



# Standard Model and Beyond OT HL-LHC

# Experimental talk



Workshop on High Luminosity LHC and Hadron Colliders - October 4, 2024



### Livia Soffi



### LHC data taking overview

### Excellent accelerator performance over many years



Livia Soffi - Standard Model and Beyond at HL-LHC: Experimental talk - LNF 2024

- Run 3 dataset (13.6 TeV)
  - Being collected now
  - ~110 fb-1 good for physics in 2022-2023-2024, expect >300 fb-1 at the end of 2025

### Run 2 dataset (13 TeV)

- ~140 fb-1 good for physics
- ~ 7M Higgs bosons produced
- ~ 5000 reconstructed  $H \rightarrow \gamma \gamma$



2/31

# Run 2: Higgs boson physics legacy

- Very broad ongoing Higgs boson physics program at CMS and ATLAS
- Precision measurements: few-% level on some couplings, 0.1% on mH.
- Significant reduction in uncertainties on charm coupling
- Di-Higgs is reaching SM sensitivity with Run 2 data only
- Improvements driven by better analysis techniques



Livia Soffi - Standard Model and Beyond at HL-LHC: Experimental talk - LNF 2024

# 120 121 122 123 124 125 126 127 128 129 130





# Run 2: Higgs boson physics legacy

- Very broad ongoing Higgs boson physics program at CMS and ATLAS
- Precision measurements: few-% level on some couplings, 0.1% on mH.
- Significant reduction in uncertainties on charm coupling
- Di-Higgs is reaching SM sensitivity with Run 2 data only
- Improvements driven by better analysis techniques













# Run 2: Higgs boson physics legacy

- Very broad ongoing Higgs boson physics program at CMS and ATLAS
- Precision measurements: few-% level on some couplings, 0.1% on mH.
- Significant reduction in uncertainties on charm coupling
- **Di-Higgs** is reaching SM sensitivity with Run 2 data only
- Improvements driven by better analysis techniques and performance









# Run 2: searches overview

| Reference           | Topic                                         | Experiment |             |  |
|---------------------|-----------------------------------------------|------------|-------------|--|
| HDBS-2021-07        | $H \rightarrow aa \rightarrow bb\tau\tau$     | ATLAS      |             |  |
| HDBS-2020-11        | $H^{\pm} \rightarrow cs$                      | ATLAS      |             |  |
| HDBS-2023-19        | Combination of charged Higgs searches         | ATLAS      |             |  |
| EXOT-2022-13        | $A \to t\bar{t}$                              | ATLAS      | Extende     |  |
| <u>HIG-24-002</u>   | $H \rightarrow ZZ \rightarrow 4l$             | CMS        |             |  |
| <u>HIG-22-004</u>   | $A \to Zh(\tau\tau)$                          | CMS        |             |  |
| <u>SUS-24-001</u>   | $\phi \rightarrow bb$                         | CMS        |             |  |
| EXOT-2018-55        | Prompt Lepton-Jets                            | ATLAS      |             |  |
| EXOT-2022-04        | Long Lived Particles in the hadronic calorim. | ATLAS      |             |  |
| <u>SUS-23-004</u>   | mono-t                                        | CMS        | Da          |  |
| SUS-23-012          | $mono-h(\tau\tau)$                            | CMS        |             |  |
| <u>SUS-23-018</u>   | $H \to Za \to ll \chi \chi$                   | CMS        |             |  |
| <u>SUS-24-004</u>   | pMSSM                                         | CMS        | Supe        |  |
| <u>SUS-23-003</u>   | Compressed Supersymmetry                      | CMS        |             |  |
| ATLAS-CONF-2024-011 | Run3 displaced leptons*                       | ATLAS      |             |  |
| <u>SUS-23-002</u>   | Supersymmetry w/ charged leptons and          | CMS        |             |  |
| ATLAS-CONF-2024-008 | Vector Like Leptons (VLL) 4321 model (tau     | ATLAS      |             |  |
| EXOT-2021-02        | Combination of VLQ                            | ATLAS      | <b>FLAS</b> |  |
| EXO-23-015          | VLL $\rightarrow \tau a(\gamma \gamma)$       | CMS        | Tieav       |  |
| <u>B2G-22-005</u>   | $t^* \rightarrow tg$                          | CMS        | 7500        |  |
| EXO-23-010          | ll + b - jets, non - resonant                 | CMS        |             |  |
| EXOT-2022-33        | Low mass dijet + ISR gamma                    | ATLAS      |             |  |
| EXOT-2020-26        | Dark Higgs via Z'                             | ATLAS      | New         |  |
| EXO-24-007          | Low mass dijet+ISR                            | CMS        |             |  |
| EXO-22-006          | $Z' \rightarrow \mu \mu + b - jets, resonant$ | CMS        |             |  |
| EXO-22-013          | t-channel scalar and vector leptoquark        | CMS        | Le          |  |
|                     |                                               |            |             |  |



| 2000 [00] |
|-----------|
|           |
|           |
|           |
|           |
|           |
|           |
|           |
|           |
|           |
|           |
|           |
|           |
|           |
|           |
|           |
|           |
|           |
|           |
|           |
|           |
|           |
|           |
|           |
|           |
|           |
|           |
|           |
|           |
|           |
|           |
|           |
|           |
|           |
|           |
|           |
|           |
|           |
|           |



# Run 2: searches overview

| HDBS-2021-07 | H  ightarrow aa  ightarrow bb 	au 	au | ATLAS |                       |
|--------------|---------------------------------------|-------|-----------------------|
| HDBS-2020-11 | $H^{\pm} \rightarrow cs$              | ATLAS |                       |
| HDBS-2023-19 | Combination of charged Higgs searches | ATLAS |                       |
| EXOT-2022-13 | $A \rightarrow t\bar{t}$              | ATLAS | Extended Higgs Sector |
| HIG-24-002   |                                       |       |                       |

