Machine learning for high-energy physics: from theory to discovery

Marco Letizia

Machine Learning Genoa Center and INFN, Sezione di Genova

Machine learning and data-driven modelling

Maximise discovery potential: anomalies

Trust in ML

Design algorithms that can perform tasks without being explicitly programmed.

BUT

is it just glorified curve fitting?

(supervised)

$$(x_i, y_i)_{i=1}^n \sim f: \mathcal{X} \to \mathcal{Y}, \qquad \begin{array}{l} \mathcal{X} \subseteq \mathbb{R}^d, \\ \mathcal{Y} \subseteq \mathbb{R}^d, \{0,1\} \end{array}$$

$$f_w, \quad w \in \mathbb{R}^p, \quad p \gg n$$

$$\min_{w} \frac{1}{n} \sum_{i=1}^{n} \left(y_i - f_w(x_i) \right)^2 \approx 0$$

model

fit

Not good if we want to generalise!

(supervised)

Not good if we want to generalise!

(supervised)

$$\widehat{w}_{\lambda} = \arg \min_{w} \frac{3}{n} \sum_{i=1}^{n/3} (y_{i} - f_{w}(x_{i}))^{2} + \lambda ||w||^{2} \qquad \text{fit} \qquad n/3$$

$$\widehat{\lambda} = \arg \min_{\lambda} \frac{3}{n} \sum_{i=n/3+1}^{2n/3} (y_{i} - f_{\widehat{w}_{\lambda}}(x_{i}))^{2} \qquad \text{validate} \qquad n/3$$

$$\frac{3}{n} \sum_{i=2n/3+1}^{n} (y_{i} - f_{\widehat{w}_{\lambda}}(x_{i}))^{2} \qquad \text{test} \qquad n/3$$

Classic vs data-driven modeling

- Paradigm shift: modeling by data-driven algorithms
 - Potentially lose explainability and a mechanistic/reductionist view.
- Careful pipeline needed!
- Algorithm design
 - can be physics-informed!

- Expressive ML models: decision trees, kernel methods, neural networks, ...
- (Deep) neural networks advantage is feature extraction in high-dimensions and in modeling high-level correlations.

• Structured/unstructured data and architectures:

inductive bias: images – CNN, time series – RNN, graphs – GNN.

Machine learning in HEP

High-energy physics is a great playground!

Machine learning and data-driven modelling

Maximise discovery potential: anomalies

Should we care about interpretability

Traditionally strong theory prior

→ likelihood-ratio hypothesis testing (Neyman-Pearson)

$$t_i(\mathcal{D}) = 2\log \frac{\mathcal{L}(\mathcal{D}|NP_i)}{\mathcal{L}(\mathcal{D}|bkg)}$$

[Sketch: A. Wulzer]

Traditionally strong theory prior

→ likelihood-ratio hypothesis testing (Neyman-Pearson)

$$t_i(\mathcal{D}) = 2\log \frac{\mathcal{L}(\mathcal{D}|NP_i)}{\mathcal{L}(\mathcal{D}|bkg)}$$
 make it "any NP"?

[Sketch: A. Wulzer]

Machine learning to maximise discovery potential

→ anomaly detection

Anomalies are patterns in data that do not conform to a well-defined notion of normal behavior. "Anomaly detection: A survey", Chandola, Banerjee, Kumar 2010

Autoencoders for outlier detection

$$x' = f_{\theta}(z) = f_{\theta}(g_{\phi}(x)) \approx x$$

Real-time anomaly detection at L1 on FPGA

$$\begin{aligned} x, x' \in \mathbb{R}^D \\ z \in \mathbb{R}^d, \quad d \ll D \end{aligned}$$

$$L = \frac{1}{n} \sum_{i} (x_i - x_i')^2$$

25

50

75

-25

0

-50

-75

Classifier-based two-sample tests

$$p_{SM} = p_{data}?$$

Train a classifier to separate background from measurements

$$X = \{x_1, \dots, x_n\} \sim p_{SM}, \qquad Z = \{z_1, \dots, z_m\} \sim p_{data}$$

Baker, Cousins (1984), Friedman (2003), Lopez-Paz, Oquab (2017), Metodiev, Nachman, Thaler (2017), D'Agnolo, Wulzer (2018), ML, Losapio, Rando, Grosso, Wulzer, Pierini, Zanetti, Rosasco (2022)

Classifier-based two-sample tests

$$p_{SM} = p_{data}?$$

Train a classifier to separate background from measurements

$$X = \{x_1, \dots, x_n\} \sim p_{SM}, \qquad Z = \{z_1, \dots, z_m\} \sim p_{data}$$

perform a test on the classifier output:

accuracy, AUC, KS, χ^2 , ...

