The electroweak and top-quark sectors in the SMEFT at the HL-LHC

Workshop on High Luminosity LHC and Hadron Colliders Rome, 4th October 2024

Víctor Miralles

Based on [1902.04070], [2209.11267], [2209.08078]

The University of Manchester

The SMEFT framework

- The astonishing statistics of the HL-LHC opens a great oportunity to probe NP
- Model agnostic approaches are an excellent alternative
- The SMEFT offers an excellent framework for precision physics
- Precision measurements are essential for a correct interpretation in the SMEFT

$$\mathscr{L}_{\mathsf{eff}} = \mathscr{L}_{\mathsf{SM}} + \frac{1}{\Lambda^2} \sum_{i} C_i^{(6)} O_i + \frac{1}{\Lambda^4} \sum_{i} C_i^{(8)} O_i + \mathscr{O}\left(\Lambda^{-6}\right)$$

$$\sigma = \sigma_{\rm SM} + \frac{1}{\Lambda^2} \sum_i C_i^{(6)} \sigma_i^{(6)} + \frac{1}{\Lambda^4} \sum_{i \ge j} C_i^{(6)} C_j^{(6)} \sigma_{ij}^{(6)} + \frac{1}{\Lambda^4} \sum_i C_i^{(8)} \sigma_i^{(8)} + \mathcal{O}\left(\Lambda^{-6}\right)$$