HIG-22-004

SUS-24-001

EXOT-2018-55

EXOT-2022-04

SUS-23-004

SUS-23-012

SUS-23-018

SUS-24-004

SUS-23-003

SUS-23-002

ATLAS-CONF-2024-008

EXOT-2021-02

EXO-23-015

B2G-22-005

AS-CONF-2024-01

# and Heavy Resonances (<u>CMS</u>)

### Many standard summary plots in the public pages of <u>ATLAS</u> and CMS

Many Physics Reports about BSM Run 2 physics @LHC submitted: state-of-the-art of a broad set of physics results and techniques in many areas of LHC BSM physics: <u>CMS</u> and <u>ATLAS</u>

| EXO-23-010   | ll + b - jets, non - resonant                 | CMS   | 1.149 |
|--------------|-----------------------------------------------|-------|-------|
| EXOT-2022-33 | Low mass dijet + ISR gamma                    | ATLAS |       |
| EXOT-2020-26 | Dark Higgs via Z'                             | ATLAS | Nov   |
| EXO-24-007   | Low mass dijet+ISR                            | CMS   | New   |
| EXO-22-006   | $Z' \rightarrow \mu \mu + b - jets, resonant$ | CMS   |       |
| EXO-22-013   | t-channel scalar and vector leptoquark        | CMS   | Le    |
|              |                                               |       |       |

Livia Soffi - Standard Model and Beyond at HL-LHC: Experimental talk - LNF 2024

New summary plots from Leptoquarks and Dark Matter (ATLAS)

| Mediators        |           | *(+ 1 result | Run 3) |  |
|------------------|-----------|--------------|--------|--|
| EFI<br>Mediators | otoquarks |              |        |  |
| EFT<br>Mediators |           |              |        |  |
| EFI              | Mediators |              |        |  |
|                  | EFT       |              |        |  |

| <u> </u> | Q 1 |
|----------|-----|
| 4/,      | J I |

# Run 2: impact of GNN tagging

- Previously search for boosted resonances reconstructed as large-radius jets with substructure
- Now signal distinguished from the backgrounds using **ParticleNet GNN discriminants**
- Stringent limits on universal coupling



Livia Soffi - Standard Model and Beyond at HL-LHC: Experimental talk - LNF 2024



### Boosted jets: Increasing transverse momentum, p<sub>T</sub>





### Run 3: status of the art

• Higher collision energy and aiming for 2 × larger dataset – There is much more to come!

CMS:

- Higgs and EW processes (<u>HIG-23-014</u>, <u>HIG-24-013</u>, <u>SMP-24-005</u>, <u>SMP-24-001</u>, <u>SMP-22-017</u>, <u>TOP-22-012</u>, <u>TOP-23-008</u>)
- First w/ parking (<u>BPH-23-008</u>)
- Two searches (<u>EXO-23-014</u>, <u>EXO-23-013</u>)







### Run 3: Boosting the sensitvity with new triggers An example: Search for displaced leptons in 13 TeV and 13.6 TeV

Large Radius Tracking: designed to increase efficiency for decay products of LLPs.







Enhanced discovery reach beyond prior searches through several novel additions.

Livia Soffi - Standard Model and Beyond at HL-LHC: Experimental talk - LNF 2024

95% CL exclusion contours for longlived selectrons (smuons and staus, see <u>backup</u>)









# High Luminosity (HL) LHC timeline



 Targeting ~3000 fb<sup>-1</sup> of data or 180 million Higgs bosons

• 50 fb<sup>-1</sup> for LHCb 5 fb<sup>-1</sup> for ALICE, Pb–Pb (13 nb<sup>-1</sup>) and p-Pb ( 50  $nb^{-1}$  )

Livia Soffi - Standard Model and Beyond at HL-LHC: Experimental talk - LNF 2024

### • HL-LHC represents the ultimate evolution of LHC machine performance: operation at up to $L=7.5 \cdot 10^{34} Hz/cm^{2}$





# Raising the challenge

- occupancy, higher trigger rates
- Much higher collision rates will far exceed the capabilities of the existing detectors



Livia Soffi - Sta Deyond at HE-LHO. Experimental talk

• Pileup (PU) conditions particularly challenging for data-taking: detector irradiation, higher





# Raising the challenge

- occupancy, higher trigger rates
- Much higher collision rates will far exceed the capabilities of the existing detectors



used in data analyses.

Livia Soffi - Standard Model and Beyond at HL-LHC: Experimental talk - LNF 2024

• Pileup (PU) conditions particularly challenging for data-taking: detector irradiation, higher





### Main priorities at HL-LHC Spatial overlap of tracks and energy deposits:

o degrade the identification and the reconstruction of the hard interaction

o increase the rate of false triggers

o more radiation damage

harsher radiation (~ 10<sup>16</sup> neq/cm<sup>2</sup>; 10 MGy)

• higher rate of data

 Phase-2 improvements in detectors, triggers and reconstruction will extend sensitivity in precision measurements and new physics searches

**Higher collision rate:** 

 Higher order theory calculations and larger MC samples required to fully exploit the HL-LHC Livia Soffi - New ideas for measurements and searches at the HL-LHC - LHCP 2024

good reconstruction efficiency

Old the second secon

• Sophisticated detector

Increase data acquisition bandwidth Increase processing power for online record



### Main priorities at HL-LHC Spatial overlap of tracks and energy deposits:

- degrade the identification and the reconstruction of the hard interaction
- o increase the rate of false triggers

### Higher collision rate:

- o more radiation damage
- harsher radiation(~ 10<sup>16</sup> neq/cm<sup>2</sup>; 10 MGy)
- higher rate of data
- precision measurements and new physics searches

• Higher order theory calculations and larger MC samples required to fully exploit the HL-LHC Livia Soffi - New ideas for measurements and searches at the HL-LHC - LHCP 2024

good reconstruction efficiency

Old the second secon

• Sophisticated detector

Increase data acquisition bandwidth Increase processing power for online

### Phase-2 improvements in detectors, triggers and reconstruction will extend sensitivity in





### • New techniques and detectors will extend analyses sensitivity:

- $\circ$  Advanced Detector Technologies  $\rightarrow$  improved tracking, calorimeters, and timing detectors
- $\circ$  Machine Learning and AI  $\rightarrow$  will help in handling the vast amounts of data generated and in identifying rare events more efficiently.