Baker, Cousins (1984), Friedman (2003), Lopez-Paz, Oquab (2017), Metodiev, Nachman, Thaler (2017), D'Agnolo, Wulzer (2018), ML, Losapio, Rando, Grosso, Wulzer, Pierini, Zanetti, Rosasco (2022),...

Classifier-based two-sample tests

$$p_{SM} = p_{data}$$
?

Train a classifier to separate background from measurements

$$X = \{x_1, \dots, x_n\} \sim p_{SM},$$

$$Z = \{z_1, \dots, z_m\} \sim p_{data}$$

data-driven Neyman-Pearson testing:

"likelihood-ratio trick"

$$f_{\widehat{W}} \approx \log \frac{p_{data}}{p_{SM}} \rightarrow t_{\widehat{W}}(\mathcal{D}) = 2 \log \prod_{x \in \mathcal{D}} f_{\widehat{W}}(x)$$

Baker, Cousins (1984), Friedman (2003), Lopez-Paz, Oquab (2017), Metodiev, Nachman, Thaler (2017), D'Agnolo, Wulzer (2018), ML, Losapio, Rando, Grosso, Wulzer, Pierini, Zanetti, Rosasco (2022),...

Classifier-based two-sample tests

$$p_{SM} = p_{data}?$$

Train a classifier to separate background from measurements

$$X = \{x_1, \dots, x_n\} \sim p_{SM}, \qquad Z = \{z_1, \dots, z_m\} \sim p_{data}$$

enhance signal hypotheses (e.g. bump hunts)

Baker, Cousins (1984), Friedman (2003), Lopez-Paz, Oquab (2017), Metodiev, Nachman, Thaler (2017), D'Agnolo, Wulzer (2018), ML, Losapio, Rando, Grosso, Wulzer, Pierini, Zanetti, Rosasco (2022),...

To establish significance we need to calibrate

 \rightarrow

the SM is good \Rightarrow accuracy = 55% (permutation, bootstrap,...) Leverage simulations: SM vs SM $x_1, \dots, x_m \sim p_{SM}$ $x_1, \dots, x_m \sim p_{SM}$...

Is it significant? Estimate null hypothesis

D'Agnolo, Wulzer (2018), ML, Losapio, Rando, Grosso, Wulzer, Pierini, Zanetti, Rosasco (2022) Grosso, ML, Pierini, Wulzer (2023)

Examples of enhanced "traditional" model-independence:

learning high-dimensional bkg templates* for bump hunts

Examples of enhanced "traditional" model-independence:

[Source: David's talk]

Effective field theories

[see David and Claudia's talks]

$$\chi_{SMERT} = \chi_{SM}^{(d=4)} + \sum_{i} \frac{\zeta_{i}^{(S)}}{\Lambda} O_{i}^{(S)} + \sum_{i} \frac{\zeta_{i}^{(6)}}{\Lambda^{2}} O_{i}^{(6)} + \dots$$

Unbinned methodologies for new physics searches in EFT*

$$d\sigma_0(x;c) = d\sigma_1(x) \left\{ [1+c\,\alpha(x)]^2 + [c\,\beta(x)]^2 \right\}$$
$$L[\mathbf{n}_\alpha(\cdot),\mathbf{n}_\beta(\cdot)] = \sum_{c_i \in \mathcal{C}} \left\{ \sum_{\mathbf{e} \in S_0(c_i)} w_\mathbf{e} [f(x_\mathbf{e},c_i)]^2 + \sum_{\mathbf{e} \in S_1(c_i)} w_\mathbf{e} [1-f(x_\mathbf{e},c_i)]^2 \right\}$$

