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Introduction

* |will describe the usage of ML from the prespective of an experimentalist.
* A selection of topic that | find the most relevant and promising will be discussed.

* MLis having a strong impact to the HL-LHC projections and beyond, | will summarize the state-of-the
art techniques at LHC experiments, and then move to a more speculative part

“New directions in science are launched by newuch
more often than by new concepts.”
F. Dyson

Thanks to L. Henrich for the inspiration



The raise of ML in HEP

Will use b-jet identification as a benchmark to showcase improvements (similar in other kind jet-tagging)

Are we reaching a plateau?
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https://arxiv.org/pdf/1706.03762

From ML to physics

The usage of state-of-the-art ML techniques in experiments is
dominant, and in certain cases, even opening new frontiers!

High mass searches
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Why is ML useful for HEP?

Mostly due to the ability of neural networks to naturally cope with high dimensions

Let’s use an example...
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Why is ML useful for HEP?

Mostly due to the ability of neural networks to naturally cope with high dimensions

Let’s use an example...

b-tagged jet in 7 TeV collisions
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From experiment to theory

We use complex, untractable, chains to get p(theta|x), with theta being the theory POI to be measured,
and x are the experimental data from our detectors.

ML applications are proposed, for different purposes, in each step of this chain

Generation: Hadronization, Simulation, reconstruction

matrix element parton shower p(x| ) = [dz p(x1z) P12, pz,10)

b@
ATLAS
EXPERIMENT
Candidate Event:
pp—H(=bb) + W(=v)

Parton Shower o9

Resonance Decays

O(e.) Leading-Log QCD

p(zp|theta) p(zr| zp)



Event generation with ML

Matrix element generation is the first step. ME simulations, especially higher orders, are computationally
expensive, can ML be of help?

Generation:
matrix

%1073
element |
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Ey [GBV}

Train Generate

p(zs|theta) A NN as a high-dimensional look-up table



The idea of generative models

Many models nowadays in the market: variational-autoeconders (VAE), generative adversial networks,
diffusion models, normalizing flows...

The most intuitive way to understand generation with NN is with VAE
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Basically a mapping into a latent, or hidden, state 5



The idea of generative models

Many models nowadays in the market: variational-autoeconders (VAE), generative adversial networks,
diffusion models, normalizing flows...

The most intuitive way to understand generation with NN is with VAE

Sample a pair from here
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Open questions:
1. If I'trained with N events, up to which M can | realible generate? [2409.16336]

2. How can | define a metric that control the accuracy of the generation models in
high dimensions?
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https://arxiv.org/abs/2409.16336#:~:text=We%20propose%20a%20robust%20methodology%20to%20evaluate%20the%20performance

Improving object reconstruction with ML tools

Arguably, where the impact of ML techniques are having the largest impact

Identification of jets taken as an example, we want to solve 3 problems:

1. Given a jet, what is the probability that the jet originates from a b-quark? Set-to-Float

Probability

2008.02831 (arxiv.org)
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https://arxiv.org/pdf/2008.02831

Improving object reconstruction with ML tools

Arguably, where the impact of ML techniques are having the largest impact

Identification of jets taken as an example, we want to solve 3 problems:

1. Given a jet, what is the probability that the jet originates from a b-quark? Set-to-Float
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ML to improve reconstruction of physics objects

Arguably, where the impact of ML techniques are shaping the field
Identification of jets taken as an example, we want to solve 3 problems:

1. Given a jet, what is the probability that the jet originates from a b-quark? Set-to-Float
What s it a transfomer? It is a stack of standard NN, similar to building an electronic circuits...
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https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2022-027/

ML to improve reconstruction of physics objects

Arguably, where the impact of ML techniques are shaping the field
Identification of jets taken as an example, we want to solve 3 problems:
1. Given a jet, what is the probability that the jet originates from a b-quark? Set-to-Float