Livia Soffi - New ideas for measurements and searches at the HL-LHC - LHCP 2024

- Searches for New Physics Beyond the Standard Model (SUSY, Dark Matter, Exotic signatures)



- LHC experiments have an ambitious physics program ahead: • Precision Measurements of the Higgs Boson (couplings and rare decays)
  - Searches for New Physics Beyond the Standard Model (SUSY, Dark Matter, Exotic signatures)
  - Precision Tests of the Standard Model (Top quark, EW tests)
  - Rare Processes and Flavour Physics (FCNSs, CP violation)
  - Heavy Ion Collisions (QGP, UPC)

### • New techniques and detectors will extend analyses sensitivity:

- $\circ$  Advanced Detector Technologies  $\rightarrow$  improved tracking, calorimeters, and timing detectors
- $\circ$  Machine Learning and AI  $\rightarrow$  will help in handling the vast amounts of data generated and in identifying rare events more efficiently.



Livia Soffi - New ideas for measurements and searches at the HL-LHC - LHCP 2024



- LHC experiments have an ambitious physics program ahead: • Precision Measurements of the Higgs Boson (couplings and rare decays)
  - Searches for New Physics Beyond the Standard Model (SUSY, Dark Matter, Exotic signatures)
  - Precision Tests of the Standard Model (Top quark, EW tests)
  - Rare Processes and Flavour Physics (FCNSs, CP violation)
  - Heavy Ion Collisions (QGP, UPC)

### • New techniques and detectors will extend analyses sensitivity:

- identifying rare events more efficiently.

### • Theoretical and computational advances:

- Improved theoretical models and higher-order calculations (PDFs and QCD effects)
- Advanced simulations and modeling of particle interactions

 $\circ$  Advanced Detector Technologies  $\rightarrow$  improved tracking, calorimeters, and timing detectors

 $\circ$  Machine Learning and AI  $\rightarrow$  will help in handling the vast amounts of data generated and in



- LHC experiments have an ambitious physics program ahead:
   Precision Measurements of the Higgs Boson (couplings and rare decays)
   Searches for New Physics Beyond the Standard Model (SUSY, Dark Matter, Exotic signatures)
  - LHC experiment pushed very hard the performance studies while preparing TDRs and legacy documents (see bibliography)
  - Recently the community is clearly focussing on prototyping and building these beautiful detectors
  - In this talk I will highlight some examples of niche physics cases that I find elegant and emblematic in the context of showing the huge potentiality of the upgraded LHC detectors in few years from now

• Improved theoretical models and higher-order calculations (PDFs and QCD effects) • Advanced simulations and modeling of particle interactions  $\begin{bmatrix} X & X & X \\ X & Y & \phi^+ \end{bmatrix}$ 

o Pre

o Rar

ide

• New tec

Livia Soffi - New ideas for measurements and searches at the HL-LHC - LHCP 2024





# Methods for HL-LHC prospect studies

- MC event Generator + Fast detector simulation
- Start from published LHC Run 2 results, adapt to HL-LHC conditions
- Assumptions on uncertainties:
  - as reduced PDF uncertainties)
  - Limited number of simulated events neglected
  - Detector performance as good or better than now, but with harsher pileup conditions
  - Experimental uncertainties reduced by  $1/\sqrt{2}$
  - Luminosity uncertainty: 1%

• Theory uncertainties reduced by a factor of ~ 2 (higher-order calculation as well



# Standard Model Physics



# Higgs boson properties and couplings

- Essential task to test the self-consistency of the SM at HL-LHC
- Sensitivities at 3000 fb<sup>-1</sup> extrapolated from Run 2 measurements
- Most couplings measurements expected to be limited by uncertainties with HL-LHC datasets: precision < 4%
  - $H \rightarrow \mu\mu$  and  $H \rightarrow Z\gamma$  still limited by stat. uncertainty

• Estimates include improved acceptance and performance of the detectors

 Very interesting prospects to probe Yukawa couplings to 2nd generation fermions





# C-Challenging Higgs Physics at HL-LHC

- • $H \rightarrow cc$  direct measurement: small branching fraction + very large QCD
- Jets b/c-tagged using a multivariate discriminant
- Analysis simultaneously measure the  $VH(H \rightarrow bb)$ and the  $VH(H \rightarrow cc)$  processes

• 95% CL expected upper limit on  $\sigma \times BR$ : • @ ATLAS Run 2: 31 x SM

• @ ATLAS HL-LHC: 6.4 x SM

ATLAS:  $\mu(VH, H \rightarrow cc) = 1.0 \pm 2.0$  (stat.)  $\pm 2.5$  (syst.)

CMS:  $\mu(VH, H \rightarrow cc) = 1.0 \pm 0.6$  (stat.)  $\pm 0.5$  (syst.)