ZW production w/ lept. decays $G_{\omega q}^{(3)} - 2\sigma$ Exclusion Reach G_W – 2 σ Exclusion Reach 📕 ME 📒 QC 📗 SC 📕 BA OC SC BA 0.6 0.6 04 0.4 $c_{2\sigma} [10^{-2} \, {\rm GeV}^{-2}]$ 0.2 0.2 0.0 -0.2 -0.2 -0.4 -0.4 Toy Data

-0.6

MG LO

MG LO

Buchmuller, Wyler (1985) Grzadkowski, Iskrzyński, Misiak, Rosiek (2017) • • •

*Chen, Glioti, Panico, Wulzer (2020) Chatterjee, Frohner, Lechner, Schöfbeck, Schwarz (2022) Ambrosio, Hoeve, Madigan, Rojo, Sanz (2022)

Toy Data

 $[10^{-2} \, {\rm TeV}^{-2}]$

 $c_{2\sigma}$

-0.6

...

Foundation models

Symmetry Augmentation

Masked Particle Modeling

[Heinrich, Golling, Kagan, Klein, Leigh, Osadchy, Raine, arXiv 2024]

Next Token Prediction

[Birk, Hallin, Kasieczka, arXiv 2024]

[Mikuni, Nachman, arXiv 2024]

[source: J. Thaler, PHYSTAT - Stats meets ML, London 2024]

Could boost high-d, low-n

Are they anomaly-preserving?

Machine learning and data-driven modelling

Maximise discovery potential: anomalies

Should we care about interpretability

Warm, fuzzy feeling that you understand what your NN is doing.

J. Thaler (PHYSTAT workshop - Stat meets ML, London 2024)

Other characterisations might be more useful

- Explainability
- Robustness
- Accuracy
- Trustworthiness
- Uncertainty quantification
- ...

Interpretability

Systematic uncertainties are crucial for deployment

Grosso, D'Agnolo, Wulzer, Zanetti, Pierini (2021)

$$t(\mathcal{D}, \mathcal{A}) = 2 \log \left[\frac{\max_{\boldsymbol{w}, \boldsymbol{\nu}} \mathcal{L}(\mathbf{H}_{\boldsymbol{w}, \boldsymbol{\nu}} | \mathcal{D}) \mathcal{L}(\boldsymbol{\nu} | \mathcal{A})}{\max_{\boldsymbol{\nu}} \mathcal{L}(\mathbf{R}_{\boldsymbol{\nu}} | \mathcal{D}) \mathcal{L}(\boldsymbol{\nu} | \mathcal{A})} \right] \cdot \frac{\mathcal{L}(\mathbf{R}_{\mathbf{0}} | \mathcal{D}) \mathcal{L}(\mathbf{0} | \mathcal{A})}{\mathcal{L}(\mathbf{R}_{\mathbf{0}} | \mathcal{D}) \mathcal{L}(\mathbf{0} | \mathcal{A})}$$
$$= \underbrace{\tau(\mathcal{D}, \mathcal{A})}_{\boldsymbol{\nu}} \underbrace{\tau(\mathcal{D}, \mathcal{D})}_{\boldsymbol{\nu}} \underbrace{\tau$$

Tau term:

$$\tau(\mathcal{D}, \mathcal{A}) = 2 \max_{\mathbf{w}, \nu} \log \left[\frac{\mathcal{L}(\mathbf{H}_{\mathbf{w}}, \nu | \mathcal{D}) \mathcal{L}(\nu | \mathcal{A})}{\mathcal{L}(\mathbf{R}_{0} | \mathcal{D}) \mathcal{L}(\mathbf{0} | \mathcal{A})} \right] = -2 \min_{\mathbf{w}, \nu} L \left[f(x, \mathbf{w}), r(x | \nu) \right]$$

Delta term:
$$\Delta(\mathcal{D}, \mathcal{A}) = 2 \max_{\nu} \log \left[\frac{\mathcal{L}(\mathbf{R}_{\nu} | \mathcal{D}) \mathcal{L}(\nu | \mathcal{A})}{\mathcal{L}(\mathbf{R}_{0} | \mathcal{D}) \mathcal{L}(\mathbf{0} | \mathcal{A})} \right] = -2 \min_{\nu} L \left[r(x; \nu) \right]$$

[Gaia Grosso, Phystat London 2024]

Interpretability

Which features drive the decision?

