MC-truth:

Actually it's hard to find any difference...

Some differences may be spotted on VT

With the Al target the BM wire shadow should be smoothed out by MS (confirmed by looking at X or Y projections)

Of course there is a significant energy loss in target

Residual E after Target

2 cm Al target

0.5 cm C target

¹²C @200 MeV/u \rightarrow Etot = 2.4 GeV:

Eloss in AI = 0.343 GeV/cmEloss in C = 0.266 GeV/cm

- We are anyway curious to see if there is a correspondence with exp. data
- Among other things: does the BM wire shadow change?
- Let us know if more events are needed