2. Given the jet constituents, what is the probability that each of them comes from a B hadron weakly
decaying? Set-to-Vector

xO%
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ot

Probability that each single
track is associated to a
common vertex 14



ML to improve reconstruction of physics objects

Arguably, where the impact of ML techniques are shaping the field
Identification of jets taken as an example, we want to solve 3 problems:
1. Given a jet, what is the probability that the jet originates from a b-quark? Set-to-Float

2. Given the jet constituents, what is the probability that each of them comes from a B hadron weakly
decaying? Set-to-Vector
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Some (personal) thoughts on interpretability

Interpretability of a ML tool can mean many things (explainable Al etc...). But | want to focus solely on one
question: can we build a model that help us understand what has being learned (up to some limit)?
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from the B primary vertex
decay
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ML to improve reconstruction of physics objects

Arguably, where the impact of ML techniques are shaping the field
Identification of jets taken as an example, we want to solve 3 problems:

3. Given the two points above, can | reconstruct the vertices inside the jet? Set-to-Set

‘ @ This is an area of very active developements...
‘ . . ‘ Two complementary approaches:
‘ > g 1. Include physics information in the training:

differentiable programming
2. Physics-informed neural network

17



Differentiable programming as a tool to inject physics information

The first example of this is actually from theory: NNPDF

Building on the same principle, physics information can be included directly into NNs

L = Classification + S

S= Z@qz v,p:i)) Vi (@i — hi(v, pi)),

Track Params at PV

Introduce explicitely physics knowledge into the network

Helps interpretability, convergence, performance and
robustness.

Open question: at some point the network can learn this
anyway, what is this limit?
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Per Track
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Track Origin
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Differentiable programming as a tool to inject physics information

The first example of this is actually from theory: NNPDF
Building on the same principle, physics information can be included directly into NNs

3] .
1071 brets 7 No track selection
L = Classi fication + S 1 NDIVE

” 2 10! Perfect track selection
C
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Post-tagging, one can look at the secondary vertex, and its covariance!
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More on set-to-set problems

Reconstruction, due to efficiencies, mistags, resolutions of the detector is effectively a set-to-set task.
Major efforts are under: tracking and global particle flow-reconstruction

Tracking: from detector hits to tracks

Finding and Fitting Public.pdf (cern.ch)
ATL-ITK-PROC-2022-006.pdf (cern.ch)

Work in progress to compare to standard
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https://cds.cern.ch/record/2815578/files/ATL-ITK-PROC-2022-006.pdf
https://indico.cern.ch/event/1252748/contributions/5520692/attachments/2730952/4747444/Influencer Finding and Fitting Public.pdf
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PLOTS/IDTR-2023-04/
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PLOTS/IDTR-2023-04/

A closer look at particle-flow

Global particle flow algorithms: given the set of detector hits, reconstruct the final state particles (pions,
kaons, etc...)

Tracks and calorimeter hits

— Track
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Improved particle-flow event reconstruction with scalable neural networks for current and future
particle detectors | Communications Physics (nature.com)
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https://www.nature.com/articles/s42005-024-01599-5#:~:text=Particle-flow%20reconstruction%20can%20be%20formulated%20as%20a
https://www.nature.com/articles/s42005-024-01599-5#:~:text=Particle-flow%20reconstruction%20can%20be%20formulated%20as%20a

A closer look at particle-flow

hypergraphs

Global particle flow algorithms: given the set of detector hits, reconstruct the final state particles (pions,

kaons, etc...
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https://link.springer.com/article/10.1140/epjc/s10052-023-11677-7
https://www.nature.com/articles/s42005-024-01599-5#:~:text=Particle-flow%20reconstruction%20can%20be%20formulated%20as%20a

A closer look at particle-flow hypergraphs

Global particle flow algorithms: given the set of detector hits, reconstruct the final state particles (pions,
kaons, etc...)