### With further improvements could be in reach at HL-LHC!







# C-Challenging Higgs Physics at HL-LHC

- • $H \rightarrow cc$  direct measurement: small branching fraction + very large QCD
- Jets b/c-tagged using a multivariate discriminant
- Analysis simultaneously measure the  $VH(H \rightarrow bb)$ and the  $VH(H \rightarrow cc)$  processes
  - 95% CL expected upper limit on  $\sigma$  x BR:
    - @ ATLAS Run 2: 31 x SM
    - @ ATLAS HL-LHC: 6.4 x SM

ATLAS:  $\mu(VH, H \rightarrow cc) = 1.0 \pm 2.0 \text{ (stat.)} \pm 2.5 \text{ (syst.)}$ 

CMS:  $\mu(VH, H \rightarrow cc) = 1.0 \pm 0.6 \text{ (stat.)} \pm 0.5 \text{ (syst.)}$ 

### • With further improvements could be in reach at HL-LHC!





Н

# Higgs self-coupling @HL-LHC

- Tri-linear coupling  $\lambda$  directly accessible via Higgs pair production
- $pp \rightarrow HH$  cross section 3 orders of mag. lower than single Higgs
- Improved trackers and ML key for HH studies (e.g. b tagging)



Ref.



destructive interference with box diagram



# Standard Model Effective Field Theory (SMEFT)

 $\mathcal{L}^{D=6} = \frac{1}{\Lambda^2} \sum_{k=1}^{n}$  $\mathcal{L}_{eff} = \mathcal{L}^{SM} + \mathcal{L}^{D=6},$ 

- ✓ c<sub>i</sub> specify the strength of the new interactions EFT only valid at  $E < \Lambda$  $\checkmark$ Full theory (New Physics) Effective interaction (EFT) -ig $p^2 << M^2$
- LHC analyses enable to accurately place limits on Wilson Coefficients (ci)

A single operator can influence many processes, and multiple operators can affect one single process.

Livia Soffi - Standard Model and Beyond at HL-LHC: Experimental talk - LNF 2024

-SMP-24-003

SMS-PA





 $\mathcal{L}_{eff} = \mathcal{L}^{SM} + \mathcal{L}^{D=6}, \qquad \mathcal{L}^{D=6} = \frac{1}{\Lambda^2}$ 

- ✓ c<sub>i</sub> specify the strength of the new interactions ✓ EFT only valid at  $E < \Lambda$ Effective interaction (EFT) Full theory (New Physics) -ig $p^2 << M^2$
- LHC analyses enable to accurately place limits on Wilson Coefficients (ci)

Livia Soffi - Standard Model and Beyond at HL-LHC: Experimental talk - LNF 2024

-SMP-24-003

CMS-PA





A single operator can influence many processes, and multiple operators can affect one single process.

17/31

# SMEFT: Impact of precision on BSM @LHC

### First combination from an experiment including top, Higgs, vector boson and jet measurements in an EFT interpretation

**CMS** Preliminary c<sub>j</sub> / Λ<sup>2</sup> (TeV<sup>-2</sup>) Type of measurement Observables used STXS bins [41] Diff. cross sections Fid. diff. cross sections  $p_{\mathrm{T}}^{\gamma} \times |\phi_{f}|$ Fid. diff. cross sections  $m_{\ell\ell} \ p_{
m T}^Z$ Fid. diff. cross sections  $\bar{M}_{t\bar{t}}$ Fid. diff. cross sections  $\begin{array}{l} \Gamma_{Z}, \ \sigma_{\rm had}^{0}, \ R_{\ell}, \ R_{c}, \ R_{b}, \ A_{FB}^{0,\ell}, \\ A_{FB}^{0,c}, \ A_{FB}^{0,b} \\ p_{\rm T}^{\rm jet} \times |y^{\rm jet}| \end{array}$ Pseudo-observables contribution f Fid. diff. cross sections Yields in regions of interest Direct EFT 0.6 0.4 fractional ( 0.2 Ω

### CMS-PAS-SMP-24-003

Analysis

 $H \rightarrow \gamma \gamma$ 

 $Z \rightarrow \nu \nu$ 

EWPO

Inclusive jet

 $W\gamma$ 

WW

tŦ

ttX



# SMEFT: Impact of precision on BSM @HL-LHC

### Higgs couplings deviations depend on BSM scenario



### Dim-6 EFT w/ Higgs + EW

- Large impact of tree-level  $\mathcal{O}_{GG,WW,BB}$  on SM loop-induced  $gg \rightarrow H \text{ or } H \rightarrow \gamma \gamma$  $\Lambda \gtrsim 30$  TeV (c = 1)
- Also strong impact from Drell-Yan measurements on  $\mathcal{O}_{2W,2B}$



 Generic Higgs coupling deviations  $\left(\frac{\mathrm{v}^2}{\Lambda^2}\right) \simeq 1.6\% \left(\frac{2 \mathrm{~TeV}}{\Lambda}\right)^2$ 

but mapping between precision and energy scale is highly model dependent







Higgs couplings deviations depend on BSM scenario





### Beyond Standard Model Physics



# New massive resonances decaying into Higgs boson pairs

- Spin-0 and 2 new particles  $X \rightarrow HH \rightarrow 4b$
- $H \rightarrow bb$  are highly Lorentz-boosted: two b reconstructed as a single large-radius jet

GGF Spin-2 graviton masses of up to about 3 TeV



Livia Soffi - Standard Model and Beyond at HL-LHC: Experimental talk - LNF 2024



 VBF: cross section an order of magnitude smaller not yet explored
 3 ab<sup>-1</sup> (14 TeV)





# New massive resonances decaying into Higgs boson pairs

- Spin-0 and 2 new particles  $X \rightarrow HH \rightarrow 4b$
- $H \rightarrow bb$  are highly Lorentz-boosted: two b reconstructed as a single large-radius jet