SMEFT operators in the Warsow basis

								_
Operator	Notation	Operator	Notation	Operator	Notation	Operator	Notation	1
$(l_L \gamma_\mu l_L) (l_L \gamma^\mu l_L)$	$\mathcal{O}_{ll}^{(1)}$			$(\phi^{\dagger}\phi)\Box(\phi^{\dagger}\phi)$	$\mathcal{O}_{\phi\square}$	$\frac{1}{3} (\phi^{\dagger} \phi)^{3}$	\mathcal{O}_{ϕ}	
$(\overline{q_L}\gamma_\mu q_L)(\overline{q_L}\gamma^\mu q_L)$	$\mathcal{O}_{qq}^{(*)}$	$\left(\overline{q_L}\gamma_{\mu}T_Aq_L\right)\left(\overline{q_L}\gamma^{\mu}T_Aq_L\right)$	$\mathcal{O}_{qq}^{(8)}$	$\left(\phi^{\dagger}i \overrightarrow{D}_{\mu}\phi\right)\left(\overline{l_{L}}\gamma^{\mu}l_{L}\right)$	$O_{\phi l}^{(1)}$	$\left(\phi^{\dagger}i \overset{\leftrightarrow}{D}{}_{\mu}^{a}\phi\right)\left(\overline{l_{L}}\gamma^{\mu}\sigma_{a}l_{L}\right)$	$O_{\phi l}^{(3)}$	
$(l_L \gamma_\mu l_L) (\overline{q_L} \gamma^\mu q_L)$	$\mathcal{O}_{lq}^{(1)}$	$\left(l_L \gamma_\mu \sigma_a l_L\right) \left(\overline{q_L} \gamma^\mu \sigma_a q_L\right)$	$\mathcal{O}_{lq}^{(3)}$	$(\phi^{\dagger}i \overrightarrow{D}_{\mu} \phi)$ $(\overline{e_R} \gamma^{\mu} e_R)$	$\mathcal{O}_{\phi e}^{(1)}$	× /		
$(\overline{e_R}\gamma_\mu e_R)(\overline{e_R}\gamma^\mu e_R)$	\mathcal{O}_{ee}			$\left(\phi^{\dagger}i \breve{D}_{\mu}\phi\right) (\overline{q_L}\gamma^{\mu}q_L)$	$\mathcal{O}_{\phi q}^{(1)}$	$\left(\phi^{\dagger}i \overleftrightarrow{D}_{\mu}^{a} \phi\right) \left(\overline{q_{L}} \gamma^{\mu} \sigma_{a} q_{L}\right)$	$\mathcal{O}_{\phi q}^{(3)}$	
$(\overline{u_R}\gamma_\mu u_R)(\overline{u_R}\gamma^\mu u_R)$	$\mathcal{O}_{uu}^{(1)}$	$\left(\overline{d_R}\gamma_{\mu}d_R\right)\left(\overline{d_R}\gamma^{\mu}d_R\right)$	$\mathcal{O}_{dd}^{(1)}$	$\left(\phi^{\dagger}i D_{\mu}\phi\right) \left(\overline{u_{R}}\gamma^{\mu}u_{R}\right)$	$\mathcal{O}_{\Delta m}^{(1)}$	$\left(\phi^{\dagger}i \overleftrightarrow{D}_{\mu}\phi\right) \left(\overline{d_R}\gamma^{\mu}d_R\right)$	$\mathcal{O}_{cd}^{(1)}$	
$\left(\overline{u_R}\gamma_\mu u_R\right)\left(\overline{d_R}\gamma^\mu d_R\right)$	$\mathcal{O}_{ud}^{(1)}$	$(\overline{u_R}\gamma_\mu T_A u_R) (\overline{d_R}\gamma^\mu T_A d_R)$	$\mathcal{O}_{ud}^{(8)}$	$(\phi^T i \sigma_2 i D_\mu \phi) (\overline{u_R} \gamma^\mu d_R)$	$\mathcal{O}_{\phi ud}$			
$(\overline{e_R}\gamma_\mu e_R)(\overline{u_R}\gamma^\mu u_R)$	\mathcal{O}_{eu}	$\left(\overline{e_R}\gamma_\mu e_R\right)\left(d_R\gamma^\mu d_R\right)$	\mathcal{O}_{ed}	$(\overline{l_L}\sigma^{\mu\nu}e_R)\phi B_{\mu\nu}$	O_{eB}	$(\overline{l_L}\sigma^{\mu\nu}e_R)\sigma^a\phi W^a_{\mu\nu}$	\mathcal{O}_{eW}	
$(\overline{l_L}\gamma_\mu l_L) (\overline{e_R}\gamma^\mu e_R)$	\mathcal{O}_{le}	$(\overline{q_L}\gamma_\mu q_L) (\overline{e_R}\gamma^\mu e_R)$	\mathcal{O}_{qe}	$(q_L \sigma^{\mu\nu} u_R) \phi B_{\mu\nu}$	O_{uB}	$(q_L \sigma^{\mu\nu} u_R) \sigma^a \phi W^a_{\mu\nu}$	\mathcal{O}_{uW}	
$(\overline{l_L}\gamma_\mu l_L)(\overline{u_R}\gamma^\mu u_R)$	O_{lu}	$(l_L \gamma_\mu l_L) (d_R \gamma^\mu d_R)$	\mathcal{O}_{ld}	$(\overline{q_L}\sigma^{\mu\nu}\lambda^A u_R)\phi G^A_{\mu\nu}$	O_{dB} O_{uG}	$(\overline{q_L}\sigma^{\mu\nu}\lambda^A d_R) \phi G^A_{\mu\nu}$ $(\overline{q_L}\sigma^{\mu\nu}\lambda^A d_R) \phi G^A_{\mu\nu}$	O_{dW} O_{dG}	
$(\overline{q_L}\gamma_\mu q_L) (\overline{u_R}\gamma^\mu u_R)$	$\mathcal{O}_{qu}^{(1)}$	$(\overline{q_L}\gamma_\mu T_A q_L) (\overline{u_R}\gamma^\mu T_A u_R)$	$\mathcal{O}_{qu}^{(8)}$	$(\phi^{\dagger}\phi)(\overline{l_{L}}\phi e_{R})$	Och	(- /· /	_	-
$\left(\overline{q_L}\gamma_\mu q_L\right)\left(d_R\gamma^\mu d_R\right)$	$\mathcal{O}_{qd}^{(1)}$	$\left(\overline{q_L}\gamma_\mu T_A q_L\right) \left(d_R\gamma^\mu T_A d_R\right)$	$\mathcal{O}_{qd}^{(8)}$	$(\phi^{\dagger}\phi)\left(\overline{q_L}\tilde{\phi}u_R\right)$	$O_{u\phi}$	$(\phi^{\dagger}\phi)(\overline{q_L}\phi d_R)$	$O_{d\phi}$	
$(l_L e_R) (d_R q_L)$	\mathcal{O}_{ledq}			$(\phi^{\dagger} D_{\nu} \phi) ((D^{\mu} \phi)^{\dagger} \phi)$	Oan			-
$(\overline{q_L}u_R) i\sigma_2 (\overline{q_L}d_R)^T$	$\mathcal{O}_{aud}^{(1)}$	$(\overline{q_L}T_A u_R) i\sigma_2 (\overline{q_L}T_A d_R)^T$	$O_{aud}^{(8)}$	$\phi^{\dagger}\phi^{} B_{\mu\nu}B^{\nu\nu}$	$U_{\phi B}$	$\phi^{\dagger}\phi \ \widetilde{B}_{\mu\nu}B^{\mu\nu}$	$\mathcal{O}_{\phi \widetilde{B}}$	
$\left(\overline{l_L}e_R\right)i\sigma_2\left(\overline{q_L}u_R\right)^{\mathrm{T}}$	\mathcal{O}_{lequ}	$(\overline{l_L}u_R) i\sigma_2 (\overline{q_L}e_R)^T$	\mathcal{O}_{qelu}	$\phi^{\dagger}\phi W^{a}_{\mu\nu}W^{a \mu\nu}$	$\mathcal{O}_{\phi W}$	$\phi^{\dagger}\phi \widetilde{W}^{a}_{\mu\nu}W^{a \mu\nu}$	$\mathcal{O}_{\phi \widetilde{W}}$	
				$\phi^{\dagger}\sigma_{a}\phi W^{a}_{\mu\nu}B^{\mu\nu}$	O_{WB}	$\phi^{\dagger}\sigma_{a}\phi W^{a}_{\mu\nu}B^{\mu\nu}$	$\mathcal{O}_{\widetilde{W}B}$	
CP or	van dim 6 an	a interfering with SM		$\phi'\phi G^{A}_{\mu\nu}G^{A\mu\nu}$	$U_{\phi G}$	$\phi^{i}\phi^{i}G^{A}\mu\nu$	0 _{¢Ĝ}	_
<u>CP-e</u>	ven uin 6 op	s. Intertering with SM		$\varepsilon_{abc} W^{a \nu}_{\mu} W^{o \mu}_{\nu} W^{c \mu}_{\rho}$	O_W	$\varepsilon_{abc} W^{a}_{\mu} W^{b}_{\nu} W^{c}_{\rho} W^{c}_{\rho}$ $f_{\mu\nu\sigma} \tilde{C}^{A\nu} C^{B} \rho C^{C} \mu$	$\mathcal{O}_{\widetilde{W}}$	
				$JABC G_{\mu} G_{\nu} G_{\rho}$	<i>v</i> ₀	JABC O _µ O _ν O _ρ	\sim_G	