From detector hits, to graphs Reconstructng matrix elements
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https://link.springer.com/article/10.1140/epjc/s10052-023-11677-7
https://www.nature.com/articles/s42005-024-01599-5#:~:text=Particle-flow%20reconstruction%20can%20be%20formulated%20as%20a

Event generation at reconstruction: conditional event generation

Calorimeter simulation is the most CPU expensive task in experiments, a real concern at HL-LHC

We need high statistics to reduce our systematics on the avilable MC stat templates (that often case are
already now non-neglible)

T T T T T T T T T T T

N FFrr T L DL R

S [ ATLAS Simulation + Geant4 ] —~ | , | | |
<10y, E=4GeV, 0.20 < |n| <0.25 4 VAE = = 5000— . . - —
. . F : i : E - ATLAS Simulation Preliminary -
leen a part|Cl.e, § EDetauled Simulation T _ % - 200 WLCG jobs ]
2 - i i i -
generate the calo 21030 . 3 4000_- AF3 Fast Simulation (5k evt./job) B
8 3 8 L Full Simulation (2k evt./job) i
response ol ] o ]
»n - 4
I 3000~ —
) N i
n=0 i ]
AN -, r 7
2000— _
- - s 8 & B 3 %]
L 1000f— X x x x x o>5_—
Foo= ] ™~ N o <
L o [ o < N -
L A L 0_—2. l ;,-. I ! : ! : ! I D.“;

~- Sepp: Vots oqy  UBHS pogy  IHS pfeay 18l psq
1.4 1.6 Rﬂ Se elm.LemDn,‘o ’ %’e - 9&60 :el:ie . 76‘&40: 2/:, 7-&7_ Bsr:iab 3o Tey
L]
e o
Energy ratio of calo layers CPU performance gain

Linearity is used to

Incoming particle get the full event
Comput Softw Big Sci & 7 (2024)



https://link.springer.com/content/pdf/10.1007/s41781-023-00106-9.pdf

A look into the future, towards foundation models?

Foundation models: one take it all

ChatGBT and similar... generate text, images, it traslates, many tasks into a single network. To what this
tralsate in terms of physics application?

(a) Pre-training
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TABLE I. Summary of the 188 jet labels in the JETCLASS-II dataset.

Major types

Index range Label names

Resonant jets: 0-14 bb, cc, ss, qq, be, cs, by, cq, sq, gg, €€, pjt, ThTe, ThTu, ThTh

X — 2 prong

Resonant jets: 15-160 bbbb, bbee, bbss, bbqq, bbgg, bbee, bbppi, bbry,Te, bbry, T, by, bbb, bbe, bbs, bbq, bbg, bbe, bbu, ccee,

X — 3 or 4 prong cess, ceqq, ceqq, ceee, CCpLiL, CCThTe, CCThTu, CCThTh, ccb, cce, ccs, ceq, ccg, cce, ccpL, $sss, $5qq, $Sq4,
58€€, SSHfL, SSTyTe, SSThTu, SSThTh, S8b, 8SC, 888, 85q, 857, 8se, $S[i, q9qq; 4999, 99€€, qqtit, qqThTe;
qqThTu, 99ThTh, 99b, 9qc, Gqs, 9qq, 999, q9€, qqu, 9999, ggee, ggpp, g9ThTes G9ThTus g9ThThy ggb,
ggc, 9gs, 994. 999. gge, ggu. bee, cee, see, gee, gee, bup, cpp, g, qupt, G, bTyTe, CThTe, SThTe,
qThTes 9ThTe, OThTu, CThTu, SThTus QThTu, 9ThTus BThThy CThThy SThThs 4ThThs 9ThTh, 999, 999€; 999gs,
bbcg, ccbs, ccbg, ccsq, sscq, qqbe, qqbs, gqcs, besq, bes, beq, bsq, csq, beev, csev, bgev, cqev, sqev,
qqev, beuv, cspv, bquy, cquy, squv, qquv, betev, cstev, bgtev, cqTel, sqTeV, qqTeV, beTuv, csTuv,
baTuv, cqTuv, SqTuV, qqTuV, bethy, esTay, bgTuy, cqThy, SqThY, 9qThY