GGF Spin-2 graviton masses of up to about 3 TeV



Livia Soffi - Standard Model and Beyond at HL-LHC: Experimental talk - LNF 2024



• VBF: cross section an order of magnitude smaller

3 ab<sup>-1</sup> (14 TeV)





# Search for direct pair production of top squarks at HL-LHC

- transverse momentum
- Three and four bodies decays studies under the assumption:



 At HL-LHC the Fake Non Prompt background rejection will benefit from higher granularity improved isolation performance

 Different kinematic variables are exploited to separate the signal from the SM background and cuts optimized w.r.t. Run 2

Livia Soffi - Standard Model and Beyond at HL-LHC: Experimental talk - LNF 2024

• Analysis strategy similar to the Run 2 one in final states with two leptons, jets and missing



22/31

# Search for direct pair production of top squarks at HL-LHC

- transverse momentum
- Three and four bodies decays studies under the assumption:
- At HL-LHC the Fake Non Prompt background rejection will benefit from higher granularity improved isolation performance
- Different kinematic variables are exploited to separate the signal from the SM background and cuts optimized w.r.t. Run 2

Livia Soffi - Standard Model and Beyond at HL-LHC: Experimental talk - LNF 2024

• Analysis strategy similar to the Run 2 one in final states with two leptons, jets and missing









### Search for direct pair production of top squarks at HL-LHC • Sensitivity estimates conservative: Anal assumed Run 2 objects reconstructions same trigger thresholds unde $\tilde{t}_1 \rightarrow bff' \tilde{\chi}_1^0$ $\boldsymbol{\widetilde{t}_1} \rightarrow \boldsymbol{t} \boldsymbol{\widetilde{\chi}_1^0}, \, \boldsymbol{\widetilde{t}_1} \rightarrow \boldsymbol{b} \boldsymbol{W} \boldsymbol{\widetilde{\chi}_1^0}$ ک m(t<sub>1</sub>,<sub>រ</sub><sub>۲</sub>) [GeV] $m(\widetilde{t},\widetilde{\chi}_{1}^{0})$ [GeV] 160 **ATLAS Simulation Preliminary** 1600 **ATLAS Simulation Preliminary** √s=14 TeV, 3000 fb<sup>-1</sup>, All limits at 95% CL √s=14 TeV, 3000 fb<sup>-1</sup>, All limits at 95% CL 140 Expected Limit (±1 $\sigma_{exp}$ ) Run2 Observed Limit 1400 - - - Expected Limit (±1 $\sigma_{exp}$ ) Run2 Observed Limit 120 Discovery potential 3o 1200 Discovery potential 3o Discovery potential 5o Discovery potential 50 will be 100 1000 $\Delta m(\tilde{t}, \tilde{\chi}^0) > m(W^{\pm})$ 80 perto 800 60 600 40 400 the sig $\Delta m(\tilde{t}, \tilde{\chi}^0) > m(t)$ 200 $\Delta m(\widetilde{t},\widetilde{\chi}^0) > m(W^{\pm})$ ٥٣ 300 800 700 400 500 600 w.r.t. . | . . <u>. | . .</u> 0 m(t̃₁) [GeV] 1200 1300 500 600 800 900 1000 1100 400 700 m(t̃₁) [GeV]







# The HL-LHC photon collider @ ALICE

- Ultra-peripheral collisions (UPCs) of heavy ions: light-by-light scattering, axion-like particle
- ALICE 3 can access invariant masses below 5 GeV:
  - os, t and u-channel play an important role largest theoretical uncertainties in the calculation of the muon anomalous magnetic moment per 100 M
- Final state: two photons emitted back-to-back
- π<sup>0</sup>π<sup>0</sup> dominant background below 2 GeV (final) state with four photons of which only two are detected)



Below 0.5 GeV/c2, signal is dominant

 $z \, 10^3$ 

- Pb-Pb UPC@5.02 TeV, L = 35 nb<sup>-1</sup>



# The HL-LHC photon collider @ ALICE

- Ultra-peripheral collisions (UPCs) of heavy ions: light-by-light scattering, axion-like particle
- ALICE 3 can access invariant masses below 5 GeV:
  - os, t and u-channel play an important role largest theoretical uncertainties in the calculation of the muon anomalous magnetic moment
- Final state: two photons emitted back-to-back
- π<sup>0</sup>π<sup>0</sup> dominant background below 2 GeV (final state with four photons of which only two are detected)

### Below 0.5 GeV/c2, signal is dominant

Pb Pb  $\gamma$  Pb Pb



# A new approach in BSM searches @ ALICE

- ALPs via the  $\gamma\gamma \rightarrow a \rightarrow \gamma\gamma$  process naturally couple to photons via an effective Lagrangian
- Two-dimensional parameter space of the axion mass ma and the coupling w/ photons
- ATLAS and CMS: limited abilities to light masses due to the difficulties in the triggering and reconstruction of photons with transverse energy below 2 GeV

Livia Soffi - Standard Model and Beyond at HL-LHC: Experimental talk - LNF 2024







 $10^{3}$ 

24/31

# A new approach in BSM searches @ ALICE

- ALPs via the  $\gamma\gamma \rightarrow a \rightarrow \gamma\gamma$  process naturally couple to photons via an effective Lagrangian
- Two-dimensional parameter space of the axion mass ma and the coupling w/ photons
- ATLAS and CMS: limited abilities to light masses due to the difficulties in the triggering and reconstruction of photons with transverse energy below 2 GeV

### ALICE 3: unique opportunity to fill the gap in the intermediate ALP mass range from 50 MeV to 5 GeV





# Boosting Dark Photon Sensitivity @ LHCb

- Dark Photon A', mediator of a new U(1) dark force kinetically mix with the photon: observed in final states produced by the EM current
- Two free parameters: mixing term  $\epsilon^2$  and mass of A',  $m_{A'}$

olight meson decays:

### Three core capabilities of LHCb: excellent secondary vertex resolution, particle identification, and real-time data-analysis.