EWPO EW diboson Higgs Top (Had. Coll., Lept. Coll.)

Slide from J. de Blas at Seattle Snowmass Summer Study

Electroweak sector

Anomalous Triple Gauge Couplings

[Falkowski et al., 1609.06312]

$$\begin{split} \mathscr{L}_{tgc} &= ie \left(W_{\mu\nu}^{+} W_{\mu}^{-} - W_{\mu\nu}^{-} W_{\mu}^{+} \right) A_{\nu} + ie \frac{c_{\theta}}{s_{\theta}} \left(1 + \delta g_{1,z} \right) \left(W_{\mu\nu}^{+} W_{\mu}^{-} - W_{\mu\nu}^{-} W_{\mu}^{+} \right) Z_{\nu} \\ &+ ie (1 + \delta \kappa_{\gamma}) A_{\mu\nu} W_{\mu}^{+} W_{\nu}^{-} + ie \frac{c_{\theta}}{s_{\theta}} (1 + \delta \kappa_{z}) Z_{\mu\nu} W_{\mu}^{+} W_{\nu}^{-} \\ &+ i \frac{\lambda_{z} e}{m_{W}^{2}} \left[W_{\mu\nu}^{+} W_{\nu\rho}^{-} A_{\rho\mu} + \frac{c_{\theta}}{s_{\theta}} W_{\mu\nu}^{+} W_{\nu\rho}^{-} Z_{\rho\mu} \right], \\ \delta g_{1,z} &= -\frac{v^{2}}{\Lambda^{2}} \frac{g_{L}^{2} + g_{\gamma}^{2}}{4(g_{L}^{2} - g_{\gamma}^{2})} \left(\frac{4g_{Y}}{g_{L}} C_{HWB} + C_{HD} - [C_{\ell\ell}]_{1221} + 2[C_{H\ell}^{(3)}]_{11} + 2[C_{H\ell}^{(3)}]_{22} \right) \\ \delta \kappa_{\gamma} &= \frac{v^{2}}{\Lambda^{2}} \frac{g_{L}}{g_{Y}} C_{HWB}, \qquad \lambda_{z} &= -\frac{v^{2}}{\Lambda^{2}} \frac{3}{2} g_{L} C_{W}, \qquad \delta \kappa_{Z} = \delta g_{1,z} - \frac{s_{\theta}^{2}}{c_{\theta}^{2}} \delta \kappa_{\gamma} \end{split}$$