Interpreting classifiers using active subspace methods

Chakravarti, Kuusela, Lei, Wasserman (2021)

Make sure they are physically relevant?

Can we get surpised?

Interpretability

Generative modeling a promising framework for fast simulations: normalizing flow and diffusion models

Original μ-deformation ε = 0.5

 Σ_0 -deformation $\varepsilon = 0.5$

Original µ-deformation $\varepsilon = 0.5$

 Σ_{ij} -deformation $\varepsilon = 0.5$

300 Value

0.004

0.002

C Original

 μ -deformation $\epsilon = 0.5$ Σ_{c} -deformation $\epsilon = 0.5$

mj/pT

Original u-deformation c = 0.5

 $\Sigma_{ij} \text{-deformation } \epsilon = 0.5$

0.10 0.15 0.20 0.25 0.30 0.3

Robust evaluation is crucial for precision sciences

Test the tests

Refereeing the Referees: Evaluating Two-Sample Tests for Validating Generators in Precision Sciences

Kansal, Li, Duarte, Chernyavskaya, Pierini, Orzari, Tomei (2022) Das, Favaro, Heimel, Krause, Plehn, Shih (2023)

HighLumi-LHC and Hadron Colliders - LNF 2024

Samuele Grossi^{a,b}, Marco Letizia^{b,c}, and Riccardo Torre^{a,b}

Scaled Jet features with $n = m = 5 \cdot 10^4$						
	μ -deformation			Σ_{ii} -deformation		
Statistic	$\epsilon_{95\%{ m CL}}$	$\epsilon_{99\%{ m CL}}$	t (s)	$\epsilon_{95\%{ m CL}}$	$\epsilon_{99\%{ m CL}}$	t (s)
$t_{\rm SW}$	$0.01623\substack{+0.0045\\-0.0069}$	$0.02098\substack{+0.0049\\-0.0059}$	12410	$0.02089^{+0.0073}_{-0.008}$	$0.02834^{+0.0077}_{-0.0079}$	1054
$t_{\overline{\mathrm{KS}}}$	$0.01585\substack{+0.0043\\-0.0063}$	$0.01927\substack{+0.0043\\-0.0056}$	17174	$0.02085\substack{+0.0064\\-0.008}$	$0.02567\substack{+0.006\\-0.0075}$	38871
$t_{\rm SKS}$	$0.0113\substack{+0.0044\\-0.005}$	$0.0141\substack{+0.0037\\-0.0045}$	32620	$0.02254\substack{+0.0074\\-0.0029}$	$0.02773^{+0.0073}_{-0.0089}$	28803
$t_{\rm FGD}$	$0.02106^{+0.0062}_{-0.0079}$	$0.02659\substack{+0.0058\\-0.0069}$	11583	$0.02133\substack{+0.0078\\-0.0097}$	$0.02741^{+0.0071}_{-0.008}$	14254
$t_{ m MMD}$	$0.06739^{+0.013}_{-0.021}$	$0.08802^{+0.013}_{-0.011}$	46972	$0.0318^{+0.015}_{-0.0083}$	$0.04328^{+0.014}_{-0.012}$	28709
$\Sigma_{i \neq j}$ -deformation			pow_+ -deformation			
Statistic	$\epsilon_{95\%{ m CL}}$	$\epsilon_{99\%{ m CL}}$	t (s)	$\epsilon_{95\%{ m CL}}$	$\epsilon^{ m pow_+}_{99\% m CL}$	t (s)
t _{SW}	$0.0503^{+0.016}_{-0.019}$	$0.07052^{+0.015}_{-0.014}$	1008	$0.02465^{+0.011}_{-0.0081}$	$0.03314^{+0.0099}_{-0.0095}$	1025
$t_{\overline{KS}}$	$1.02009_{-0.001}^{+0.0072}$	$1.02812_{-0.008}^{+0.003}$	16410	$0.0232^{+0.0074}_{-0.011}$	$0.02698^{+0.01}_{-0.0092}$	35198