# Boosting Dark Photon Sensitivity @ LHCb

- Dark Photon A', mediator of a new U(1) dark force kinetically mix with the photon: observed in final states produced by the EM current
- Two free parameters: mixing term  $\epsilon^2$  and mass of A',  $m_{A'}$
- oprompt and displaced searches using D\*0
- oinclusive dimuon production
- olight meson decays:

$$\pi 0 \rightarrow e^+ e^- \gamma$$

 $\eta \rightarrow e^+e^-\gamma$ 



ref.

 $\varepsilon^2$ 

### • Three core capabilities of LHCb: excellent secondary vertex resolution, particle identification, and real-time data-analysis.







- Huge potential for low mass and low lifetime
- LLP decaying within the VELO: •Excellent spatial and momentum resolution and reconstruction of **displaced vertices**
- Exploring downstream tracks (outside VELO): onew trigger strategies • add Magnet Stations to improve low momentum resolution oremoval of neutral particles from the jet reconstruction (Machine Learning) ofast-timing capabilities of the TORCH to suppress combinatoric background

### Below 25 GeV final state reconstructed as a single jet (merged jet)w/ substructure





- Huge potential for low mass and low lifetime
- LLP decaying within the VELO: •Excellent spatial and momentum resolution and reconstruction of **displaced vertices**
- Exploring downstream tracks (outside VELO): onew **trigger** strategies oadd Magnet Stations to improve low momentum resolution oremoval of neutral particles from the jet reconstruction (Machine Learning) ofast-timing capabilities of the TORCH to suppress combinatoric background
- Below 25 GeV final state reconstructed as a single jet (merged jet)w/ substructure







![](_page_44_Picture_8.jpeg)

![](_page_45_Figure_0.jpeg)

![](_page_45_Picture_1.jpeg)

![](_page_45_Picture_2.jpeg)

Mip Timing Detector @CMS

High-Granularity Timing Detector @ **ATLAS** 

- Significant reduction of beamspot uncertainty w/ tens ps target resolution
  - **Remove pileup** tracks and rejects spurious secondary vertices Ο
  - **Extend the physics reach** in precision measurements 0
  - Provides a new capability for LLP searches and Particle ID

Livia Soffi - Standard Model and Beyond at HL-LHC: Experimental talk - LNF 2024

**TORCH @ LHCb** 

**ALICE3** 

![](_page_45_Picture_13.jpeg)

# Detection of late photons with CMS MTD

- New 30 ps Mip Timing Detector (MTD) essential to properly determine the primary vertex time and particles' time of flight
- Weighted vertex time resolution: estimating number of tracks in barrel/endcap

 Signatures with **delayed** photons: (ECAL time resolution: 30 ps)

![](_page_46_Figure_4.jpeg)

![](_page_46_Figure_8.jpeg)

![](_page_46_Picture_9.jpeg)

# Detection of late photons with CMS MTD

- New 30 ps Mip Timing Detector (MTD) essential to properly determine the primary vertex time and particles' time of flight
- Weighted vertex time resolution: estimating number of tracks in barrel/endcap

 Signatures with **delayed** photons: (ECAL time resolution: 30 ps)

![](_page_47_Figure_4.jpeg)

![](_page_47_Figure_9.jpeg)

# CMS MTD as a time-of-flight detector

- Turn the MTD into a time of flight detector and look for anomalous moving particles (slow velocities, q!=1, large mass)
- Complement Muon Detector based searches at short lifetimes

![](_page_48_Figure_3.jpeg)

![](_page_48_Figure_4.jpeg)

![](_page_48_Figure_8.jpeg)

# Mass reconstruction of SUSY particles

- Precision timing gives β of the Long Lived Particle (LLP)
- By measuring the energy and momentum of the visible products of the LLP decay one can boost the visible system tot he LLP frame:

$$E_V^P = \gamma_P \Big( E_V^{LAB} - \vec{P}_V^{LAB} \cdot \vec{\beta}_P^{LAB}$$

• By assuming the mass of the invisible system once can compute the mass of the LLP particle:

$$m_P = E_V^P + \sqrt{E_V^{P^2} + m_I^2 - m_V^2}$$

New potentialities for new timing detectors!

![](_page_49_Figure_9.jpeg)

![](_page_49_Figure_10.jpeg)

![](_page_49_Picture_11.jpeg)

# Towards a new era

- Challenging experimental conditions w/ unprecedented pileup
- Extensive detector upgrades will preserve performance
- Gains from high luminosity and new clever algorithms

•Standard model: ultimate precision and rare processes •Higgs: precise determination of the H(125) properties and searches •Direct searches: discover new physics or close a few chapters •Flavour: high/low pT complementarity •Heavy Ion: precise differential measurements

Livia Soffi - Standard Model and Beyond at HL-LHC: Experimental talk - LNF 2024

• HL-LHC will significantly increase physics reach of LHC experiments across Higgs, SM, and BSM

![](_page_50_Picture_14.jpeg)

![](_page_50_Picture_15.jpeg)

# Towards a new era

- Challenging experimental conditions w/ unprecedented pileup
- Extensive detector upgrades will preserve performance
- Gains from high luminosity and new clever algorithms

•Standard model: ultimate precision and rare processes •Higgs: precise determination of the H(125) properties and searches •Direct searches: discover new physics or close a few chapters •Flavour: high/low pT complementarity •Heavy Ion: precise differential measurements

# expectations!

Livia Soffi - Standard Model and Beyond at HL-LHC: Experimental talk - LNF 2024

• HL-LHC will significantly increase physics reach of LHC experiments across Higgs, SM, and BSM