V. Miralles

Diboson production

- Precision at permille level on aTGC could be reached from diboson processes
- In the wider regions the fermion couplings are allowed to vary up to the current allowed 2σ region

V. Miralles

Vector Boson Scattering

- NP could spoil the precise cancellation that moderate the energy growth of VBS
- Measured but with moderate precision
- Precise measurements at the HL-LHC are key to constrain the bosonic SMEFT operators
- In the SMEFT at d6 the operators modifying aTGC also contribute to aQGC

Vector Boson Scattering

- Uncertainty expected around 5-8% for VVjj
- V_LV_Ljj does not seem to be available
- aTGC better probed in q ar q o VV, $V \! j j$ or Higgs decays
- The VVjj can probe anomalous aQGC that test d8

V. Miralles

Triboson

	$W^{\pm}W^{\pm}W^{\mp} \to 3\ell 3\nu$	$W^{\pm}W^{\mp}Z \to 4\ell 2\nu$	$W^{\pm}ZZ \to 5\ell 1\nu$
Signal	312	168	19
Diboson	208	357	4.0
Triboson	37	11	3.0
Higgs+X	25	10	0.3
Тор	60	390	15
fake-lepton	97	16	3.0
Total:	427	784	25
Significance Z_{σ}	6.7	3.0	3.0
Significance Z_{σ} (4000 fb ⁻¹)	7.0	3.1	3.4
Precision $\frac{\Delta \mu}{\mu}$	11%	27%	36%
Precision $\frac{\dot{\Delta}\mu}{\mu}$ (4000 fb ⁻¹)	10%	25%	31%

- Currently measured VVV, WWW, WW γ , WZ γ , W $\gamma\gamma$, Z $\gamma\gamma$
- Limited impact for aTGC [Celada, Durieux, Mimasu, Vryonidou, 2407.09600]
- Interesting to test aQGC and d8 operators

W-boson mass prospects at ATLAS detector

(CMS Sept. 2024 9.9 MeV)

[ATLAS Collab., ATL-PHYS-PUB-2018-026]

- Dedicated dataset collected at low instantaneous luminosity
- Benefit from the inner tracking detector upgrade
- Needed 1 (5) week(s) to collect 0.2 (1) fb $^{-1}$
- Uncertainties up to 5 MeV

Effective weak mixing angle $\sin \theta_{\rm eff}^{\ell}$

[ATL-PHYS-PUB-2022-018 & CMS-PAS-FTR-22-001]

- Precise measurements of $A_{\rm FB}$ on Drell-Yan dilepton events $(q\bar{q} \rightarrow Z/\gamma^* \rightarrow \ell^+ \ell^-)$ can be used to extract $\sin^2 \theta^\ell_{\rm eff}$
- In HL-LHC increased forward coverage of ATLAS and CMS
- Uncertainty limited by PDF uncertainties

Global EW fit in the SM

Further EW inputs improving:

- δm_t set to 0.4 GeV [CMS, 2302.01967] (more later)
- δm_H set at 0.05 GeV (Next talk!!!)
- $\delta\Gamma_W$ expected to be (at least) as good as in LEP2
- $\delta \Delta \alpha_{had}^{(5)}(M_Z)$ expected 5×10^{-5} from dedicated experiments on $e^+e^- \rightarrow$ had.
- $\delta \alpha_s(M_Z)$ expected at 0.0002 from future lattice QCD

V. Miralles

Global EW fit the SMEFT

• 10 operators affect the EWPO but only 8 can be constrained

 $\mathcal{O}_{HD} = |H^{\dagger}D^{\mu}H|^{2}, \quad \mathcal{O}_{HWB} = (H^{\dagger}\tau^{I}H)W_{\mu\nu}^{I}B^{\mu\nu}$ $\mathcal{O}_{HF}^{(1)} = (H^{\dagger}\overset{\ominus}{D}_{\mu}H)(\bar{F}\gamma^{\mu}F), \quad \mathcal{O}_{HF}^{(3)} = (H^{\dagger}\tau^{I}\overset{\ominus}{D}_{\mu}H)(\bar{F}\gamma^{\mu}\tau^{I}F), \quad \mathcal{O}_{II} = (\bar{I}\gamma_{\mu}I)(\bar{I}\gamma^{\mu}I),$ $\bullet \quad \mathcal{O}_{HD} \text{ and } \quad \mathcal{O}_{HWB} \text{ can be rotated to lift the two flat directions}$