QCD jets 161-187 bbcess, bbees, bbee, bbess, bbes, bbe, bbss, bbs, bb, beess, bees, bee, bess, bes, be, bss, bs, b, cess, ces,

ce, css, €s, ¢, 88, s, others

Accelerating Resonance Searches via Signature-Oriented Pre-training (2024)



https://indico.cern.ch/event/1387465/contributions/6019727/attachments/2925294/5135171/FTAG_ML_20240911_H_Qu.pdf
https://arxiv.org/abs/2405.12972

All of this... but faster, much faster!

Machine learning improvements propagating also at trigger level (crucial for HL-LHC)

The ATLAS harbor for Run 3
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All of this... but faster, much faster!

At lvlO need an inference time O(10 micro-seconds), need heterogenous farm...

HLS4ML

Keras
TensorFlow

PyTorch

Y.

@

2409.05207 (arxiv.org)

his 4 ml

compressed
model — HLS —
conversion

software workflow

=
=]

L
=]

LUT resource usage(%)
= [N
=] [a=]

e

Co-processing kernel

Custom firmware

Usual machine learning j’ design
tune configuration
........
HLS4ML: B Tagging Madel - LUT resource usage(%)
_____ - ——— = =
K
/’,. ————— o ———— : —— rl_PTQ
’,’,.:',_....--—--0--'—" —s— r1_QAT
I ,5’,-' - r2 PTQ
pp——— = e ) QAT
-~ r4 PTQ
e 4 QAT
8 9 10 11 12

Frac bit width

muons ICHEP

Inference time [ms]

10°

10

muons FPGA

Simulation Prelimin

[ ATLAS ary + GPU, TensorRT ]
I Toy detector, CNN model i 5?3"3" DPUBpwe .
O U250
- CNN @ CPU, ONNX o —
- . ;
Ce . i
+
E o] E
g + ]
. * -
—+ N -
Eo L Ll T
1 10 10?
batch size

27


https://fastmachinelearning.org/hls4ml/
https://arxiv.org/pdf/2409.05207
https://indico.cern.ch/event/1291157/contributions/5889484/attachments/2900367/5086024/ichep.pdf#:~:text=ICHEP%202024%20Studies%20on%20track%20%EF%AC%81nding%20algorithms%20based%20on
https://www.epj-conferences.org/articles/epjconf/pdf/2020/21/epjconf_chep2020_01021.pdf#:~:text=Abstract.%20The%20Level-0%20muon%20trigger%20system%20of%20the%20ATLAS

We have a measurement, let's go back to theory: Unfolding

* ML can help producing an unbinned, multidimensional unfolded measurements
* Large literature available: invertible neural networks etc...

* Literature is also growing in trying to tackle the uncertainty related to the usage of ML methods

Reconstruction+data analysis " CFM (cINN, VLD) CFM (cINN, VLD)
E40 =
p(theta|x) = £
) Z
—20
g
20 10 60 20 40
Unfolding m [GeV] (reco) N (reco)

Reco-truth unfolding matrices: projections

Modern Machine Learning Tools for Unfolding (2024)
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https://arxiv.org/pdf/2404.18807

Conclusions

 QOurjob isto make the most of the data we collected (and will collect)

* ML has proven to be of great help in handling optimally our data, in few years, we have
improved by several factors our performance, not easy to estimate an extrapolation to HL-
LHC time and beyond, but | am optimistic

* | also skipped many topics, optimal transport, SBI, Nflows, likelihood free inference...
* The trend nowadays is to explore low-level information, such as tracker hits etc... stay tuned!

* In parallel to keep improving performance, | think we shall spend effort in using more
e>l<plic;i’;]ely real data in NN trainings, and make an effort to provide semi-interpretable
algorithms

Thank you
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