HL-LHC will provide a massive amount of new knowledge and we are expecting to exceed

![](_page_51_Picture_14.jpeg)

![](_page_51_Picture_15.jpeg)

![](_page_52_Picture_1.jpeg)

![](_page_52_Picture_2.jpeg)

# Bibliography

Recent efforts for HL-LHC projections

- European Strategy Update (2018-2020)
- CERN Yellow report (CERN-2019-007)
- Snowmass White Paper Contribution, 2022
- ALICE 3 Lol: arXiv:2211.02491

![](_page_53_Picture_7.jpeg)

**Current state-of-the-art: Mass** 

### **CMS:** using $H \rightarrow ZZ^* \rightarrow 4I$ : CMS-PAS-HIG-21-019

### $m_{H} = 125.08 \pm 0.10$ (stat) $\pm 0.05$ (syst) GeV

Most precise single measurement (< 1 ‰)

### **ATLAS**: combining $H \rightarrow 4I + H \rightarrow \gamma \gamma$ :

### $m_{H} = 125.11 \pm 0.11 \text{ GeV} (syst: 0.09 \text{ GeV})$

Most precise measurement to date

 $H \rightarrow \gamma \gamma$  mass resolution systematics reduced by a factor 4 !

Livia Soffi - Standard Model and Beyond at HL-LHC: Experimental talk - LNF 2024

Phys. Lett. B 843 (2023) 137880, Phys. Lett. B 847 (2023) 138315

See taks by Camila Pazos, Léo Boudet, Badder Marzocchi and **Federica Primavera for details** 

JINST 19 (2024) P02009

![](_page_54_Figure_13.jpeg)

![](_page_54_Figure_14.jpeg)

![](_page_54_Picture_15.jpeg)

![](_page_55_Figure_2.jpeg)

Rapid progress in techniques: BDTs  $\rightarrow$  feed-forward DNNs  $\rightarrow$  Graph NNs, transformer networks...

- Single b-jet and c-jet tagging
- Merged  $H \rightarrow bb |cc|\tau\tau$  tagging
- Large gains in past years, still improving quickly!  $\rightarrow$  Major driver of sensitivity increases

H

Livia Soffi - Standard Model and Beyond at HL-LHC: Experimental talk - LNF 2024

- q

More details in Maxence Draguet's talk

![](_page_55_Picture_11.jpeg)

![](_page_55_Figure_12.jpeg)

![](_page_55_Picture_13.jpeg)

![](_page_55_Picture_14.jpeg)

# Only accessible second-generation quark Yukawa coupling

⇒ Important check of the Higgs mechanism, but currently very large uncertainties

![](_page_56_Figure_3.jpeg)

### ATLAS & CMS $H \rightarrow \gamma \gamma + c$

### Target $pp \rightarrow H+c$ production Potential to constrain κ<sub>c</sub>, also large contributions from non-κ<sub>c</sub>-dependent processes.

![](_page_57_Figure_3.jpeg)

![](_page_57_Figure_4.jpeg)

Large backgrounds  $\Rightarrow$  use clean  $H \rightarrow \gamma \gamma$  decay

### ATLAS: target inclusive H+c $\rightarrow \sigma(H+c) = 5.2 \pm 3.0 \text{ pb}$ (SM: 2.9 pb), < 10.4 pb @ 95% CL

### **CMS:** target $\kappa_c$ -dependent part : $\mu_{cH} < 243$ (355) $\Rightarrow |\kappa_c| < 38.1$ (72.5) @ 95% CL

![](_page_57_Picture_12.jpeg)

### ATLAS and CMS $VH \rightarrow cc$

ATLAS  $VH \rightarrow cc$ 

Simultaneous fit with  $VH \rightarrow bb$ 

### $\mu_{VH \rightarrow cc} < 11.3 @ 95\% CL (10.4 exp.)$ Best limit to date Factor 2.5 improvement over previous limit !

More in Francesco Di Bello's talk

### **| K<sub>c</sub> | < 4.2** @ 95% CL

Factor 2 improvement over previous

More in Andrea Cardini's talk and Maarten de Coen's poster

### CMS VH $\rightarrow$ cc :

- Includes boosted H $\rightarrow$ cc (p<sub>T</sub><sup>H</sup> > 300 GeV)
- $\mu_{VH\rightarrow cc}$  < 14 (7.6) @ 95% CL best sensitivity
- $\Rightarrow$  1.1 <  $|\kappa_c|$  < 5.5

- **First observation** of  $Z \rightarrow cc$  in hadronic collisions.
  - PRL 131 (2023) 041801, PRL 131 (2023) 061801

![](_page_58_Figure_17.jpeg)

![](_page_58_Picture_18.jpeg)

![](_page_58_Picture_19.jpeg)

### **Higgs pair production at LHC**

 $pp \rightarrow HH$ : 1000× smaller than  $pp \rightarrow H$ 

![](_page_59_Figure_2.jpeg)

 $\Rightarrow$  Probe the shape of the Higgs potential

### From G. Salam et al, Nature volume 607, pages 41–47 (2022)

![](_page_59_Picture_7.jpeg)

![](_page_59_Picture_8.jpeg)

### **Higgs potential** EW phase transition resp. for baryon asymmetry? Vacuum stable?

- Measurement of Higgs potential a science driver for HL-LHC, largely unconstrained so far
- Shape of potential key to understand **EW phase transition in early universe**
- Shape of potential determines vacuum stability

![](_page_60_Figure_4.jpeg)

- Cubic (aka tri-linear) coupling  $\lambda$  ( $\equiv \lambda_3$ ) via Higgs pair production • Single Higgs measurements sensitive to  $\lambda$  via higher-order corrections

![](_page_60_Figure_7.jpeg)

![](_page_60_Figure_9.jpeg)

![](_page_60_Picture_10.jpeg)

### **ATLAS Run 2 Di-Higgs Combination**

Combine  $HH \rightarrow bb\tau\tau + bb\gamma\gamma + bbbb + multileptons + bbll+MET$ :

$$\mu_{HH} = 0.5^{+1.2}_{-1.0} \begin{pmatrix} +0.7 \\ -0.6 \end{pmatrix}$$
 syst.)