V. Miralles

Top-quark sector

Top-quark mass

- **Direct measurement:** From fitting parameter of the MC generator
 - More precise but renormalisation scheme not completely well defined

• Indirect measurement: From cross sections sensitive to m_t

- Less precise but renormalisation scheme well defined
- For precise measurements needs presicion theory predictions
- m_t^{MC} and m_t^{pole} differ by 500-200 MeV
- The renormalon ambiguity (110-250 MeV) does ot affect the physics

The EW and top-quark sectors at the HL-LHC

SMEFT operators relevant for the top-quark

Observables from current colliders (LEP/SLC, Tevatron, LHC run 1 & 2)

 \bullet We expect higher sensitivity for the tails of the distributions in the HL-LHC

Process	Observable	\sqrt{s}	$\int \mathscr{L}$	Experiment
$pp ightarrow tar{t}$	$d\sigma/dm_{t\bar{t}}$ (15+3 bins)	13 TeV	140 fb ⁻¹	CMS
$pp ightarrow tar{t}$	$dA_C/dm_{t\bar{t}}$ (4+2 bins)	13 TeV	140 fb ⁻¹	ATLAS
$pp ightarrow t ar{t} Z$	$d\sigma/dp_T^Z$ (8 bins)	13 TeV	$140 { m ~fb^{-1}}$	ATLAS
$ ho p ho o t ar{t} \gamma$	$d\sigma/dp_T^{\gamma}$ (11 bins)	13 TeV	$140 { m ~fb^{-1}}$	ATLAS
$pp ightarrow t ar{t} H$	$d\sigma/dp_T^H$ (6 bins)	13 TeV	$140 \ \mathrm{fb}^{-1}$	ATLAS
pp ightarrow tZq	σ	13 TeV	77.4 fb ⁻¹	CMS
$pp ightarrow t\gamma q$	σ	13 TeV	36 fb ⁻¹	CMS
$pp ightarrow t ar{t} W$	σ	13 TeV	36 fb ⁻¹	CMS
$pp ightarrow t ar{b}$ (s-ch)	σ	8 TeV	20 fb ⁻¹	LHC
pp ightarrow tW	σ	8 TeV	20 fb ⁻¹	LHC
pp ightarrow tq (t-ch)	σ	8 TeV	20 fb ⁻¹	LHC
t ightarrow Wb	F ₀ , F _L	8 TeV	20 fb ⁻¹	LHC
$par{p} o tar{b}$ (s-ch)	σ	1.96 TeV	$9.7 {\rm fb}^{-1}$	Tevatron
$e^-e^+ ightarrow bar{b}$	R_b , A^{bb}_{FBLR}	\sim 91 GeV	$202.1 \ \rm pb^{-1}$	LEP/SLD

SMEFT prediction

- Prediction for the cross section are usually generated with MadGraph5_aMC@NLO
- Many efforts to develop UFO models
 - SMEFTsim 3.0 [Brivio, 2212.11343]: Tree-level but full at d6
 - SmeftFR v3 [Dedes, Rosiek, Ryczkowski, Suxho, Trifyllis, 2302.01353]: Tree-level but full quadratic d6 and bosonic d8
 - SMEFT@NL0 [Degrande, Durieux, Maltoni, Mimasu, Vryonidou, Zhang, 2008.11743]: NLO in QCD for top-quark sector
 - Some EW corrections available in MadGraph5_aMC@NL0 [Pagani, Zaro, 2110.03714] and efforts to include Sudakov EW corrections in the SMEFT [El Faham, Mimasu, Pagani, Severi, Vryonidou, Zaro, in progress]

Current individual constraints on 2-quark operators The basis is rotated following the prescription of the LHC top-quark working group: $C_{tZ} = \cos \theta_W C_{tW} - \sin \theta_W C_{tB}$, $C_{\varphi Q}^{-} = C_{\varphi Q}^{(1)} - C_{\varphi Q}^{(3)}$

16 / 28

Current individual constraints on 4-quark operators

V. Miralles

Prospects for Measurements at HL-LHC

Theoretical Uncertainties

scale with 1/2

Experimental Uncertainties

Modelling	\longrightarrow	scale with $1/2$
Systematic	\longrightarrow	scale with $1/\sqrt{\mathscr{L}}$
Statistical	\longrightarrow	scale with $1/\sqrt{\mathscr{L}}$