$t_{\rm SKS}$	$0.06201^{+0.02}_{-0.029}$	$0.07573^{+0.02}_{-0.024}$	35383	$0.0402^{+0.015}_{-0.015}$	$0.04921_{-0.015}^{+0.015}$	47807
$t_{\rm FGD}$	$0.00627\substack{+0.0016\\-0.0018}$	$0.00809\substack{+0.0015\\-0.0018}$	14008	$0.02237\substack{+0.013\\-0.011}$	$0.0281^{+0.011}_{-0.0084}$	24967
$t_{\rm MMD}$	$0.0794\substack{+0.039\\-0.031}$	$0.112^{+0.031}_{-0.026}$	29620	$0.01898\substack{+0.012\\-0.0094}$	$0.02472\substack{+0.012\\-0.0076}$	66075
powdeformation			$\mathcal{N} ext{-deformation}$			
Statistic	$\epsilon_{95\%{ m CL}}$	$\epsilon^{ m pow}_{ m 99\% CL}$	t (s)	$\epsilon_{95\%{ m CL}}$	$\epsilon^{\mathcal{N}}_{99\%\mathrm{CL}}$	t (s)
$t_{\rm SW}$	$0.02527^{+0.011}_{-0.011}$	$0.03513\substack{+0.0084\\-0.01}$	993	$0.11836^{+0.027}_{-0.028}$	$0.14062^{+0.018}_{-0.026}$	910
$t_{\overline{KS}}$	$0.02125\substack{+0.01\\-0.0092}$	$0.02649\substack{+0.0074\\-0.009}$	16472	$0.10579^{+0.014}_{-0.019}$	$0.11672\substack{+0.012\\-0.016}$	31727
$t_{\rm SKS}$	$0.03986\substack{+0.013\\-0.017}$	$0.04873^{+0.013}_{-0.013}$	27407	$0.08577^{+0.024}_{-0.028}$	$0.10148\substack{+0.021\\-0.026}$	25899
$t_{\rm FGD}$	$0.02163^{+0.015}_{-0.0097}$	$0.02954^{+0.014}_{-0.0087}$	12892	$0.07833\substack{+0.0094\\-0.019}$	$0.08847\substack{+0.0084\\-0.0069}$	13246
$t_{ m MMD}$	$0.02133\substack{+0.013\\-0.0086}$	$0.02924\substack{+0.011\\-0.0081}$	68458	$0.26032\substack{+0.037\\-0.057}$	$0.29897\substack{+0.028\\-0.036}$	42149
\mathcal{U} -deformation			Timing			
Statistic	$\epsilon_{95\%{ m CL}}$	$\epsilon^{\mathcal{U}}_{99\%\mathrm{CL}}$	t (s)	t^{null} (s)		
$t_{\rm SW}$	$0.20487^{+0.042}_{-0.048}$	$0.2434_{-0.035}^{+0.032}$	877	123		
$t_{\overline{\text{KS}}}$	$0.18018\substack{+0.024\\-0.035}$	$0.19884\substack{+0.018\\-0.027}$	25630	1913		
$t_{\rm SKS}$	$0.14529^{+0.04}_{-0.056}$	$0.1719^{+0.035}_{-0.048}$	42277	4383		
$t_{\rm FGD}$	$0.13545\substack{+0.014\\-0.032}$	$0.15299\substack{+0.015\\-0.012}$	12782	1787		
$t_{\rm MMD}$	$0.45177^{+0.066}_{-0.091}$	$0.52083^{+0.05}_{-0.047}$	56078	3504		

Conclusions

- Machine learning can enable large scale model-independent searches:
 exploration AND exploitation
- Trust in ML: intepretability, robustness, uncertainty quantification,...
- Are foundation models robust beyond supervised tasks?
- Follow-up strategy after an anomalous detection?
- How to interpret signal-agnostic null results?
- Still a large gap between R&D and deployment

Selected Papers: Total Appens: &

Selected Papers: 11

Total Papers: P

Year: 2023

Year: 2023

202A

2024