**Uncertainty comparable to SM signal!** 

-1.2 <  $\kappa_{\lambda}$  < 7.2 @ 95% CL dominated by γγbb + ττbb Best constraint to date on  $\lambda_3$  coupling!

**0.6 < \kappa\_{2V} < <b>1.5** @ 95% CL dominated by VBF HH→bbbb Best constraint from CMS: **0.67 < \kappa\_{2V} < <b>1.38** @ 95% CL

model and beyond at the Line. Experimental tan Lettered

![](_page_61_Figure_6.jpeg)

Nature 607 (2022) 60

25

### **CMS Run 2 differential combination**

**Combined measurements using:** 

- Η→γγ
- $H \rightarrow ZZ^* \rightarrow 4I$
- H→WW\*
- Η→ττ
- $H \rightarrow \tau \tau$  boosted

**High-precision** channels

Sensitive to high-p<sub>T</sub><sup>H</sup> region

Test of the SM over a wide  $p_T^H$  range

Also N<sub>jets</sub>,  $p_T^{j_1}$ ,  $\Delta \phi_{jj}$ , ...

Interpretations in terms of κ<sub>c</sub>, EFT parameters

### $\Rightarrow$ Good agreement with SM predictions in all distributions

![](_page_62_Figure_14.jpeg)

![](_page_62_Picture_15.jpeg)

![](_page_62_Picture_16.jpeg)

![](_page_63_Figure_0.jpeg)

livia Som - Standard Woder and Deyond at HE-LHG. Experimental talk - LNF 2024

![](_page_63_Picture_6.jpeg)

![](_page_64_Figure_0.jpeg)

BSM searches - Livia Soffi - ICHEP2024 Experimer

Dedicated **displaced electron** tagger allows to select only one displaced electron, greatly extending the analysis sensitivity

![](_page_64_Figure_6.jpeg)

![](_page_64_Picture_7.jpeg)

![](_page_64_Figure_8.jpeg)

![](_page_64_Picture_9.jpeg)

![](_page_64_Picture_10.jpeg)

# SMEFT: global fits

Target is to perform a global fit of many operators with many input physics measurements

- Significant step towards this direction performed by ATLAS in 2022
- Dim-6 fit using Higgs+Diboson+EWPO data

![](_page_65_Figure_5.jpeg)

Great care taken to get details right:

- Indirect impact of operators on BRs
- Take propagator effects into account
- Handle acceptance effects in certain Higgs decay kinematics
- Consider impact of certain operators on Fermi constant

Livia Soffi - Standard Model and Beyond at HL-LHC: Experimer

![](_page_65_Figure_12.jpeg)

### ATL-PHYS-PUB-2022-037

### **Other highlights @HL-LHC**

### • EWPO & Top quark

- $\sigma(m_W) \simeq 5 \text{ MeV}$  (CDF: 9.4 MeV)
- $\sigma(m_t) \simeq 0.2 \text{ GeV}$  (LHC: 0.6 GeV)
- $\sigma(\sin^2 \theta_{eff}^{\ell}) \simeq 10 \times 10^{-5}$  $(LEP+SLD: 16 \times 10^{-5})$
- $\Lambda \gtrsim 3.5 \text{ TeV}$  (c = 1) for LH tW

HL-LHC Parameter  $\sqrt{s}$  [TeV] 143.4Yukawa coupling  $y_t$  (%) Top mass  $m_t$  (%) 0.10Left-handed top-W coupling  $C^3_{\phi Q}$  (TeV<sup>-2</sup>) 0.08Right-handed top-W coupling  $C_{tW}$  (TeV<sup>-2</sup>) 0.3Right-handed top-Z coupling  $C_{tZ}$  (TeV<sup>-2</sup>) Top-Higgs coupling  $C_{\phi t}$  (TeV<sup>-2</sup>) 3 Four-top coupling  $c_{tt}$  (TeV<sup>-2</sup>) 0.6

Snowmass EF report

- $W_L^{\pm} W_L^{\pm}$  only 6-7% of total VBS xs
- Significance ~5  $\sigma$  expected ATLAS + CMS

![](_page_66_Figure_12.jpeg)

### Vector-boson scattering

Higgs vs. unitarity violation

### Rare decays

- 0
- resolution by 40-50%

![](_page_66_Figure_19.jpeg)

### Favor physics @HL-LHC Are there additional sources of CP violation? Lepton flavor universality?

• **CP violation:** LHCb to put stringent test on CKM paradigm with 300 fb<sup>-1</sup>

![](_page_67_Figure_2.jpeg)

![](_page_67_Figure_4.jpeg)

arXiv:1808.08865

![](_page_67_Figure_8.jpeg)

![](_page_67_Figure_9.jpeg)

![](_page_67_Picture_10.jpeg)

# **High-Granularity Timing Detector**

- per-hit resolution of **<50-70 ps** over full lifetime *» per-track resolution of <35-50 ps due to overlap*
- outer region

![](_page_68_Figure_6.jpeg)

![](_page_68_Picture_8.jpeg)

![](_page_68_Picture_9.jpeg)

### **CMS** approach: Mip Timing Detector

- and calorimeter

  - tracker
- ٠ choice
  - together with cost and readout considerations •

![](_page_69_Picture_7.jpeg)

![](_page_69_Picture_9.jpeg)