Prospects for Measurements at HL-LHC

• Modelling and theory uncertainties expected to dominate

		LHC Unc.				HL-LHC Unc.						
Process	Measured (fb)	Measured (fb) SM (fb)			ex	p.		theo	exp.			
			Lineo.	stat.	sys.	mod.	tot.	Lineo.	stat.	sys.	mod.	tot.
$pp \rightarrow t\bar{t}H + tHq$	640	664.3	41.7	90	40	70.7	121.2	20.9	19.4	8.6	35.4	41.3
$pp \rightarrow t\bar{t}Z$	990	810.9	85.8	51.5	48.9	67.3	97.8	42.9	11.1	10.6	33.6	37.0
$pp ightarrow t \overline{t} \gamma$	39.6	38.5	1.76	0.8	1.25	2.16	2.62	0.88	0.17	0.27	1.08	1.13
$pp \rightarrow tZq$	111	102	3.5	13.0	6.1	6.2	15.7	1.75	2.09	0.98	3.1	3.87
$pp \rightarrow t\gamma q$	115.7	81	4	17.1	21.1	21.1	34.4	2	1.9	2.3	10.6	11.0
$pp \rightarrow t\bar{t}W + EW$	770	647.5	76.1	120	59.6	73.0	152.6	38.1	13.1	6.5	36.5	39.4
$pp \rightarrow t\bar{b} \text{ (s-ch)}$	4900	5610	220	784	936	790	1454	110	35	42	395	399
$pp \rightarrow tW$	23100	22370	1570	1086	2000	2773	3587	785	49	89	1386	1390
$pp \rightarrow tq$ (t-ch)	87700	84200	250	1140	3128	4766	5810	125	51	140	2383	2390
F ₀	0.693	0.687	0.005	0.009	0.006	0.009	0.014	0.003	0.0004	0.0003	0.004	0.004
FL	0.315	0.311	0.005	0.006	0.003	0.008	0.011	0.003	0.0003	0.0002	0.004	0.004

Prospects for Measurements at HL-LHC

- ATLAS is making efforts to measure $pp \rightarrow t\bar{t}\ell\ell \ (m_{\ell\ell} \neq m_Z)$
- Sensitive to 2-quark 2-lepton operators

Process	Inclusive	Differential: $m_{\ell ar{\ell}}$ (GeV)					
FIDCESS	(10 ⁻⁶ pb)	100-120	120-140	140-180	> 180		
$pp ightarrow t \overline{t} \ell \ell$	1830	1000	340	230	260		
Unc. LHC	915	490	235	200	260		
Unc. HL-LHC	400	190	85	70	99		

Current constraints vs expected HL-LHC constraints

Shadowed (solid) bars \rightarrow marginalised from global (individual) fit

V. Miralles

Current constraints vs expected HL-LHC constraints

Shadowed (solid) bars \rightarrow marginalised from global (individual) fit

V. Miralles

Four top-quark production

- Rare process sensitive to NP
- Sensitive to 4-heavy operators $O_{QQ}^{(1)(8)}$, $O_{Qt}^{(1)(8)}$, $O_{tt}^{(1)}$

Int. Luminosity	\sqrt{s}	Stat. only (%)	Run-2 (%)	YR18 (%)	YR18+ (%)
$300 {\rm ~fb}^{-1}$	14 TeV	+30, -28	+43, -39	+36, -34	+36, -33
3 ab^{-1}	14 TeV	± 9	+28, -24	+20, -19	± 18
3 ab^{-1}	27 TeV	± 2	+15, -12	+9, -8	+8, -7
$15 \mathrm{~ab}^{-1}$	27 TeV	± 1			

Global SMEFT analysis

Towards a global analysis

- There is a huge interplay among the different sectors
- The most reliable results are obtained when fitting all the sectors together
- Huge efforts have been done in this direction

Global fit results at HL-LHC

[SMEFiT, 2404.12809]

V. Miralles

SMEFT running

• Most global fits have been ignoring running effects

[J. de Blas, A. Goncalves, VM, L. Reina, L. Silvestrini and M. Valli, 24XX.XXXXX]

V. Miralles

• Huge effert to consider also flavour observables some recent works include: [Allwicher et al., 2311.00020], [Cirigliano et al., 2311.00021], [Bartocci et al., 2311.04963], [Garosi et al., 2310.00047]

Full SMEFT global fit with $U^5(2)$ in HEPfit with J. de Blas, A. Goncalves, VM, L. Reina, L. Silvestrini and M. Valli \rightarrow Stay tuned

V. Miralles

Summary

- HL-LHC diboson data will provide tight constraints on aTGC and could test aQGC
- HL-LHC can provide leading precision measurements on EW observables like M_W , Γ_W and $\sin \theta_{\text{eff}}^I$ (besides obviously m_t and m_H)
- The higher precision on m_t of around 200 MeV makes essential a more precise theoretical definition of the MC mass
- The uncertainties on the top-quark cross sections will be completely dominated by theory and modelling uncertainties
- HL-LHC expected to improve the bounds by roughly a factor 3 on the top-quark sector
- To provide reliable results it is essential to consider running effects
- Flavour observables provide the most stringent constraints in several operators and must be included on global fits

Thank you!

V. Miralles

Back up

V. Miralles

Inputs for EW fit

	Measurement	HL-LHC	Pos	Posterior	
		uncertainty	Current	HL-LHC	Current/HL-LHC
$\alpha_s(M_Z)$	0.1180 ± 0.0010	± 0.0002	0.1180 ± 0.0009	0.1180 ± 0.0002	0/0.5
$\Delta \alpha_{\rm had}^{(5)}(M_Z)$	0.027611 ± 0.000111	± 0.00005	0.02758 ± 0.00011	0.02759 ± 0.00005	1.1/2.1
M_Z [GeV]	91.1875 ± 0.0021		91.1880 ± 0.0020	91.1890 ± 0.0020	-1.3/-2.6
m_t [GeV]	172.8 ± 0.7	± 0.4	173.2 ± 0.66	173.1 ± 0.38	-1.7/-2.9
M_H [GeV]	125.13 ± 0.17	± 0.05	125.13 ± 0.17	125.13 ± 0.05	1.4/3
M_W [GeV]	80.379 ± 0.012	± 0.007	80.362 ± 0.006	80.367 ± 0.004	1.6/2.7
Γ_W [GeV]	2.085 ± 0.042	± 0.042	2.0885 ± 0.0006	2.0889 ± 0.0003	-0.1
$BR_{W \to \ell \nu}$	0.1086 ± 0.0009		0.10838 ± 0.00002	0.10838 ± 0.000005	0.2
$BR_{W \rightarrow had}$	0.6741 ± 0.0027		0.67486 ± 0.00007	0.67486 ± 0.00001	-0.3
$\sin^2 \theta_{\rm eff}^{ m lept}(Q_{\rm FB}^{ m had})$	0.2324 ± 0.0012		0.23151 ± 0.00006	0.23150 ± 0.00005	0.7
$P_{\tau}^{\mathrm{pol}} = A_{\ell}$	0.1465 ± 0.0033		0.14711 ± 0.0005	0.14713 ± 0.0004	-0.2
Γ_Z [GeV]	2.4952 ± 0.0023		2.4946 ± 0.0007	2.4947 ± 0.0005	0.3
σ_h^0 [nb]	41.540 ± 0.037		41.492 ± 0.008	41.491 ± 0.006	1.3
R_{ℓ}^{0}	20.767 ± 0.025		20.749 ± 0.008	20.749 ± 0.006	0.7
$A_{\rm FB}^{0,\ell}$	0.0171 ± 0.0010		0.01623 ± 0.0001	0.016247 ± 0.00008	0.9
A_{ℓ} (SLD)	0.1513 ± 0.0021		0.14711 ± 0.0005	0.14718 ± 0.0004	1.9
R_b^0	0.21629 ± 0.00066		0.21586 ± 0.0001	0.21586 ± 0.0001	0.7/0.6
R_c^0	0.1721 ± 0.0030		0.17221 ± 0.00005	0.17221 ± 0.00005	0
$A_{\rm FB}^{0,b}$	0.0992 ± 0.0016		0.10313 ± 0.00032	0.10319 ± 0.00026	-2.4/-2.5
$A_{\rm FB}^{0,c}$	0.0707 ± 0.0035		0.07369 ± 0.00024	0.07373 ± 0.0002	-0.9
A_b	0.923 ± 0.020		0.93475 ± 0.00004	0.93476 ± 0.00004	-0.6
A_c	0.670 ± 0.027		0.66792 ± 0.0002	0.66794 ± 0.0002	0.1
$\sin^2 heta_{ m eff(Had.coll.)}^{ m lept}$	0.23143 ± 0.00027	± 0.00015	0.23151 ± 0.00006	0.23150 ± 0.00005	$-0.5/\!-0.9$

V. Miralles

The EW and top-quark sectors at the $\ensuremath{\mathsf{HL-LHC}}$

Fitting tools

- Open source written in C++
- Based on the Bayesian Analysis Toolkit [A. Caldwell, D. Kollar, K. Kröninger, 0808.2552]
- Sampling likelihoods with MCMC
- Supports SM, implemented NP extensions, and the SMEFT

HEPfit webpage [J. de Blas et al., 1910.14012]

Other frameworks for SMEFT global fits: [SMEFiT, 2105.00006, 2302.06660, 2404.12809], [Fitmaker, 2012.02779], [Aebischer et al., 1810.07698], [Allwicher et al., 2311.00020], [Cirigliano et al., 2311.00021], [Bartocci et al., 2311.04963], [Garosi et al., 2310.00047],...

Dependencies of top-quark operators [Brivio et. al., 1910.03606]

parameter	$t\bar{t}$	single t	tW	tZ	t decay	$t\bar{t}Z$	$t\bar{t}W$
$C_{Qq}^{1,8}$	Λ^{-2}	-	-	-	-	Λ^{-2}	Λ^{-2}
$C_{Qq}^{3,8}$	Λ^{-2}	$\Lambda^{-4}~[\Lambda^{-2}]$	_	$\Lambda^{-4}~[\Lambda^{-2}]$	$\Lambda^{-4}~[\Lambda^{-2}]$	Λ^{-2}	Λ^{-2}
C_{tu}^8, C_{td}^8	Λ^{-2}	-	-	_	_	Λ^{-2}	-
$C_{Qq}^{1,1}$	$\Lambda^{-4}~[\Lambda^{-2}]$	-	-	-	-	$\Lambda^{-4}~[\Lambda^{-2}]$	$\Lambda^{-4}~[\Lambda^{-2}]$
$C_{Qq}^{3,1}$	$\Lambda^{-4}~[\Lambda^{-2}]$	Λ^{-2}	-	Λ^{-2}	Λ^{-2}	$\Lambda^{-4}~[\Lambda^{-2}]$	$\Lambda^{-4}~[\Lambda^{-2}]$
C^1_{tu},C^1_{td}	$\Lambda^{-4}~[\Lambda^{-2}]$	-	-	-	-	$\Lambda^{-4}~[\Lambda^{-2}]$	-
C_{Qu}^8, C_{Qd}^8	Λ^{-2}	-	-	-	-	Λ^{-2}	-
C_{tq}^8	Λ^{-2}	-	_	-	_	Λ^{-2}	Λ^{-2}
C^1_{Qu}, C^1_{Qd}	$\Lambda^{-4}~[\Lambda^{-2}]$	-	-	-	-	$\Lambda^{-4}~[\Lambda^{-2}]$	-
C^1_{tq}	$\Lambda^{-4}~[\Lambda^{-2}]$	-	-	_	_	$\Lambda^{-4}~[\Lambda^{-2}]$	$\Lambda^{-4}~[\Lambda^{-2}]$
$C^{-}_{\phi Q}$	-	-	-	Λ^{-2}	-	Λ^{-2}	-
$C^3_{\phi Q}$	-	Λ^{-2}	Λ^{-2}	Λ^{-2}	Λ^{-2}	-	-
$C_{\phi t}$	-	-	-	Λ^{-2}	_	Λ^{-2}	-
$C_{\phi tb}$	-	Λ^{-4}	Λ^{-4}	Λ^{-4}	Λ^{-4}	-	-
C_{tZ}	-	-	_	Λ^{-2}	-	Λ^{-2}	-
C_{tW}	-	Λ^{-2}	Λ^{-2}	Λ^{-2}	Λ^{-2}	-	-
C_{bW}	-	Λ^{-4}	Λ^{-4}	Λ^{-4}	Λ^{-4}	-	-
C_{tG}	Λ^{-2}	$[\Lambda^{-2}]$	Λ^{-2}	_	$[\Lambda^{-2}]$	Λ^{-2}	Λ^{-2}

Table 1. Wilson coefficients in our analysis and their contributions to top-quark observables via SM-interference (Λ^{-2}) and via dimension-6 squared terms only (Λ^{-4}). A square bracket indicates that the Wilson coefficient contributes via SM-interference at NLO QCD. All quark masses except m_t are assumed to be zero. Single t' stands for s – and t–channel electroweak top production.

Top-quark yukawa

• HL-LHC great oportunity to measure top-Yuk. from tth and thj

Global SMEFT fit observable break down

With J. de Blas, A. Goncalves, L. Reina, L. Silvestrini and M. Valli

